Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove DataFlowSanitizerLegacyPass.
Differential Revision: https://reviews.llvm.org/D124594
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove ThreadSanitizerLegacyPass.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124209
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove AddressSanitizerLegacyPass...
...,
ModuleAddressSanitizerLegacyPass, and ASanGlobalsMetadataWrapperPass.
MemorySanitizerLegacyPass was removed in D123894.
AddressSanitizerLegacyPass was removed in D124216.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124337
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove AddressSanitizerLegacyPass,
ModuleAddressSanitizerLegacyPass, and ASanGlobalsMetadataWrapperPass.
MemorySanitizerLegacyPass was removed in D123894.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124216
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove AddressSanitizerLegacyPass,
ModuleAddressSanitizerLegacyPass, and ASanGlobalsMetadataWrapperPass.
MemorySanitizerLegacyPass was removed in D123894.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124216
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove GCOVProfilerLegacyPass.
I have checked many LLVM users and only llvm-hs[1] uses the legacy gcov pass.
[1]: https://github.com/llvm-hs/llvm-hs/issues/392
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D123829
Using the legacy PM for the optimization pipeline was deprecated in 13.0.0.
Following recent changes to remove non-core features of the legacy
PM/optimization pipeline, remove MemorySanitizerLegacyPass.
Differential Revision: https://reviews.llvm.org/D123894
Legacy PM for optimization pipeline was deprecated in 13.0.0 and Clang dropped
legacy PM support in D123609. This change removes legacy PM passes for PGO so
that downstream projects won't be able to use it. It seems appropriate to start
removing such "add-on" features like instrumentations, before we remove more
stuff after 15.x is branched.
I have checked many LLVM users and only ldc[1] uses the legacy PGO pass.
[1]: https://github.com/ldc-developers/ldc/issues/3961
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D123834
In the textual format, `noduplicates` means no COMDAT/section group
deduplication is performed. Therefore, if both sets of sections are retained, and
they happen to define strong external symbols with the same names,
there will be a duplicate definition linker error.
In PE/COFF, the selection kind lowers to `IMAGE_COMDAT_SELECT_NODUPLICATES`.
The name describes the corollary instead of the immediate semantics. The name
can cause confusion to other binary formats (ELF, wasm) which have implemented/
want to implement the "no deduplication" selection kind. Rename it to be clearer.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D106319
In SanitizerCoverage, the metadata sections (`__sancov_guards`,
`__sancov_cntrs`, `__sancov_bools`) are referenced by functions. After
inlining, such a `__sancov_*` section can be referenced by more than one
functions, but its sh_link still refers to the original function's section.
(Note: a SHF_LINK_ORDER section referenced by a section other than its linked-to
section violates the invariant.)
If the original function's section is discarded (e.g. LTO internalization +
`ld.lld --gc-sections`), ld.lld may report a `sh_link points to discarded section` error.
This above reasoning means that `!associated` is not appropriate to be called by
an inlinable function. Non-interposable functions are inline candidates, so we
have to drop `!associated`. A `__sancov_pcs` is not referenced by other sections
but is expected to parallel a metadata section, so we have to make sure the two
sections are retained or discarded at the same time. A section group does the
trick. (Note: we have a module ctor, so `getUniqueModuleId` guarantees to
return a non-empty string, and `GetOrCreateFunctionComdat` guarantees to return
non-null.)
For interposable functions, we could keep using `!associated`, but
LTO can change the linkage to `internal` and allow such functions to be inlinable,
so we have to drop `!associated`, too. To not interfere with section
group resolution, we need to use the `noduplicates` variant (section group flag 0).
(This allows us to get rid of the ModuleID parameter.)
In -fno-pie and -fpie code (mostly dso_local), instrumented interposable
functions have WeakAny/LinkOnceAny linkages, which are rare. So the
section group header overload should be low.
This patch does not change the object file output for COFF (where `!associated` is ignored).
Reviewed By: morehouse, rnk, vitalybuka
Differential Revision: https://reviews.llvm.org/D97430
This is consistent with the clang option added in
7ed8124d46, and the comments on the
runtime patch in D87120.
Differential Revision: https://reviews.llvm.org/D87622
See RFC for background:
http://lists.llvm.org/pipermail/llvm-dev/2020-June/142744.html
Note that the runtime changes will be sent separately (hopefully this
week, need to add some tests).
This patch includes the LLVM pass to instrument memory accesses with
either inline sequences to increment the access count in the shadow
location, or alternatively to call into the runtime. It also changes
calls to memset/memcpy/memmove to the equivalent runtime version.
The pass is modeled on the address sanitizer pass.
The clang changes add the driver option to invoke the new pass, and to
link with the upcoming heap profiling runtime libraries.
Currently there is no attempt to optimize the instrumentation, e.g. to
aggregate updates to the same memory allocation. That will be
implemented as follow on work.
Differential Revision: https://reviews.llvm.org/D85948
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
This patch merges the sancov module and funciton passes into one module pass.
The reason for this is because we ran into an out of memory error when
attempting to run asan fuzzer on some protobufs (pc.cc files). I traced the OOM
error to the destructor of SanitizerCoverage where we only call
appendTo[Compiler]Used which calls appendToUsedList. I'm not sure where precisely
in appendToUsedList causes the OOM, but I am able to confirm that it's calling
this function *repeatedly* that causes the OOM. (I hacked sancov a bit such that
I can still create and destroy a new sancov on every function run, but only call
appendToUsedList after all functions in the module have finished. This passes, but
when I make it such that appendToUsedList is called on every sancov destruction,
we hit OOM.)
I don't think the OOM is from just adding to the SmallSet and SmallVector inside
appendToUsedList since in either case for a given module, they'll have the same
max size. I suspect that when the existing llvm.compiler.used global is erased,
the memory behind it isn't freed. I could be wrong on this though.
This patch works around the OOM issue by just calling appendToUsedList at the
end of every module run instead of function run. The same amount of constants
still get added to llvm.compiler.used, abd we make the pass usage and logic
simpler by not having any inter-pass dependencies.
Differential Revision: https://reviews.llvm.org/D66988
llvm-svn: 370971
changes were made to the patch since then.
--------
[NewPM] Port Sancov
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
llvm-svn: 367053
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
Differential Revision: https://reviews.llvm.org/D62888
llvm-svn: 365838
Port hardware assisted address sanitizer to new PM following the same guidelines as msan and tsan.
Changes:
- Separate HWAddressSanitizer into a pass class and a sanitizer class.
- Create new PM wrapper pass for the sanitizer class.
- Use the getOrINsert pattern for some module level initialization declarations.
- Also enable kernel-kwasan in new PM
- Update llvm tests and add clang test.
Differential Revision: https://reviews.llvm.org/D61709
llvm-svn: 360707
I added a diagnostic along the lines of `-Wpessimizing-move` to detect `return x = y` suppressing copy elision, but I don't know if the diagnostic is really worth it. Anyway, here are the places where my diagnostic reported that copy elision would have been possible if not for the assignment.
P1155R1 in the post-San-Diego WG21 (C++ committee) mailing discusses whether WG21 should fix this pitfall by just changing the core language to permit copy elision in cases like these.
(Kona update: The bulk of P1155 is proceeding to CWG review, but specifically *not* the parts that explored the notion of permitting copy-elision in these specific cases.)
Reviewed By: dblaikie
Author: Arthur O'Dwyer
Differential Revision: https://reviews.llvm.org/D54885
llvm-svn: 359236
It hasn't seen active development in years, and it hasn't reached a
state where it was useful.
Remove the code until someone is interested in working on it again.
Differential Revision: https://reviews.llvm.org/D59133
llvm-svn: 355862
The basic idea of the pass is to use a circular buffer to log the execution ordering of the functions. We only log the function when it is first executed. We use a 8-byte hash to log the function symbol name.
In this pass, we add three global variables:
(1) an order file buffer: a circular buffer at its own llvm section.
(2) a bitmap for each module: one byte for each function to say if the function is already executed.
(3) a global index to the order file buffer.
At the function prologue, if the function has not been executed (by checking the bitmap), log the function hash, then atomically increase the index.
Differential Revision: https://reviews.llvm.org/D57463
llvm-svn: 355133
This is the second attempt to port ASan to new PM after D52739. This takes the
initialization requried by ASan from the Module by moving it into a separate
class with it's own analysis that the new PM ASan can use.
Changes:
- Split AddressSanitizer into 2 passes: 1 for the instrumentation on the
function, and 1 for the pass itself which creates an instance of the first
during it's run. The same is done for AddressSanitizerModule.
- Add new PM AddressSanitizer and AddressSanitizerModule.
- Add legacy and new PM analyses for reading data needed to initialize ASan with.
- Removed DominatorTree dependency from ASan since it was unused.
- Move GlobalsMetadata and ShadowMapping out of anonymous namespace since the
new PM analysis holds these 2 classes and will need to expose them.
Differential Revision: https://reviews.llvm.org/D56470
llvm-svn: 353985
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Second iteration of D56433 which got reverted in rL350719. The problem
in the previous version was that we dropped the thunk calling the tsan init
function. The new version keeps the thunk which should appease dyld, but is not
actually OK wrt. the current semantics of function passes. Hence, add a
helper to insert the functions only on the first time. The helper
allows hooking into the insertion to be able to append them to the
global ctors list.
Reviewers: chandlerc, vitalybuka, fedor.sergeev, leonardchan
Subscribers: hiraditya, bollu, llvm-commits
Differential Revision: https://reviews.llvm.org/D56538
llvm-svn: 351314
A straightforward port of tsan to the new PM, following the same path
as D55647.
Differential Revision: https://reviews.llvm.org/D56433
llvm-svn: 350647
Summary:
Keeping msan a function pass requires replacing the module level initialization:
That means, don't define a ctor function which calls __msan_init, instead just
declare the init function at the first access, and add that to the global ctors
list.
Changes:
- Pull the actual sanitizer and the wrapper pass apart.
- Add a newpm msan pass. The function pass inserts calls to runtime
library functions, for which it inserts declarations as necessary.
- Update tests.
Caveats:
- There is one test that I dropped, because it specifically tested the
definition of the ctor.
Reviewers: chandlerc, fedor.sergeev, leonardchan, vitalybuka
Subscribers: sdardis, nemanjai, javed.absar, hiraditya, kbarton, bollu, atanasyan, jsji
Differential Revision: https://reviews.llvm.org/D55647
llvm-svn: 350305
This reverts commit 8d6af840396f2da2e4ed6aab669214ae25443204 and commit
b78d19c287b6e4a9abc9fb0545de9a3106d38d3d which causes slower build times
by initializing the AddressSanitizer on every function run.
The corresponding revisions are https://reviews.llvm.org/D52814 and
https://reviews.llvm.org/D52739.
llvm-svn: 345433
Summary:
GetOrCreateFunctionComdat is currently used in SanitizerCoverage,
where it's defined. I'm planing to use it in HWASAN as well,
so moving it into a common location.
NFC
Reviewers: morehouse
Reviewed By: morehouse
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53218
llvm-svn: 344433
Summary:
We have two copies of createPrivateGlobalForString (in asan and in esan).
This change merges them into one. NFC
Reviewers: vitalybuka
Reviewed By: vitalybuka
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53178
llvm-svn: 344314
This patch ports the legacy pass manager to the new one to take advantage of
the benefits of the new PM. This involved moving a lot of the declarations for
`AddressSantizer` to a header so that it can be publicly used via
PassRegistry.def which I believe contains all the passes managed by the new PM.
This patch essentially decouples the instrumentation from the legacy PM such
hat it can be used by both legacy and new PM infrastructure.
Differential Revision: https://reviews.llvm.org/D52739
llvm-svn: 344274
Summary:
Control height reduction merges conditional blocks of code and reduces the
number of conditional branches in the hot path based on profiles.
if (hot_cond1) { // Likely true.
do_stg_hot1();
}
if (hot_cond2) { // Likely true.
do_stg_hot2();
}
->
if (hot_cond1 && hot_cond2) { // Hot path.
do_stg_hot1();
do_stg_hot2();
} else { // Cold path.
if (hot_cond1) {
do_stg_hot1();
}
if (hot_cond2) {
do_stg_hot2();
}
}
This speeds up some internal benchmarks up to ~30%.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: xbolva00, dmgreen, mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D50591
llvm-svn: 341386
This is the first pass in the main pipeline to use the legacy PM's
ability to run function analyses "on demand". Unfortunately, it turns
out there are bugs in that somewhat-hacky approach. At the very least,
it leaks memory and doesn't support -debug-pass=Structure. Unclear if
there are larger issues or not, but this should get the sanitizer bots
back to green by fixing the memory leaks.
llvm-svn: 335320
This patch adds support for generating a call graph profile from Branch Frequency Info.
The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.
After scanning all the functions, it generates an appending module flag containing the data. The format looks like:
!llvm.module.flags = !{!0}
!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}
Differential Revision: https://reviews.llvm.org/D48105
llvm-svn: 335306
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.
HWASan comes with its own IR attribute.
A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).
Reviewers: kcc, pcc, alekseyshl
Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D40932
llvm-svn: 320217
Registers it and everything, updates all the references, etc.
Next patch will add support to Clang's `-fexperimental-new-pass-manager`
path to actually enable BoundsChecking correctly.
Differential Revision: https://reviews.llvm.org/D39084
llvm-svn: 318128