This patch consists of the addition of some common additional
extended mnemonics to the SystemZ target.
- These are jnop, jct, jctg, jas, jasl, jxh, jxhg, jxle,
jxleg, bru, brul, br*, br*l.
- These mnemonics and the instructions they map to are
defined here, Chapter 4 - Branching with extended
mnemonic codes.
- Except for jnop (which is a variant of brc 0, label), every
other mnemonic is marked as a MnemonicAlias since there is
already a "defined" instruction with the same encoding
and/or condition mask values.
- brc 0, label doesn't have a defined extended mnemonic, thus
jnop is defined using as an InstAlias. Furthermore, the
applyMnemonicAliases function is called in the overridden
parseInstruction function in SystemZAsmParser.cpp to ensure
any mnemonic aliases are applied before any further
processing on the instruction is done.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D92185
In lowering of FLT_ROUNDS_, FPSCR content will be moved into FP register
and then GPR, and then truncated into word.
For subtargets without direct move support, it will store and then load.
The load address needs adjustment (+4) only on big-endian targets. This
patch fixes it on using generic opcodes on little-endian and subtargets
with direct-move.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D91845
i1 is the native type for PowerPC if crbits is enabled. However, we need
to promote the i1 to i64 as we didn't have the pattern for i1.
Reviewed By: Qiu Chao Fang
Differential Revision: https://reviews.llvm.org/D92067
This adds missing `select` instruction support and block return type
support for reference types. Also refactors WebAssemblyInstrRef.td and
rearranges tests in reference-types.s. Tests don't include `exnref`
types, because we currently don't support `exnref` for `ref.null` and
the type will be removed soon anyway.
Reviewed By: tlively, sbc100, wingo
Differential Revision: https://reviews.llvm.org/D92359
We are avoiding writing to WZR just about everywhere else.
Also update the code to use MachineIRBuilder for the sake of consistency.
We also didn't have a GlobalISel testcase for this path, so add a simple one
now.
Differential Revision: https://reviews.llvm.org/D90626
So that instructions like `lla a5, (0xFF + end) - 4` (supported by GNU as) can
be parsed.
Add a missing test that an operand like `foo + foo` is not allowed.
Reviewed By: jrtc27
Differential Revision: https://reviews.llvm.org/D92293
Instead of falling back to selecting TB(N)Z when we fail to select an
optimized compare against 0, select Bcc instead.
Also simplify selectCompareBranch a little while we're here, because the logic
was kind of hard to follow.
At -O0, this is a 0.1% geomean code size improvement for CTMark.
A simple example of where this can kick in is here:
https://godbolt.org/z/4rra6P
In the example above, GlobalISel currently produces a subs, cset, and tbnz.
SelectionDAG, on the other hand, just emits a compare and b.le.
Differential Revision: https://reviews.llvm.org/D92358
Without FMF, we lower these intrinsics into something like this:
vmaxsd %xmm0, %xmm1, %xmm2
vcmpunordsd %xmm0, %xmm0, %xmm0
vblendvpd %xmm0, %xmm1, %xmm2, %xmm0
But if we can ignore NANs, the single min/max instruction is enough
because there is no need to fix up the x86 logic that corresponds to
X > Y ? X : Y.
We probably want to make other adjustments for FP intrinsics with FMF
to account for specialized codegen (for example, FSQRT).
Differential Revision: https://reviews.llvm.org/D92337
We already expand select and select_cc in codegenprepare, but they can
still be generated under some situations. Explicitly mark them as expand
to ensure they are not produced, leading to a failure to select the
nodes.
Differential Revision: https://reviews.llvm.org/D92373
Move the X86 VSELECT->UADDSAT fold to DAGCombiner - there's nothing target specific about these folds.
The SSE42 test diffs are relatively benign - its avoiding an extra constant load in exchange for an extra xor operation - there are extra register moves, which is annoying as all those operations should commute them away.
Differential Revision: https://reviews.llvm.org/D91876
This patch replaces the attribute `unsigned VF` in the class
IntrinsicCostAttributes by `ElementCount VF`.
This is a non-functional change to help upcoming patches to compute the cost
model for scalable vector inside this class.
Differential Revision: https://reviews.llvm.org/D91532
The PREDICATE_CAST node is used to model moves between MVE predicate
registers and gpr's, and eventually become a VMSR p0, rn. When moving to
a predicate only the bottom 16 bits of the sources register are
demanded. This adds a simple fold for that, allowing it to potentially
remove instructions like uxth.
Differential Revision: https://reviews.llvm.org/D92213
The lowering of vector selects needs to first splat the scalar mask into a vector
first.
This was causing a crash when building oggenc in the test suite.
Differential Revision: https://reviews.llvm.org/D91655
The model was committed in 4b8ade837e
but not yet enabled to allow for a few fix ups. This adds a few
of these fixes, and also a LLVM MCA test to check most instructions.
While I do have plans to look into some more tuning, it's time to
enable this as it better than using the A53 schedule.
Differential Revision: https://reviews.llvm.org/D88017
For LP64 mode, this has no effect as pointers are already 64 bits.
For ILP32 mode (x32), this extension is specified by the ABI.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D91338
Pass through the demanded elts mask to the source operands.
The next step will be to add support for folding to add/sub if we only demand odd/even elements.
Continue the work started at D50989.
The code has been long dead since the triple has been removed (D75494).
Reviewed By: nickdesaulniers, void
Differential Revision: https://reviews.llvm.org/D91836
Optimize prologue/epilogue instructions if a given function use GOT but
do not call other functions by eliminating FP. Previously, we had wrong
implementations taken from other architectures. Update regression tests
also.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D92313
Previously, these check routines accepted non-generatble instructions.
This time, I clean them and add assert for those non-generatable
instructions.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D92254
This enables bswap/bitreverse to combine with other GREVI patterns or each other without needing to add more special cases to the DAG combine or new DAG combines.
I've also enabled the existing GREVI combine for GREVIW so that it can pick up the i32 bswap/bitreverse on RV64 after they've been type legalized to GREVIW.
Differential Revision: https://reviews.llvm.org/D92253
clang may produce `movl x@GOTPCREL+4(%rip), %eax` when loading the high
32 bits of the address of a global variable in -fpic/-fpie mode.
If assembled by GNU as, the fixup emits R_X86_64_GOTPCRELX with an addend != -4.
The instruction loads from the GOT entry with an offset and thus it is incorrect
to relax the instruction.
This patch does not emit a relaxable relocation for a GOT load with an offset
because R_X86_64_[REX_]GOTPCRELX do not make sense for instructions which cannot
be relaxed. The result is good enough for LLD to work. GNU ld relaxes
mov+GOTPCREL as well, but it suppresses the relaxation if addend != -4.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D92114
GORCI performs an OR between each stage. So we need to ensure only
one stage is active before doing this combine.
Initial attempts at finding a test case for this failed due to
the order things get combined. It's most likely that we'll form
one stage of GREVI then combine to GORCI before the two stages of
GREVI are able to be formed and combined with each other to form
a multi stage GREVI.
Differential Revision: https://reviews.llvm.org/D92289
Optimize eliminate FP mechanism. This time optimize a function which has
no call but fixed stack objects. LLVM eliminates FP on such functions now.
Also, optimize GOT/PLT registers save/restore instructions if a given
function doesn't uses them. In addition, remove generating mechanism of
`.cfi` instructions since those are taken from other architectures and not
inspected yet. Update regression tests, also.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D92251
Change the way to truncate i64 to i32 in I64 registers. VE assumed
sext values previously. Change it to zext values this time to make
it match to the LLVM behaviour.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D92226
This was modeled to have a cost of 1, but since we do not have a MUL.2d this is
scalarized into vector inserts/extracts and scalar muls.
Motivating precommitted test is test/Transforms/SLPVectorizer/AArch64/mul.ll,
which we don't want to SLP vectorize.
Test Transforms/LoopVectorize/AArch64/extractvalue-no-scalarization-required.ll
unfortunately needed changing, but the reason is documented in
LoopVectorize.cpp:6855:
// The cost of executing VF copies of the scalar instruction. This opcode
// is unknown. Assume that it is the same as 'mul'.
which I will address next as a follow up of this.
Differential Revision: https://reviews.llvm.org/D92208
The build bots caught two additional pre-existing problems exposed by the test change part of my change https://reviews.llvm.org/D91339, when expensive checks are enabled. https://reviews.llvm.org/D91924 fixes one of them, this fixes the other.
FixupSetCC will change code in the form of
%setcc = SETCCr ...
%ext1 = MOVZX32rr8 %setcc
to
%zero = MOV32r0
%setcc = SETCCr ...
%ext2 = INSERT_SUBREG %zero, %setcc, %subreg.sub_8bit
and replace uses of %ext1 with %ext2.
The register class for %ext2 did not take into account any constraints on %ext1, which may have been required by its uses. This change ensures that the original constraints are honoured, by instead of creating a new %ext2 register, reusing %ext1 and further constraining it as needed. This requires a slight reorganisation to account for the fact that it is possible for the constraining to fail, in which case no changes should be made.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D91933
The build bots caught two additional pre-existing problems exposed by the test change part of my change https://reviews.llvm.org/D91339, when expensive checks are enabled. This fixes one of them.
X86 has CALL64r and CALL32r opcodes, where CALL64r takes a 64-bit register, and CALL32r takes a 32-bit register. CALL64r can only be used in 64-bit mode, CALL32r can only be used in 32-bit mode. LLVM would assume that after picking the appropriate CALLr opcode, a pointer-sized register would be a valid operand, but in x32 mode, a 64-bit mode, pointers are 32 bits. In this mode, it is invalid to directly pass a pointer to CALL64r, it needs to be extended to 64 bits first.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D91924
Not sure why bswap was treated specially. This also applies to bitreverse
or generic grevi. We can improve this in future patches.
For now I just wanted to get the consistency and the test coverage
as I plan to make some other changes around bswap.
Optimize emitSPAdjustment function to generate as small as possible
instructions to adjust SP.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D92174
We had an zexti32 after a sign_extend_inreg. The AND X, 0xffffffff
part of the zexti32 should never occur since SimplifyDemandedBits
from the sign_extend_inreg would have removed it.
We also had sexti32 as the root node of a pattern, but SelectionDAGISel
matches assertsext early before the tablegen based patterns are
evaluated.