This enables bswap/bitreverse to combine with other GREVI patterns or each other without needing to add more special cases to the DAG combine or new DAG combines.
I've also enabled the existing GREVI combine for GREVIW so that it can pick up the i32 bswap/bitreverse on RV64 after they've been type legalized to GREVIW.
Differential Revision: https://reviews.llvm.org/D92253
GORCI performs an OR between each stage. So we need to ensure only
one stage is active before doing this combine.
Initial attempts at finding a test case for this failed due to
the order things get combined. It's most likely that we'll form
one stage of GREVI then combine to GORCI before the two stages of
GREVI are able to be formed and combined with each other to form
a multi stage GREVI.
Differential Revision: https://reviews.llvm.org/D92289
Start with an assumption that FMA is faster than Fmul+FAdd. If thats not true
on some particular implementation we can add a tuning parameter in the future.
I've update the fmuladd test cases and added new test cases for fast math flag
based contraction.
Differential Revision: https://reviews.llvm.org/D91987
This is the logically correct thing to do. But it generates worse
code for i32 umin/umax on the rv64 due to type legalize requesting
zext even though the arguments are sext. Maybe we can teach type
legalizer to use sext for umin/umax for RISCV.
It's also producing possibly worse code on i64 on RV32 since we
still end up with selects that become branches. But this seems
like something we could improve in type legalization or DAG combine.
Hopefully this makes D92095 work for RISCV with Zbb.
This adds custom opcodes for FSLW/FSRW so we can type legalize
fshl/fshr without needing to match a sign_extend_inreg.
I've used the operand order from fshl/fshr to make the isel
pattern similar to the non-W form. It was also hard to decide
another order since the register instruction has the shift amount
as the second operand, but the immediate instruction has it as
the third operand.
Differential Revision: https://reviews.llvm.org/D91479
This is a special calling convention to be used by the GHC compiler.
Patch by Andreas Schwab (schwab)
Differential Revision: https://reviews.llvm.org/D89788
We generate two 4 byte loads or two stores as part of the expansion.
Previously the MemOperand was set the same for both to cover the
full 8 bytes. Now we set a separate 4 byte mem operand for each
with a 4 byte offset for the high part.
Previously we required a sra to pattern match these properly in isel. If the consumer didn't need the result sign extended we'll have an srl instead of sra and fail to match.
This patch switches to custom legalizing to GREVIW using portions of D91259.
Differential Revision: https://reviews.llvm.org/D91457
This should result in better utilization of RORIW since we
don't need to look for a SIGN_EXTEND_INREG that may not exist.
Also remove rotl/rotr isel matching to GREVI and just prefer RORI.
This is to keep consistency so we don't have to match ROLW/RORW
to GREVIW as well. I imagine RORI/RORIW performance will be the
same or better than GREVI.
Differential Revision: https://reviews.llvm.org/D91449
This moves the recognition of GREVI and GORCI from TableGen patterns
into a DAGCombine. This is done primarily to match "deeper" patterns in
the future, like (grevi (grevi x, 1) 2) -> (grevi x, 3).
TableGen is not best suited to matching patterns such as these as the compile
time of the DAG matchers quickly gets out of hand due to the expansion of
commutative permutations.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D91259
Similar to the X86 and AMDGPU targets, this uses a macro to cut down on
repetitive and error-prone code when converting RISCVISD node names to
strings in getTargetNodeName.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D91414
We were creating RISCVISD::SELECT_CC nodes with Glue output that was never being used, and the tablegen SDNode had the SDNPInGlue flag instead of the SDNPOutGlue flag.
Since we don't seem to need the Glue just get rid of it from both places.
Differential Revision: https://reviews.llvm.org/D91199
D80526 added custom lowering to pick the si lib call on RV64, but this custom handling is only enabled when the F and D extension are both disabled. This prevents the si library call from being used for double when F is enabled but D is not.
This patch changes the behavior so we always enable the Custom hook on RV64 and decide in ReplaceNodeResults if we should emit a libcall based on whether the FP type should be softened or not.
Differential Revision: https://reviews.llvm.org/D90817
The _F and _D registers are already sub/super registers. When one gets allocated all its aliases are already marked as allocated. We don't need to explicitly shadow it too.
I believe shadow is for calling conventions like 64-bit Windows on X86 where have rules like this
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
[XMM0, XMM1, XMM2, XMM3]>>
For that calling convention the argument number determines which register is used regardless of how many scalars or vectors came before it.
Removing this removes a question I had in D90738.
Differential Revision: https://reviews.llvm.org/D90801
As discussed on D90322, some MSVC builds are failing with is_trivially_copyable static asserts (see D86126) - we can avoid this by not using the std::pair<unsigned,unsigned> which held both the FP+DP Registers, just handle the FP register and convert to DP on the fly.
The return value of this interface still uses an 'unsigned' on all
targets. So we convert Register back to unsigned at the end.
I'm hoping this will prevent the issue that caused the revert of
D90322.
Just return the new node, which is the standard practice.
I also noticed what appeared to be an unnecessary attempt at
creating an ANY_EXTEND where the type should already be correct.
I replace with an assert to verify the type.
Differential Revision: https://reviews.llvm.org/D90444
This combine makes two calls to SimplifyDemandedBits, one for the LHS and one
for the RHS. If the LHS call returns true, we don't make the RHS call. When
SimplifyDemandedBits makes a change, it will add the nodes around the change to
the DAG combiner worklist. If the simplification happens on the first recursion
step, the N will get added to the worklist. But if the simplification happens
deeper in the recursion, then N will not be revisited until the next time the
DAG combiner runs.
This patch explicitly addes N to the worklist anytime a Simplification is made.
Without this we might miss additional simplifications on the LHS or never
simplify the RHS. Special care also needs to be taken to not add N if it has
been CSEd by the simplification. There are similar examples in DAGCombiner and
the X86 target, but I don't have a test for it for RISC-V. I've also returned
SDValue(N, 0) instead of SDValue() so DAGCombiner knows a change was made and
will update its Statistic variable.
The test here was constructed so that 2 simplifications happen to the LHS.
Without this fix one happens in the post type legalization DAG combine and the
other happens after LegalizeDAG. This prevents the RHS from ever being
simplified causing the left and right shift to clear the upper 32 bits of the
RHS to be left behind.
Differential Revision: https://reviews.llvm.org/D90339
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the ternary subset (zbt subextension) of the
experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79875
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions belonging to both the permutation and the base
subsets of the experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79873
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the permutation subset (zbp subextension) of
the experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79871
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the base subset (zbb subextension) of the
experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79870
... to shift/add or shift/sub.
Do not enable it on riscv32 with the M extension where decomposeMulByConstant
may not be an optimization.
Reviewed By: luismarques, MaskRay
Differential Revision: https://reviews.llvm.org/D82660
Summary:
This implements two hooks that attempt to avoid control flow for RISC-V. RISC-V
will lower SELECTs into control flow, which is not a great idea.
The hook `hasMultipleConditionRegisters()` turns off the following
DAGCombiner folds:
select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
The second hook `setJumpIsExpensive` controls a flag that has a similar purpose
and is used in CodeGenPrepare and the SelectionDAGBuilder.
Both of these have the effect of ensuring more logic is done before fewer jumps.
Note: with the `B` extension, we may be able to lower select into a conditional
move instruction, so at some point these hooks will need to be guarded based on
enabled extensions.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D79268
Since i32 is not legal in riscv64,
it always promoted to i64 before emitting lib call and
for conversions like float/double to int and float/double to unsigned int
wrong lib call was emitted. This commit fix it using custom lowering.
Differential Revision: https://reviews.llvm.org/D80526
Let the codegen recognized the nomerge attribute and disable branch folding when the attribute is given
Differential Revision: https://reviews.llvm.org/D79537
This patch stores the alignment for ConstantPoolSDNode as an
Align and updates the getConstantPool interface to take a MaybeAlign.
Removing getAlignment() will be done as a follow up.
Differential Revision: https://reviews.llvm.org/D79436
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
Floating point positive zero can be selected using fmv.w.x / fmv.d.x /
fcvt.d.w and the zero source register.
Differential Revision: https://reviews.llvm.org/D75729
Implement TargetLowering callback mayBeEmittedAsTailCall for riscv in CodeGenPrepare,
which will duplicate return instructions to enable tailcall optimization.
Differential Revision: https://reviews.llvm.org/D73699
Remove code from LegalizeTypes that allowed this to work.
We were already using BUILD_PAIR for this in some places so this
standardizes on a single way to do this.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73885
1. if users don't specific -mattr, the default target-feature come
from IR attribute.
2. fixed bug and re-land this patch
Reviewers: lenary, asb
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70837