Summary:
Updated CallPromotionUtils and impacted sites. Parameters that are
expected to be non-null, and return values that are guranteed non-null,
were replaced with CallBase references rather than pointers.
Left FIXME in places where more changes are facilitated by CallBase, but
aren't CallSites: Instruction* parameters or return values, for example,
where the contract that they are actually CallBase values.
Reviewers: davidxl, dblaikie, wmi
Reviewed By: dblaikie
Subscribers: arsenm, jvesely, nhaehnle, eraman, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77930
Selection would fail after the post legalize combiner put an illegal
zextload back together.
The base combiner has parameter to only allow legal operations, but
they appear to not be used. I also don't see a nice way to remove a
single entry from all_combines, so just hack around this.
These will be widened in the DAG. In the meanwhile early
widening prevents otherwise possible vectorization of
such loads.
Differential Revision: https://reviews.llvm.org/D77835
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: arsenm, efriedma, sdesmalen
Reviewed By: arsenm
Subscribers: wdng, arsenm, jvesely, nhaehnle, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77268
This patch extends existing constant folding in logical operations to
handle S_XNOR, S_NAND, S_NOR, S_ANDN2, S_ORN2, V_LSHL_ADD_U32 and
V_AND_OR_B32. Also added a couple of tests for existing folds.
We can only collapse adjacent SI_END_CF if outer statement
belongs to a simple SI_IF, otherwise correct mask is not in the
register we expect, but is an argument of an S_XOR instruction.
Even if SI_IF is simple it might be lowered using S_XOR because
lowering is dependent on a basic block layout. It is not
considered simple if instruction consuming its output is
not an SI_END_CF. Since that SI_END_CF might have already been
lowered to an S_OR isSimpleIf() check may return false.
This situation is an opportunity for a further optimization
of SI_IF lowering, but that is a separate optimization. In the
meanwhile move SI_END_CF post the lowering when we already know
how the rest of the CFG was lowered since a non-simple SI_IF
case still needs to be handled.
Differential Revision: https://reviews.llvm.org/D77610
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
The extracts from control flow intrinsics are already properly handled
by divergence analysis. The inline asm case isn't dead, but has also
never really worked correctly so leave it as-is for now.
We can fix register class of PHI based on its all AGPR uses.
That leaves behind all PHIs which were already processed
earlier. Propagate RC back to PHI operands of a PHI.
Differential Revision: https://reviews.llvm.org/D77344
Summary:
This fixes a few issues related to SMRD offsets. On gfx9 and gfx10 we have a
signed byte offset immediate, however we can overflow into a negative since we
treat it as unsigned.
Also, the SMRD SOFFSET sgpr is an unsigned offset on all subtargets. We
sometimes tried to use negative values here.
Third, S_BUFFER instructions should never use a signed offset immediate.
Differential Revision: https://reviews.llvm.org/D77082
This will likely introduce catastrophic performance regressions on
older subtargets, but should be correct. A follow up change will
remove the old fp32-denormals subtarget features, and switch to using
the new denormal-fp-math/denormal-fp-math-f32 attributes. Frontends
should be making sure to add the denormal-fp-math-f32 attribute when
appropriate to avoid performance regressions.
This is a workaround for clang adding noinline to all functions at
-O0. Previously, we would just add alwaysinline, and the verifier
would complain about having both noinline and alwaysinline. We
currently can't truly codegen this case as a freestanding function, so
override the user forcing noinline.
SILoadStoreOptimizer::checkAndPrepareMerge() expects base and
paired instruction to come in order and scans MBB from base to
the paired instruction. An original order can be changed if
there were a dependent instruction in between and base instruction
was moved.
Fixed by bailing the optimization. In theory it might be possible
still to perform a merge by swapping instructions, but on practice
it bails anyway because it finds dependency on that same instruction
which has resulted in the base move.
Differential Revision: https://reviews.llvm.org/D77245
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467