Ensure that we're recording implicit defs, as well as visiting implicit
uses and implicit defs when we're walking through operands.
Differential Revision: https://reviews.llvm.org/D75185
Support the explicit wide assembler qualifier for the dmb/dsb/isb synchronization barrier instructions.
Differential revision: https://reviews.llvm.org/D75143
Under fp16 we optimise the bitcast between a VMOVhr and a CopyToReg via
custom lowering. This rewrites that to be a DAG combine instead, which
helps produce better code in the cases where the bitcast is actaully
legal.
Differential Revision: https://reviews.llvm.org/D72753
MC currently does not emit these relocation types, and lld does not
handle them. Add FKF_Constant as a work-around of some ARM code after
D72197. Eventually we probably should implement these relocation types.
By Fangrui Song!
Differential revision: https://reviews.llvm.org/D72892
Summary:
This commit adds the predicated MVE intrinsics for the same set of
unary operations that I added in their unpredicated forms in
* D74333 (vrint)
* D74334 (vrev)
* D74335 (vclz, vcls)
* D74336 (vmovl)
* D74337 (vmovn)
but since the predicated versions are a lot more similar to each
other, I've kept them all together in a single big patch. Everything
here is done in the standard way we've been doing other predicated
operations: an IR intrinsic called `@llvm.arm.mve.foo.predicated` and
some isel rules that match that alongside whatever they accept for the
unpredicated version of the same instruction.
In order to write the isel rules conveniently, I've refactored the
existing isel rules for the affected instructions into multiclasses
parametrised by a vector-type class, in the usual way. All those
refactorings are intended to leave the existing isel rules unchanged:
the only difference should be that new ones for the predicated
intrinsics are introduced.
The only tiny infrastructure change I needed in this commit was to
change the implementation of `IntrinsicMX` in `arm_mve_defs.td` so
that the records it defines are anonymous rather than named (and use
`NameOverride` to set the output intrinsic name), which allows me to
call it twice in two multiclasses with the same `NAME` without a
tablegen-time error.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75165
Add getUniqueReachingMIDef to RDA which performs a global search for
a machine instruction that produces a unique definition of a given
register at a given point. Also add two helper functions
(getMIOperand) that wrap around this functionality to get the
incoming definition uses of a given instruction. These now replace
the uses of getReachingMIDef in ARMLowOverheadLoops. getReachingMIDef
has been renamed to getReachingLocalMIDef and has been made private
along with getInstFromId.
Differential Revision: https://reviews.llvm.org/D74605
Fixed an issue exposed by D74006.
In clang cc1as, MCContext::UseNamesOnTempLabels is true.
When parsing a .fnstart directive, FnStart gets redefined to a temporary symbol of a different name (.Ltmp0, .Ltmp1, ...).
MCContext::getELFSection() called by SwitchToEHSection() will create a different .ARM.exidx each time.
llvm-mc uses `Ctx.setUseNamesOnTempLabels(false);` and FnStart is unnamed.
MCContext::getELFSection() called by SwitchToEHSection() will reuse the same .ARM.exidx .
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D75095
This node reads the rounding control which means it needs to be ordered properly with operations that change the rounding control. So it needs to be chained to maintain order.
This patch adds a chain input and output to the node and connects it to the chain in SelectionDAGBuilder. I've update all in-tree targets to connect their chain through their lowering code.
Differential Revision: https://reviews.llvm.org/D75132
Summary:
Future patches will make use of TTI to perform cost-model-driven `SCEVExpander::isHighCostExpansionHelper()`
This is a fully NFC patch to make things reviewable.
Reviewers: reames, mkazantsev, wmi, sanjoy
Reviewed By: mkazantsev
Subscribers: hiraditya, zzheng, javed.absar, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73704
This adds infrastructure to print and parse MIR MachineOperand comments.
The motivation for the ARM backend is to print condition code names instead of
magic constants that are difficult to read (for human beings). For example,
instead of this:
dead renamable $r2, $cpsr = tEOR killed renamable $r2, renamable $r1, 14, $noreg
t2Bcc %bb.4, 0, killed $cpsr
we now print this:
dead renamable $r2, $cpsr = tEOR killed renamable $r2, renamable $r1, 14 /* CC::always */, $noreg
t2Bcc %bb.4, 0 /* CC:eq */, killed $cpsr
This shows that MachineOperand comments are enclosed between /* and */. In this
example, the EOR instruction is not conditionally executed (i.e. it is "always
executed"), which is encoded by the 14 immediate machine operand. Thus, now
this machine operand has /* CC::always */ as a comment. The 0 on the next
conditional branch instruction represents the equal condition code, thus now
this operand has /* CC:eq */ as a comment.
As it is a comment, the MI lexer/parser completely ignores it. The benefit is
that this keeps the change in the lexer extremely minimal and no target
specific parsing needs to be done. The changes on the MIPrinter side are also
minimal, as there is only one target hooks that is used to create the machine
operand comments.
Differential Revision: https://reviews.llvm.org/D74306
Change the way that we remove the redundant iteration count code in
the presence of IT blocks. collectLocalKilledOperands has been
introduced to scan an instructions operands, collecting the killed
instructions and then visiting them too. This is used to delete the
code in the preheader which calculates the iteration count. We also
track any IT blocks within the preheader and, if we remove all the
instructions from the IT block, we also remove the IT instruction.
isSafeToRemove is used to remove any redundant uses of the iteration
count within the loop body.
Differential Revision: https://reviews.llvm.org/D74975
This moves all the logic of converting LLVM Triples to
MachO::CPU_(SUB_)TYPE from the specific target (Target)AsmBackend to
more convenient functions in lib/BinaryFormat.
This also gets rid of the separate two X86AsmBackend classes.
The previous attempt was to add it to libObject, but that adds an
unnecessary dependency to libObject from all the targets.
Differential Revision: https://reviews.llvm.org/D74808
The code at https://reviews.llvm.org/D74808 has broken builds that are
configured with -DBUILD_SHARED_LIBS=On.
This patch adds the correct library dependencies.
This moves all the logic of converting LLVM Triples to
MachO::CPU_(SUB_)TYPE from the specific target (Target)AsmBackend to
more convenient functions in libObject.
This also gets rid of the separate two X86AsmBackend classes.
Differential Revision: https://reviews.llvm.org/D74808
Summary:
This patch adds two families of ACLE intrinsics: vqdmullbq and
vqdmulltq (including vector-vector and vector-scalar variants) and the
corresponding LLVM IR intrinsics llvm.arm.mve.vqdmull and
llvm.arm.mve.vqdmull.predicated.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74845
Summary:
Some predicated MVE intrinsics return a vector with element size
different from the input vector element size. In this case the
predicate must type correspond to the output vector type.
The following intrinsics use the incorrect predicate type:
* llvm.arm.mve.mull.int.predicated
* llvm.arm.mve.mull.poly.predicated
* llvm.arm.mve.vshll.imm.predicated
This patch fixes the issue.
Reviewers: simon_tatham, dmgreen, ostannard, MarkMurrayARM
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74838
Check that no Q-regs are live out of the loop, unless the instruction
within the loop is predicated on the vctp.
Differential Revision: https://reviews.llvm.org/D72713
Similar to VADDV and VADDLV that have been added recently, this adds
lowering and patterns for VMLAV, VMLAVA, VMLALV and VMLALVA. They
perform the same roles as the add's, just folding a mul into the same
instruction (and so taking two inputs). As such, they need to be lowered
in the same way as the types are often not legal.
Differential Revision: https://reviews.llvm.org/D74390
Following on from the extra VADDV lowering, this extends things to
handle VADDLV which allows summing values into a pair of i32 registers,
together treated as a i64. This needs to be done in DAGCombine too as
the types are otherwise illegal, which is a fairly simple addition on
top of the existing code.
There is also a VADDLVA instruction handled here, that adds the incoming
values from the two general purpose registers. As opposed to the
non-long version where we could just add patterns for add(x, VADDV), the
long version needs to handle this early before the i64 has being split
into too many pieces.
Differential Revision: https://reviews.llvm.org/D74224
On some targets, like SPARC, forming overflow ops is only profitable if
the math result is used: https://godbolt.org/z/DxSmdB
This patch adds a new MathUsed parameter to allow the targets
to make the decision and defaults to only allowing it
if the math result is used. That is the conservative choice.
This patch also updates AArch64ISelLowering, X86ISelLowering,
ARMISelLowering.h, SystemZISelLowering.h to allow forming overflow
ops if the math result is not used. On those targets using the
overflow intrinsic for the overflow check only generates better code.
Reviewers: nikic, RKSimon, lebedev.ri, spatel
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D74722
We already make use of the VADDV vector reduction instruction for cases
where the input and the output start out at the same type. The MVE
instruction however will sum into an i32, so if we are summing a v16i8
into an i32, we can still use the same instructions. In terms of IR,
this looks like a sext of a legal type (v16i8) into a very illegal type
(v16i32) and a vecreduce.add of that into the result. This means we have
to catch the pattern early in a DAG combine, producing a target VADDVs/u
node, where the signedness is now important.
This is the first part, handling VADDV and VADDVA. There are also
VADDVL/VADDVLA instructions, which are interesting because they sum into
a 64bit value. And VMLAV and VMLALV, which are interesting because they
also do a multiply of two values. It may look a little odd in places as
a result.
On it's own this will probably not do very much, as the vectorizer will
not produce this IR yet.
Differential Revision: https://reviews.llvm.org/D74218
Essentially, fold OrderedBasicBlock into BasicBlock, and make it
auto-invalidate the instruction ordering when new instructions are
added. Notably, we don't need to invalidate it when removing
instructions, which is helpful when a pass mostly delete dead
instructions rather than transforming them.
The downside is that Instruction grows from 56 bytes to 64 bytes. The
resulting LLVM code is substantially simpler and automatically handles
invalidation, which makes me think that this is the right speed and size
tradeoff.
The important change is in SymbolTableTraitsImpl.h, where the numbering
is invalidated. Everything else should be straightforward.
We probably want to implement a fancier re-numbering scheme so that
local updates don't invalidate the ordering, but I plan for that to be
future work, maybe for someone else.
Reviewed By: lattner, vsk, fhahn, dexonsmith
Differential Revision: https://reviews.llvm.org/D51664
Summary:
This patch adds a new MVE intrinsics family, `vbrsrq`: vector bit
reverse and shift right. The intrinsics are compiled into the VBRSR
instruction. Two new LLVM IR intrinsics were also added: arm.mve.vbrsr
and arm.mve.vbrsr.predicated.
Reviewers: simon_tatham, dmgreen, ostannard, MarkMurrayARM
Reviewed By: simon_tatham
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74721
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Summary:
These are in some sense the inverse of vmovl[bt]q: they take a vector
of n wide elements and truncate each to half its width. So they only
write half a vector's worth of output data, and therefore they also
take an 'inactive' parameter to provide the other half of the data in
the output vector. So vmovnb overwrites the even lanes of 'inactive'
with the narrowed values from the main input, and vmovnt overwrites
the odd lanes.
LLVM had existing codegen which generates these MVE instructions in
response to IR that takes two vectors of wide elements, or two vectors
of narrow ones. But in this case, we have one vector of each. So my
clang codegen strategy is to narrow the input vector of wide elements
by simply reinterpreting it as the output type, and then we have two
narrow vectors and can represent the operation as a vector shuffle
that interleaves lanes from both of them.
Even so, not all the cases I needed ended up being selected as a
single MVE instruction, so I've added a couple more patterns that spot
combinations of the 'MVEvmovn' and 'ARMvrev32' SDNodes which can be
generated as a VMOVN instruction with operands swapped.
This commit adds the unpredicated forms only.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74337
Summary:
These intrinsics take a vector of 2n elements, and return a vector of
n wider elements obtained by sign- or zero-extending every other
element of the input vector. They're represented in IR as a
shufflevector that extracts the odd or even elements of the input,
followed by a sext or zext.
Existing LLVM codegen already matches this pattern and generates the
VMOVLB instruction (which widens the even-index input lanes). But no
existing isel rule was generating VMOVLT, so I've added some. However,
the new rules currently only work in little-endian MVE, because the
pattern they expect from isel lowering includes a bitconvert which
doesn't have the right semantics in big-endian.
The output of one existing codegen test is improved by those new
rules.
This commit adds the unpredicated forms only.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74336
Summary:
When we start putting instances of `ARMVectorRegCast` in complex isel
patterns, it will be awkward that they're often turned into the more
standard `bitconvert` in little-endian mode. We'd rather not have to
write separate isel patterns for the two endiannesses, matching
different but equivalent cast operations.
This change aims to fix that awkwardness in advance, by turning the
Tablegen record `ARMVectorRegCast` from a simple `SDNode` instance
into a `PatFrags` that can match either kind of cast – with a
predicate that prevents it matching a bitconvert in the big-endian
case, where bitconvert isn't semantically identical.
No existing code generation should be affected by this change, but it
will enable the patterns introduced by D74336 to work in both
endiannesses.
Reviewers: dmgreen
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74716
Summary:
vclzq maps nicely to the existing target-independent @llvm.ctlz IR
intrinsic. But vclsq ('count leading sign bits') has no corresponding
target-independent intrinsic, so I've made up @llvm.arm.mve.vcls.
This commit adds the unpredicated forms only.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74335
Summary:
This adds the unpredicated forms of six different MVE intrinsics which
all round a vector of floating-point numbers to integer values,
leaving them still in FP format, differing only in rounding mode and
exception settings.
Five of them map to existing target-independent intrinsics in LLVM IR,
such as @llvm.trunc and @llvm.rint. The sixth, mapping to the `vrintn`
instruction, is done by inventing a target-specific intrinsic.
(`vrintn` behaves the same as `vrintx` in terms of the output value:
the side effects on the FPSCR flags are the only difference between
the two. But ACLE specifies separate user-callable intrinsics for the
two, so the side effects matter enough to make sure we generate the
right one of the two instructions in each case.)
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74333
mutateStrictFPToFP can delete the node and replace it with another with the same
value which can later cause problems, and returning the result of
mutateStrictFPToFP doesn't work because SelectionDAGLegalize expects that the
returned value has the same number of results as the original. Instead handle
things by doing the mutation manually.
Differential Revision: https://reviews.llvm.org/D74726
Summary:
This patch adds vector-scalar variants to the following families of
MVE intrinsics:
* vaddq
* vsubq
* vmulq
* vqaddq
* vqsubq
* vhaddq
* vhsubq
* vqdmulhq
* vqrdmulhq
The vector-scalar variants perform a splat operation on the scalar
operand and then perform the same operations as their vector-vector
counterparts. Code generation is done accordingly (using LLVM IR 'insert'
and 'shuffle' operations which are later converted into an ARMvdup
SDNode).
Reviewers: simon_tatham, dmgreen, MarkMurrayARM, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74620
Summary:
This patch adds assembly-level support for a new Arm M-profile
architecture extension, Custom Datapath Extension (CDE).
A brief description of the extension is available at
https://developer.arm.com/architectures/instruction-sets/custom-instructions
The latest specification for CDE is currently a beta release and is
available at
https://static.docs.arm.com/ddi0607/aa/DDI0607A_a_armv8m_arm_supplement_cde.pdf
CDE allows chip vendors to add custom CPU instructions. The CDE
instructions re-use the same encoding space as existing coprocessor
instructions (such as MRC, MCR, CDP etc.). Each coprocessor in range
cp0-cp7 can be configured as either general purpose (GCP) or custom
datapath (CDEv1). This configuration is defined by the CPU vendor and
is provided to LLVM using 8 subtarget features: cdecp0 ... cdecp7.
The semantics of CDE instructions are implementation-defined, but the
instructions are guaranteed to be pure (that is, they are stateless,
they do not access memory or any registers except their explicit
inputs/outputs).
CDE requires the CPU to support at least Armv8.0-M mainline
architecture. CDE includes 3 sets of instructions:
* Instructions that operate on general purpose registers and NZCV
flags
* Instructions that operate on the S or D register file (require
either FP or MVE extension)
* Instructions that operate on the Q register file, require MVE
The user-facing names that can be specified on the command line are
the same as the 8 subtarget feature names. For example:
$ clang -target arm-none-none-eabi -march=armv8m.main+cdecp0+cdecp3
tells the compiler that the coprocessors 0 and 3 are configured as
CDEv1 and the remaining coprocessors are configured as GCP (which is
the default).
Reviewers: simon_tatham, ostannard, dmgreen, eli.friedman
Reviewed By: simon_tatham
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74044
If the target has FP64 but not FP16 then we have custom lowering for FP_EXTEND
and STRICT_FP_EXTEND with type f64. However if the extend is from f32 to f64 the
current implementation will cause in infinite loop for STRICT_FP_EXTEND due to
emitting a merge_values of the original node which after replacement becomes a
merge_values of itself.
Fix this by not doing anything for f32 to f64 extend when we have FP64, though
for STRICT_FP_EXTEND we have to do the strict-to-nonstrict mutation as that
doesn't happen automatically for opcodes with custom lowering.
Differential Revision: https://reviews.llvm.org/D74559
Simon pointed out that this function is doing a bitcast, which can be
incorrect for big endian. That makes the lowering of VMOVN in MVE
wrong, but the function is shared between Neon and MVE so both can
be incorrect.
This attempts to fix things by using the newly added VECTOR_REG_CAST
instead of the BITCAST. As it may now be used on Neon, I've added the
relevant patterns for it there too. I've also added a quick dag combine
for it to remove them where possible.
Differential Revision: https://reviews.llvm.org/D74485
Summary:
This was a very odd API, where you had to pass a flag into a zext
function to say whether the extended bits really were zero or not. All
callers passed in a literal true or false.
I think it's much clearer to make the function name reflect the
operation being performed on the value we're tracking (rather than on
the KnownBits Zero and One fields), so zext means the value is being
zero extended and new function anyext means the value is being extended
with unknown bits.
NFC.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74482
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Summary:
Add a new method (tryParseRegister) that attempts to parse a register specification.
MASM allows the use of IFDEF <register>, as well as IFDEF <symbol>. To accommodate this, we make it possible to check whether a register specification can be parsed at the current location, without failing the entire parse if it can't.
Reviewers: thakis
Reviewed By: thakis
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73486
A small IR change in calculating the active lanes resulted in no longer
recognising tail-predication. Now recognise both an 'add' and 'or' in
the expression that calculates the active lanes.
Differential Revision: https://reviews.llvm.org/D74394
Use the isCandidateForCallSiteEntry().
This should mostly be an NFC, but there are some parts ensuring
the moveCallSiteInfo() and copyCallSiteInfo() operate with call site
entry candidates (both Src and Dest should be the call site entry
candidates).
Differential Revision: https://reviews.llvm.org/D74122
Remove code from LegalizeTypes that allowed this to work.
We were already using BUILD_PAIR for this in some places so this
standardizes on a single way to do this.
Update lambda function
static auto InitializeRegisterBankOnce = [this](const auto &TRI) {
with
static auto InitializeRegisterBankOnce = [&]() {
Capture reference instead of passing argument, as there are buildbot
compiling errors related when passing argument.
Summary: This patch introduces an API for MemOp in order to simplify and tighten the client code.
Reviewers: courbet
Subscribers: arsenm, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jsji, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73964
Once we have created a tail-predicated hardware-loop, and thus know the number
of elements that are processed, we want to clean-up the iteration count
expression of that loop. In D73682, we bailed the analysis on conditionally
executed instructions. This adds support for IT-blocks, so that we can handle
these cases again. The restriction is that we only support IT blocks containing
1 statement, but that seems to cover most cases and forms of the iteration
count expression.
Differential Revision: https://reviews.llvm.org/D73947
Checking that the use-def chain that performs the loop count
isSafeToRemove is not sufficient because it means that we can
remove register copies that we need to restore lr to its correct
value. This change now prevents the transform from kicking in for the
'remove-elem-moves' test which needs to addressed later on.
Differential Revision: https://reviews.llvm.org/D74037
While validating each MVE instruction, check that all instructions
that touch memory are somehow predicated upon the VCTP.
Differential Revision: https://reviews.llvm.org/D73616
Summary:
After following Simon's suggestion about additional testing posted at
https://reviews.llvm.org/D73906, I found several more places that
need to be updated.
Reviewers: simon_tatham, dmgreen, ostannard, eli.friedman
Reviewed By: simon_tatham
Subscribers: merge_guards_bot, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73963
Summary:
This patch changes the underlying type of the ARM::ArchExtKind
enumeration to uint64_t and adjusts the related code.
The goal of the patch is to prepare the code base for a new
architecture extension.
Reviewers: simon_tatham, eli.friedman, ostannard, dmgreen
Reviewed By: dmgreen
Subscribers: merge_guards_bot, kristof.beyls, hiraditya, cfe-commits, llvm-commits, pbarrio
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73906
Under MVE, we do not have any lowering for fminimum, which a
vector_reduce_fmin without NoNan will be expanded into. As with the
other recent patches, force this to expand in the pre-isel pass. Note
that Neon lowering would be OK because the scalar fminimum uses the
vector VMIN instruction, but is probably better to just rely on the
scalar operations, which is what is done here.
Also fixes what appears to be the reversal of INF vs -INF in the
vector_reduce_fmin widening code.
Followup to D73135. If the target doesn't have hard float (default
for ARM), then we assert when trying to soften the result of vector
reduction intrinsics. This patch marks these for expansion as well.
(A bit odd to use vectors on a target without hard float ... but
that's where you end up if you expose target-independent vector types.)
Differential Revision: https://reviews.llvm.org/D73854
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73885
These can be lowered to code sequences using CMPFP and CMPFPE which then get
selected to VCMP and VCMPE. The implementation isn't fully correct, as the chain
operand isn't handled correctly, but resolving that looks like it would involve
changes around FPSCR-handling instructions and how the FPSCR is modelled.
The fp-intrinsics test was already testing some of this but as the entire test
was being XFAILed it wasn't noticed. Un-XFAIL the test and instead leave the
cases where we aren't generating the right instruction sequences as FIXME.
Differential Revision: https://reviews.llvm.org/D73194
Summary:
In big-endian MVE, the simple vector load/store instructions (i.e.
both contiguous and non-widening) don't all store the bytes of a
register to memory in the same order: it matters whether you did a
VSTRB.8, VSTRH.16 or VSTRW.32. Put another way, the in-register
formats of different vector types relate to each other in a different
way from the in-memory formats.
So, if you want to 'bitcast' or 'reinterpret' one vector type as
another, you have to carefully specify which you mean: did you want to
reinterpret the //register// format of one type as that of the other,
or the //memory// format?
The ACLE `vreinterpretq` intrinsics are specified to reinterpret the
register format. But I had implemented them as LLVM IR bitcast, which
is specified for all types as a reinterpretation of the memory format.
So a `vreinterpretq` intrinsic, applied to values already in registers,
would code-generate incorrectly if compiled big-endian: instead of
emitting no code, it would emit a `vrev`.
To fix this, I've introduced a new IR intrinsic to perform a
register-format reinterpretation: `@llvm.arm.mve.vreinterpretq`. It's
implemented by a trivial isel pattern that expects the input in an
MQPR register, and just returns it unchanged.
In the clang codegen, I only emit this new intrinsic where it's
actually needed: I prefer a bitcast wherever it will have the right
effect, because LLVM understands bitcasts better. So we still generate
bitcasts in little-endian mode, and even in big-endian when you're
casting between two vector types with the same lane size.
For testing, I've moved all the codegen tests of vreinterpretq out
into their own file, so that they can have a different set of RUN
lines to check both big- and little-endian.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73786
Summary:
These instructions generate a vector of consecutive elements starting
from a given base value and incrementing by 1, 2, 4 or 8. The `wdup`
versions also wrap the values back to zero when they reach a given
limit value. The instruction updates the scalar base register so that
another use of the same instruction will continue the sequence from
where the previous one left off.
At the IR level, I've represented these instructions as a family of
target-specific intrinsics with two return values (the constructed
vector and the updated base). The user-facing ACLE API provides a set
of intrinsics that throw away the written-back base and another set
that receive it as a pointer so they can update it, plus the usual
predicated versions.
Because the intrinsics return two values (as do the underlying
instructions), the isel has to be done in C++.
This is the first family of MVE intrinsics that use the `imm_1248`
immediate type in the clang Tablegen framework, so naturally, I found
I'd given it the wrong C integer type. Also added some tests of the
check that the immediate has a legal value, because this is the first
time those particular checks have been exercised.
Finally, I also had to fix a bug in MveEmitter which failed an
assertion when I nested two `seq` nodes (the inner one used to extract
the two values from the pair returned by the IR intrinsic, and the
outer one put on by the predication multiclass).
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73357
Summary:
The unpredicated case of this is trivial: the clang codegen just makes
a vector splat of the input, and LLVM isel is already prepared to
handle that. For the predicated version, I've generated a `select`
between the same vector splat and the `inactive` input parameter, and
added new Tablegen isel rules to match that pattern into a predicated
`MVE_VDUP` instruction.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73356
This reverts commit e34801c8e6 and the followup due to multiple
problems.
I've tried to keep the tests and RDA parts where possible, as those
still seem useful.
Summary: This is a first step before changing the types to llvm::Align and introduce functions to ease client code.
Reviewers: courbet
Subscribers: arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73785
fadd/fmul reductions without reassoc are lowered to
VECREDUCE_STRICT_FADD/FMUL nodes, which don't have legalization
support. Until that is in place, expand these intrinsics on
ARM and AArch64. Other targets always expand the vector reduction
intrinsics.
Additionally expand fmax/fmin reductions without nonan flag on
AArch64, as the backend asserts that the flag is present when
lowering VECREDUCE_FMIN/FMAX.
This fixes https://bugs.llvm.org/show_bug.cgi?id=44600.
Differential Revision: https://reviews.llvm.org/D73135
Summary:
The initialization of RegisterBank needs to be done only once. The
logic of AlreadyInit has data race, use llvm::call_once instead.
This is continuing work of D73587.
Reviewers: arsenm, rovka, dsanders, t.p.northover, efriedma, apazos
Reviewed By: arsenm
Subscribers: wdng, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73605
This adds some missing MVE opcodes to evaluateBranch, which results in
llvm-objdump being able to print the PC relative branch target as an
annotation.
Differential Revision: https://reviews.llvm.org/D73553
Add several new helpers to RDA:
- hasLocalDefBefore
- isRegDefinedAfter
- isSafeToDefRegAt
And move two bits of logic from ARMLowOverheadLoops into RDA:
- isSafeToMove
- isSafeToRemove
Both of these have some wrappers too to make them more convienent to
use.
Differential Revision: https://reviews.llvm.org/D73460
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
The MVE_VLDRWU32_qi_pre gather loads, like the other _pre/_post mve
loads returns the writeback as result 0, the value as result 1. The llvm
ir intrinsic seems to have this the other way around though, and so when
lowering from one to the other we need to switch the first two outputs.
I've also fixed up the types of _pre/_post on normal MVE loads. There we
were already getting the values the right way around, just not for the
types. I don't believe this was causing anything to go wrong, but it was
very confusing to read in the debug output.
Differential Revision: https://reviews.llvm.org/D73370
We had support for runtime trip count values, but not constants, and this adds
supports for that.
And added a minor optimisation while I was add it: don't invoke Cleanup when
there's nothing to clean up.
Differential Revision: https://reviews.llvm.org/D73198
When expanding the LoopStart, we try to remove the iteration count
calculation. However, if part of the calculation was also used to
calculate the number of elements we could end up deleting
instructions that were required to feed DLSTP/WLSTP.
Differential Revision: https://reviews.llvm.org/D73275
The codegen for splitting a llvm.vector.reduction intrinsic into parts
will be better than the codegen for the generic reductions. This will
only directly effect when vectorization factors are specified by the
user.
Also added tests to make sure the codegen for larger reductions is OK.
Differential Revision: https://reviews.llvm.org/D72257
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
Similar to the function attribute `prefix` (prefix data),
"patchable-function-prefix" inserts data (M NOPs) before the function
entry label.
-fpatchable-function-entry=2,1 (1 NOP before entry, 1 NOP after entry)
will look like:
```
.type foo,@function
.Ltmp0: # @foo
nop
foo:
.Lfunc_begin0:
# optional `bti c` (AArch64 Branch Target Identification) or
# `endbr64` (Intel Indirect Branch Tracking)
nop
.section __patchable_function_entries,"awo",@progbits,get,unique,0
.p2align 3
.quad .Ltmp0
```
-fpatchable-function-entry=N,0 + -mbranch-protection=bti/-fcf-protection=branch has two reasonable
placements (https://gcc.gnu.org/ml/gcc-patches/2020-01/msg01185.html):
```
(a) (b)
func: func:
.Ltmp0: bti c
bti c .Ltmp0:
nop nop
```
(a) needs no additional code. If the consensus is to go for (b), we will
need more code in AArch64BranchTargets.cpp / X86IndirectBranchTracking.cpp .
Differential Revision: https://reviews.llvm.org/D73070
Summary:
Immediate vmvnq is code-generated as a simple vector constant in IR,
and left to the backend to recognize that it can be created with an
MVE VMVN instruction. The predicated version is represented as a
select between the input and the same constant, and I've added a
Tablegen isel rule to turn that into a predicated VMVN. (That should
be better than the previous VMVN + VPSEL: it's the same number of
instructions but now it can fold into an adjacent VPT block.)
The unpredicated forms of VBIC and VORR are done by enabling the same
isel lowering as for NEON, recognizing appropriate immediates and
rewriting them as ARMISD::VBICIMM / ARMISD::VORRIMM SDNodes, which I
then instruction-select into the right MVE instructions (now that I've
also reworked those instructions to use the same MC operand encoding).
In order to do that, I had to promote the Tablegen SDNode instance
`NEONvorrImm` to a general `ARMvorrImm` available in MVE as well, and
similarly for `NEONvbicImm`.
The predicated forms of VBIC and VORR are represented as a vector
select between the original input vector and the output of the
unpredicated operation. The main convenience of this is that it still
lets me use the existing isel lowering for VBICIMM/VORRIMM, and not
have to write another copy of the operand encoding translation code.
This intrinsic family is the first to use the `imm_simd` system I put
into the MveEmitter tablegen backend. So, naturally, it showed up a
bug or two (emitting bogus range checks and the like). Fixed those,
and added a full set of tests for the permissible immediates in the
existing Sema test.
Also adjusted the isel pattern for `vmovlb.u8`, which stopped matching
because lowering started turning its input into a VBICIMM. Now it
recognizes the VBICIMM instead.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72934
Summary:
In NEON, the immediate forms of VBIC and VORR are each represented as
a single MC instruction, which takes its immediate operand already
encoded in a NEON-friendly format: 8 data bits, plus some control bits
indicating how to expand them into a full vector.
In MVE, we represented immediate VBIC and VORR as four separate MC
instructions each, for an 8-bit immediate shifted left by 0, 8, 16 or
24 bits. For each one, the value of the immediate operand is in the
'natural' form, i.e. the numerical value that would actually be BICed
or ORRed into each vector lane (and also the same value shown in
assembly). For example, MVE_VBICIZ16v4i32 takes an operand such as
0xab0000, which NEON would represent as 0xab | (control bits << 8).
The MVE approach is superficially nice (it makes assembly input and
output easy, and it's also nice if you're manually constructing
immediate VBICs). But it turns out that it's better for isel if we
make the NEON and MVE instructions work the same, because the
ARMISD::VBICIMM and VORRIMM node types already encode their immediate
into the NEON format, so it's easier if we can just use it.
Also, this commit reduces the total amount of code rather than
increasing it, which is surely an indication that it really is simpler
to do it this way!
Reviewers: dmgreen, ostannard, miyuki, MarkMurrayARM
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73205
The hasSideEffect parameter is usually automatically inferred from
instruction patterns. For some of our MVE instructions, we do not have
patterns though, such as for the pre/post inc loads and stores. This
instead specifies the flag manually on the base MVE_VLDRSTR_base
tablegen class, making sure we get this correct.
This can help with scheduling multiple loads more optimally. Here I've
added a unittest as a more direct form of testing.
Differential Revision: https://reviews.llvm.org/D73117
This is a very basic MVE gather/scatter cost model, based roughly on the
code that we will currently produce. It does not handle truncating
scatters or extending gathers correctly yet, as it is difficult to tell
that they are going to be correctly extended/truncated from the limited
information in the cost function.
This can be improved as we extend support for these in the future.
Based on code originally written by David Sherwood.
Differential Revision: https://reviews.llvm.org/D73021
Extends the gather/scatter pass in MVEGatherScatterLowering.cpp to
enable the transformation of masked scatters into calls to MVE's masked
scatter intrinsic.
Differential Revision: https://reviews.llvm.org/D72856
Summary:
A recent commit accidentally defined names like `MVE_VMAXAs8` as
instances of the multiclass `MVE_VMINA`, and vice versa. This has no
effect on the test suite, because nothing directly refers to those
instruction names (the isel patterns are generated in Tablegen using
`!cast<Instruction>(NAME)` inside a lower-level multiclass). But it
means that `llvm-mc -show-inst` was listing VMAXA as VMINA, and it
would also affect any further draft code gen patches that use those
instruction ids.
Reviewers: MarkMurrayARM, dmgreen, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73034
This patch uses helper function rewriteLoopExitValues that is refactored in
D72602 to rematerialise the iteration count in exit blocks, so that we can
clean-up loop update expressions inside the hardware-loops later in
ARMLowOverheadLoops, which is necessary to get actual performance gains for
tail-predicated loops.
Differential Revision: https://reviews.llvm.org/D72714
This adds Post inc variants of the VLD2/4 and VST2/4 instructions in
MVE. It uses the same mechanism/nodes as Neon, transforming the
intrinsic+add pair into a ARMISD::VLD2_UPD, which gets selected to a
post-inc instruction. The code to do that is mostly taken from the
existing Neon code, but simplified as less variants are needed.
It also fills in some getTgtMemIntrinsic for the arm.mve.vld2/4
instrinsics, which allow the nodes to have MMO's, calculated as the full
length to the memory being loaded/stored.
Differential Revision: https://reviews.llvm.org/D71194
We were previously not necessarily favouring postinc for the MVE loads
and stores, leading to extra code prior to the loop to set up the
preinc. MVE in general can benefit from postinc (as we don't have
unrolled loops), and certain instructions like the VLD2's only post-inc
versions are available.
Differential Revision: https://reviews.llvm.org/D70790
Except AMDGPU/R600RegisterInfo (a bunch of MIR tests seem to have
problems), every target overrides it with true. PostMachineScheduler
requires livein information. Not providing it can cause assertion
failures in ScheduleDAGInstrs::addSchedBarrierDeps().
Introduce a method to walk through use-def chains to decide whether
it's possible to remove a given instruction and its users. These
instructions are then stored in a set until the end of the transform
when they're erased. This is now used to perform checks on the
iteration count (LoopDec chain), element count (VCTP chain) and the
possibly redundant iteration count.
As well as being able to remove chains of instructions, we know also
check that the sub feeding the vctp is producing the expected value.
Differential Revision: https://reviews.llvm.org/D71837
Recommitting e93e0d413f after reverting due to test failures, which
will hopefully now be fixed. Original commit message:
After expanding the pseudo instructions, update the liveness info.
We do this in a post-order traversal of the loop, including its
exit blocks and preheader(s).
Differential Revision: https://reviews.llvm.org/D72131
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: merge_guards_bot, luismarques, smeenai, ldionne, lenary, s.egerton, pzheng, sameer.abuasal, MaskRay, wuzish, echristo, Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
Fix a missing and broken test: 2 VPT blocks predicated on the same VCMP
instruction that can be folded. The problem was that for each VPT block, we
record the predicate statements with a list, but the same instruction was added
twice. Thus, we were running in an assert trying to remove the same instruction
twice. To avoid this the instructions are now recorded with a set.
Differential Revision: https://reviews.llvm.org/D72699
Summary:
This cleans up a lot of ugly `foreach` bodges that I've been using to
work around the lack of those two language features. Now they both
exist, I can make then all into something more legible!
In particular, in the common pattern in `ARMInstrMVE.td` where a
multiclass defines an `Instruction` instance plus one or more `Pat` that
select it, I've used a `defvar` to wrap `!cast<Instruction>(NAME)` so
that the patterns themselves become a little more legible.
Replacing a `foreach` with a `defvar` removes a level of block
structure, so several pieces of code have their indentation changed by
this patch. Best viewed with whitespace ignored.
NFC: the output of `llvm-tblgen -print-records` on the two affected
Tablegen sources is exactly identical before and after this change, so
there should be no effect at all on any of the other generated files.
Reviewers: MarkMurrayARM, miyuki
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, dmgreen, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72690
We have a whitelist of instructions that we allow when tail
predicating, since these are trivial ones that we've deemed need no
special handling. Now change ARMLowOverheadLoops to allow the
non-trivial instructions if they're contained within a valid VPT
block. Since a valid block is one that is predicated upon the VCTP so
we know that these non-trivial instructions will still behave as
expected once the implicit predication is used instead.
This also fixes a previous test failure.
Differential Revision: https://reviews.llvm.org/D72509
Use the already provided helper function to get the operand type so
that we can detect whether the vpr is being used as a predicate or
not. Also use existing helpers to get the predicate indices when we
converting the vpt blocks. This enables us to support both types of
vpr predicate operand.
Differential Revision: https://reviews.llvm.org/D72504
Summary:
This patch fixes pr23772 [ARM] r226200 can emit illegal thumb2 instruction: "sub sp, r12, #80".
The violation was that SUB and ADD (reg, immediate) instructions can only write to SP if the source register is also SP. So the above instructions was unpredictable.
To enforce that the instruction t2(ADD|SUB)ri does not write to SP we now enforce the destination register to be rGPR (That exclude PC and SP).
Different than the ARM specification, that defines one instruction that can read from SP, and one that can't, here we inserted one that can't write to SP, and other that can only write to SP as to reuse most of the hard-coded size optimizations.
When performing this change, it uncovered that emitting Thumb2 Reg plus Immediate could not emit all variants of ADD SP, SP #imm instructions before so it was refactored to be able to. (see test/CodeGen/Thumb2/mve-stacksplot.mir where we use a subw sp, sp, Imm12 variant )
It also uncovered a disassembly issue of adr.w instructions, that were only written as SUBW instructions (see llvm/test/MC/Disassembler/ARM/thumb2.txt).
Reviewers: eli.friedman, dmgreen, carwil, olista01, efriedma, andreadb
Reviewed By: efriedma
Subscribers: gbedwell, john.brawn, efriedma, ostannard, kristof.beyls, hiraditya, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70680
Due to the current way that we collect predicated instructions, we
can't easily handle vpsel in tail predicated loops. There are a
couple of issues:
1) It will use the VPR as a predicate operand, but doesn't have to be
instead a VPT block, which means we can assert while building up
the VPT block because we don't find another VPST to being a new
one.
2) VPSEL still requires a VPR operand even after tail predicating,
which means we can't remove it unless there is another
instruction, such as vcmp, that can provide the VPR def.
The first issue should be a relatively simple fix in the logic of the
LowOverheadLoops pass, whereas the second will require us to
represent the 'implicit' tail predication with an explicit value.
Differential Revision: https://reviews.llvm.org/D72629
Enables the masked gather pass to create a masked
gather loading from a base and vector of offsets.
This also enables v8i16 and v16i8 gather loads.
Differential Revision: https://reviews.llvm.org/D72330
The argument is llvm::null() everywhere except llvm::errs() in
llvm-objdump in -DLLVM_ENABLE_ASSERTIONS=On builds. It is used by no
target but X86 in -DLLVM_ENABLE_ASSERTIONS=On builds.
If we ever have the needs to add verbose log to disassemblers, we can
record log with a member function, instead of passing it around as an
argument.
Summary:
This always just used the same libcall as unordered, but the comparison predicate was different. This change appears to have been made when targets were given the ability to override the predicates. Before that they were hardcoded into the type legalizer. At that time we never inverted predicates and we handled ugt/ult/uge/ule compares by emitting an unordered check ORed with a ogt/olt/oge/ole checks. So only ordered needed an inverted predicate. Later ugt/ult/uge/ule were optimized to only call a single libcall and invert the compare.
This patch removes the ordered entries and just uses the inverting logic that is now present. This removes some odd things in both the Mips and WebAssembly code.
Reviewers: efriedma, ABataev, uweigand, cameron.mcinally, kpn
Reviewed By: efriedma
Subscribers: dschuff, sdardis, sbc100, arichardson, jgravelle-google, kristof.beyls, hiraditya, aheejin, sunfish, atanasyan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72536
Summary:
This patch fixes pr23772 [ARM] r226200 can emit illegal thumb2 instruction: "sub sp, r12, #80".
The violation was that SUB and ADD (reg, immediate) instructions can only write to SP if the source register is also SP. So the above instructions was unpredictable.
To enforce that the instruction t2(ADD|SUB)ri does not write to SP we now enforce the destination register to be rGPR (That exclude PC and SP).
Different than the ARM specification, that defines one instruction that can read from SP, and one that can't, here we inserted one that can't write to SP, and other that can only write to SP as to reuse most of the hard-coded size optimizations.
When performing this change, it uncovered that emitting Thumb2 Reg plus Immediate could not emit all variants of ADD SP, SP #imm instructions before so it was refactored to be able to. (see test/CodeGen/Thumb2/mve-stacksplot.mir where we use a subw sp, sp, Imm12 variant )
It also uncovered a disassembly issue of adr.w instructions, that were only written as SUBW instructions (see llvm/test/MC/Disassembler/ARM/thumb2.txt).
Reviewers: eli.friedman, dmgreen, carwil, olista01, efriedma
Reviewed By: efriedma
Subscribers: john.brawn, efriedma, ostannard, kristof.beyls, hiraditya, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70680
The current implementation assumes there is an instruction associated
with the transform, but this is not the case for
timm/TargetConstant/immarg values. These transforms should directly
operate on a specific MachineOperand in the source
instruction. TableGen would assert if you attempted to define an
equivalent GISDNodeXFormEquiv using timm when it failed to find the
instruction matcher.
Specially recognize SDNodeXForms on timm, and pass the operand index
to the render function.
Ideally this would be a separate render function type that looks like
void renderFoo(MachineInstrBuilder, const MachineOperand&), but this
proved to be somewhat mechanically painful. Add an optional operand
index which will only be passed if the transform should only look at
the one source operand.
Theoretically it would also be possible to only ever pass the
MachineOperand, and the existing renderers would check the parent. I
think that would be somewhat ugly for the standard usage which may
want to inspect other operands, and I also think MachineOperand should
eventually not carry a pointer to the parent instruction.
Use it in one sample pattern. This isn't a great example, since the
transform exists to satisfy DAG type constraints. This could also be
avoided by just changing the MachineInstr's arbitrary choice of
operand type from i16 to i32. Other patterns have nontrivial uses, but
this serves as the simplest example.
One flaw this still has is if you try to use an SDNodeXForm defined
for imm, but the source pattern uses timm, you still see the "Failed
to lookup instruction" assert. However, there is now a way to avoid
it.
Only PPC seems to be using it, and only checks some simple cases and
doesn't distinguish between FP. Just switch to using LLT to simplify
use from GlobalISel.