Selection would fail after the post legalize combiner put an illegal
zextload back together.
The base combiner has parameter to only allow legal operations, but
they appear to not be used. I also don't see a nice way to remove a
single entry from all_combines, so just hack around this.
These will be widened in the DAG. In the meanwhile early
widening prevents otherwise possible vectorization of
such loads.
Differential Revision: https://reviews.llvm.org/D77835
Summary:
Legalization can introduce the trunc(trunc) pattern. This can cause
problems if one of these intermediate truncs is not legal.
Combine truncs of this pattern, if the resulting trunc is legal.
Reviewers: arsenm, aemerson, dsanders
Reviewed By: arsenm
Subscribers: jvesely, wdng, nhaehnle, rovka, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76601
Summary:
Combine sext(zext x) to (zext x) since the sign-bit is 0
after the zero-extension.
Combine sext(sext x) to (sext x) and ext(zext x) to (zext x)
since the intermediate step is not needed.
Reviewers: arsenm, volkan, aemerson, aditya_nandakumar
Reviewed By: arsenm
Subscribers: jvesely, wdng, nhaehnle, rovka, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77210
Summary:
When narrowing G_IMPLICIT_DEF where the original size is not a multiple
of the narrow size, emit a smaller G_IMPLICIT_DEF and use G_ANYEXT.
To prevent a potential endless loop in the legalizer, the condition
to combine G_ANYEXT(G_IMPLICIT_DEF) is changed from isInstUnsupported
to !isInstLegal, since in this case the combine is only valid if
consequent legalization of the newly combined G_IMPLICIT_DEF does not
introduce G_ANYEXT due to narrowing.
Although this legalization for G_IMPLICIT_DEF would also be valid for
the general case, it actually caused a lot of code regressions when
tried due to superfluous COPYs and combines not getting hit anymore.
Reviewers: dsanders, aemerson, volkan, arsenm, aditya_nandakumar
Reviewed By: arsenm
Subscribers: jvesely, nhaehnle, kerbowa, wdng, rovka, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76598
This patch extends existing constant folding in logical operations to
handle S_XNOR, S_NAND, S_NOR, S_ANDN2, S_ORN2, V_LSHL_ADD_U32 and
V_AND_OR_B32. Also added a couple of tests for existing folds.
We can only collapse adjacent SI_END_CF if outer statement
belongs to a simple SI_IF, otherwise correct mask is not in the
register we expect, but is an argument of an S_XOR instruction.
Even if SI_IF is simple it might be lowered using S_XOR because
lowering is dependent on a basic block layout. It is not
considered simple if instruction consuming its output is
not an SI_END_CF. Since that SI_END_CF might have already been
lowered to an S_OR isSimpleIf() check may return false.
This situation is an opportunity for a further optimization
of SI_IF lowering, but that is a separate optimization. In the
meanwhile move SI_END_CF post the lowering when we already know
how the rest of the CFG was lowered since a non-simple SI_IF
case still needs to be handled.
Differential Revision: https://reviews.llvm.org/D77610
We can fix register class of PHI based on its all AGPR uses.
That leaves behind all PHIs which were already processed
earlier. Propagate RC back to PHI operands of a PHI.
Differential Revision: https://reviews.llvm.org/D77344
Summary:
This fixes a few issues related to SMRD offsets. On gfx9 and gfx10 we have a
signed byte offset immediate, however we can overflow into a negative since we
treat it as unsigned.
Also, the SMRD SOFFSET sgpr is an unsigned offset on all subtargets. We
sometimes tried to use negative values here.
Third, S_BUFFER instructions should never use a signed offset immediate.
Differential Revision: https://reviews.llvm.org/D77082
This will likely introduce catastrophic performance regressions on
older subtargets, but should be correct. A follow up change will
remove the old fp32-denormals subtarget features, and switch to using
the new denormal-fp-math/denormal-fp-math-f32 attributes. Frontends
should be making sure to add the denormal-fp-math-f32 attribute when
appropriate to avoid performance regressions.
This is a workaround for clang adding noinline to all functions at
-O0. Previously, we would just add alwaysinline, and the verifier
would complain about having both noinline and alwaysinline. We
currently can't truly codegen this case as a freestanding function, so
override the user forcing noinline.
SILoadStoreOptimizer::checkAndPrepareMerge() expects base and
paired instruction to come in order and scans MBB from base to
the paired instruction. An original order can be changed if
there were a dependent instruction in between and base instruction
was moved.
Fixed by bailing the optimization. In theory it might be possible
still to perform a merge by swapping instructions, but on practice
it bails anyway because it finds dependency on that same instruction
which has resulted in the base move.
Differential Revision: https://reviews.llvm.org/D77245
We have loads preserving low and high 16 bits of their
destinations. However, we always use a whole 32 bit register
for these. The same happens with 16 bit stores, we have to
use full 32 bit register so if high bits are clobbered the
register needs to be copied. One example of such code is
added to the load-hi16.ll.
The proper solution to the problem is to define 16 bit subregs
and use them in the operations which do not read another half
of a VGPR or preserve it if the VGPR is written.
This patch simply defines subregisters and register classes.
At the moment there should be no difference in code generation.
A lot more work is needed to actually use these new register
classes. Therefore, there are no new tests at this time.
Register weight calculation has changed with new subregs so
appropriate changes were made to keep all calculations just
as they are now, especially calculations of register pressure.
Differential Revision: https://reviews.llvm.org/D74873
Add a new llvm.amdgcn.ballot intrinsic modeled on the ballot function
in GLSL and other shader languages. It returns a bitfield containing the
result of its boolean argument in all active lanes, and zero in all
inactive lanes.
This is intended to replace the existing llvm.amdgcn.icmp and
llvm.amdgcn.fcmp intrinsics after a suitable transition period.
Use the new intrinsic in the atomic optimizer pass.
Differential Revision: https://reviews.llvm.org/D65088