OpenMP 4.0-3.1 supports the next format of ‘schedule’ clause: schedule(kind[, chunk_size])
Where kind can be one of ‘static’, ‘dynamic’, ‘guided’, ‘auto’ or ‘runtime’.
OpenMP 4.5 defines the format: schedule([modifier [, modifier]:]kind[, chunk_size])
Modifier can be one of ‘monotonic’, ‘nonmonotonic’ or ‘simd’.
llvm-svn: 256487
OpenMP 4.5 adds 'depend(sink:vec)' in 'ordered' directive for doacross loop synchronization. Patch adds parsing and semantic analysis for this clause.
llvm-svn: 256330
OpenMP 4.5 adds 'depend(sink:vec)' in 'ordered' directive for doacross loop synchronization. Patch adds parsing and semantic analysis for this clause.
llvm-svn: 256238
It resolves clang selfhosting with std::once() for Cygwin.
FIXME: It may be EmulatedTLS-generic also for X86-Android.
FIXME: Pass EmulatedTLS to LLVM CodeGen from Clang with -femulated-tls.
llvm-svn: 256134
#pragma omp parallel needs an implicit barrier that is currently done by an explicit call to __kmpc_barrier. However, the runtime already ensures a barrier in __kmpc_fork_call which currently leads to two barriers per region per thread.
Differential Revision: http://reviews.llvm.org/D15561
llvm-svn: 255992
OpenMP codegen tried to emit the code for its constructs even if it was detected as a dead-code. Added checks to ensure that the code is emitted if the code is not dead.
llvm-svn: 255990
OpenMP 4.5 adds 'depend(source)' clause for 'ordered' directive to support cross-iteration dependence. Patch adds parsing and semantic analysis for this construct.
llvm-svn: 255986
Predetermined data-shared attributes for local variables are now considered as implicit. Also, patch prohibits changin of DSA for static memebers of classes.
llvm-svn: 255229
OpenMP 4.5 adds directives 'taskloop' and 'taskloop simd'. These directives support clause 'num_tasks'. Patch adds parsing/semantic analysis for this clause.
llvm-svn: 255008
OpenMP 4.5 adds 'taksloop' and 'taskloop simd' directives, which have 'grainsize' clause. Patch adds parsing/sema analysis of this clause.
llvm-svn: 254903
OpenMP 4.5 adds 'taskloop' and 'taskloop simd' directives. These directives have new 'nogroup' clause. Patch adds basic parsing/sema support for this clause.
llvm-svn: 254899
Summary:
This patch implements the 4.5 specification for the implicit data maps. OpenMP 4.5 specification changes the default way data is captured into a target region. All the non-aggregate kinds are passed by value by default. This required activating the capturing by value during SEMA for the target region. All the non-aggregate values that can be encoded in the size of a pointer are properly casted and forwarded to the runtime library. On top of fixing the previous weird behavior for mapping pointers in nested data regions (an explicit map was always required), this also improves performance as the number of allocations/transactions to the device per non-aggregate map are reduced from two to only one - instead of passing a reference and the value, only the value passed.
Explicit maps will be added later on once firstprivate, private, and map clauses' SEMA and parsing are available.
Reviewers: hfinkel, rjmccall, ABataev
Subscribers: cfe-commits, carlo.bertolli
Differential Revision: http://reviews.llvm.org/D14940
llvm-svn: 254521
OpenMP 4.5 defines new clause 'priority' for 'task', 'taskloop' and 'taskloop simd' directives. Added parsing and sema analysis for 'priority' clause in 'task' and 'taskloop' directives.
llvm-svn: 254398
According to OpenMP 4.5 the parameter of 'ordered' clause must be greater than or equal to the parameter of 'collapse' clause. Patch adds this rule.
llvm-svn: 254141
Runtime library requires, that codegen for 'depend' clause for 'out' dependency kind must be the same as codegen for 'depend' clause with 'inout' dependency.
llvm-svn: 253866
This is a follow on from a similar LLVM commit: r253511.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
The only code change to clang is hidden in CGBuilder.h which now passes
both dest and source alignment to IRBuilder, instead of taking the minimum of
dest and source alignments.
Reviewed by Hal Finkel.
llvm-svn: 253512
Currently, when there is a global register variable in a program that
is bound to an invalid register, clang/llvm prints an error message that
is not very user-friendly.
This commit improves the diagnostic and moves the check that used to be
in the backend to Sema. In addition, it makes changes to error out if
the size of the register doesn't match the declared variable size.
e.g., volatile register int B asm ("rbp");
rdar://problem/23084219
Differential Revision: http://reviews.llvm.org/D13834
llvm-svn: 253405
We used to emit the store prior to branch in the entry block. To make it more
efficient, this commit moves it to the init block. We still mark as initialized
before initializing anything else.
llvm-svn: 252777
With this change, most 'g' options are rejected by CompilerInvocation.
They remain only as Driver options. The new way to request debug info
from cc1 is with "-debug-info-kind={line-tables-only|limited|standalone}"
and "-dwarf-version={2|3|4}". In the absence of a command-line option
to specify Dwarf version, the Toolchain decides it, rather than placing
Toolchain-specific logic in CompilerInvocation.
Also fix a bug in the Windows compatibility argument parsing
in which the "rightmost argument wins" principle failed.
Differential Revision: http://reviews.llvm.org/D13221
llvm-svn: 249655
All global variables that are not enclosed in a declare target region
must be captured in the target region as local variables do. Currently,
there is no support for declare target, so this patch adds support for
capturing all the global variables used in a the target region.
llvm-svn: 249154
This patch implements the outlining for offloading functions for code
annotated with the OpenMP target directive. It uses a temporary naming
of the outlined functions that will have to be updated later on once
target side codegen and registration of offloading libraries is
implemented - the naming needs to be made unique in the produced
library.
llvm-svn: 249148
Description.
If the simd clause is specified, the ordered regions encountered by any thread will use only a single SIMD lane to execute the ordered regions in the order of the loop iterations.
Restrictions.
An ordered construct with the simd clause is the only OpenMP construct that can appear in the simd region.
An ordered directive with ‘simd’ clause is generated as an outlined function and corresponding function call to prevent this part of code from vectorization later in backend.
llvm-svn: 248772
Parsing and sema analysis for 'simd' clause in 'ordered' directive.
Description
If the simd clause is specified, the ordered regions encountered by any thread will use only a single SIMD lane to execute the ordered
regions in the order of the loop iterations.
Restrictions
An ordered construct with the simd clause is the only OpenMP construct that can appear in the simd region
llvm-svn: 248696
OpenMP 4.1 extends format of '#pragma omp ordered'. It adds 3 additional clauses: 'threads', 'simd' and 'depend'.
If no clause is specified, the ordered construct behaves as if the threads clause had been specified. If the threads clause is specified, the threads in the team executing the loop region execute ordered regions sequentially in the order of the loop iterations.
The loop region to which an ordered region without any clause or with a threads clause binds must have an ordered clause without the parameter specified on the corresponding loop directive.
llvm-svn: 248569
Patch adds emission of additional note for 'if' clauses with name modifiers in case if 'if' clause without name modified was specified or 'if' clause with the same name modifier was specified.
llvm-svn: 247706
Patch improves codegen for OpenMP constructs. If the OpenMP region does not have internal 'cancel' construct, a call to 'void __kmpc_barrier()' runtime function is generated for all implicit/explicit barriers. If the region has inner 'cancel' directive, then
```
if (__kmpc_cancel_barrier())
exit from outer construct;
```
code is generated.
Also, the code for 'canellation point' directive is not generated if parent directive does not have 'cancel' directive.
llvm-svn: 247681
If target supports TLS all threadprivates are generated as TLS. If target does not support TLS, use runtime calls for proper codegen of threadprivate variables.
llvm-svn: 247273
Currently private copies of captured variables have default alignment. Patch makes private variables to have same alignment as original variables.
llvm-svn: 247260
Currently all variables used in OpenMP regions are captured into a record and passed to outlined functions in this record. It may result in some poor performance because of too complex analysis later in optimization passes. Patch makes to emit outlined functions for parallel-based regions with a list of captured variables. It reduces code for 2*n GEPs, stores and loads at least.
Codegen for task-based regions remains unchanged because runtime requires that all captured variables are passed in captured record.
llvm-svn: 247251
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
Some of instantiation-dependent expressions could cause false diagnostic to be emitted about unsupported atomic constructs. Relaxed rules for detection of incorrect expressions.
llvm-svn: 246853
Fix processing of shared variables with reference types in OpenMP constructs. Previously, if the variable was not marked in one of the private clauses, the reference to this variable was emitted incorrectly and caused an assertion later.
llvm-svn: 246846
Fixed codegen for extended format of 'if' clauses with special 'directive-name-modifier' + ast-print tests for extended format of 'if' clause.
llvm-svn: 246748
OpenMP 4.1 added special 'directive-name-modifier' to the 'if' clause.
Format of 'if' clause is as follows:
```
if([ directive-name-modifier :] scalar-logical-expression)
```
The restriction rules are also changed.
1. If any 'if' clause on the directive includes a 'directive-name-modifier' then all 'if' clauses on the directive must include a 'directive-name-modifier'.
2. At most one 'if' clause without a 'directive-name-modifier' can appear on the directive.
3. At most one 'if' clause with some particular 'directive-name-modifier' can appear on the directive.
'directive-name-modifier' is important for combined directives and allows to separate conditions in 'if' clause for simple sub-directives in combined directive. This 'directive-name-modifier' identifies the sub-directive to which this 'if' clause must be applied.
llvm-svn: 246747
Added codegen for array section in 'depend' clause of 'task' directive. It emits to pointers, one for the begin of array section and another for the end of array section. Size of the section is calculated as (end + 1 - start) * sizeof(basic_element_type).
llvm-svn: 246422
Added codegen for array section in 'depend' clause of 'task' directive. It emits to pointers, one for the begin of array section and another for the end of array section. Size of the section is calculated as (end + 1 - start) * sizeof(basic_element_type).
llvm-svn: 246278
The ABI string only exists to communicate with TargetCodeGenInfo.
Concretely, since we only used "avx*" ABI strings on x86_64 (as AVX
doesn't affect the i386 ABIs), this meant that, when initializing
SimdDefaultAlign, we would ignore AVX/AVX512 on i386, for no good
reason.
Instead, directly check the features. A similar change for
MaxVectorAlign will follow.
Differential Revision: http://reviews.llvm.org/D12390
llvm-svn: 246228
Adds parsing/sema analysis/serialization/deserialization for array sections in OpenMP constructs (introduced in OpenMP 4.0).
Currently it is allowed to use array sections only in OpenMP clauses that accepts list of expressions.
Differential Revision: http://reviews.llvm.org/D10732
llvm-svn: 245937
Add emission of metadata for simd loops in presence of 'simdlen' clause.
If 'simdlen' clause is provided without 'safelen' clause, the vectorizer width for the loop is set to value of 'simdlen' clause + all read/write ops in loop are marked with '!llvm.mem.parallel_loop_access' metadata.
If 'simdlen' clause is provided along with 'safelen' clause, the vectorizer width for the loop is set to value of 'simdlen' clause + all read/write ops in loop are not marked with '!llvm.mem.parallel_loop_access' metadata.
If 'safelen' clause is provided without 'simdlen' clause, the vectorizer width for the loop is set to value of 'safelen' clause + all read/write ops in loop are not marked with '!llvm.mem.parallel_loop_access' metadata.
llvm-svn: 245697
Add parsing/sema analysis for 'simdlen' clause in simd directives. Also add check that if both 'safelen' and 'simdlen' clauses are specified, the value of 'simdlen' parameter is less than the value of 'safelen' parameter.
llvm-svn: 245692
According to standard the 'uval' modifier declares the address of the original list item to have an invariant value for all iterations of the associated loop(s). Patch improves codegen for this qualifier by removing usage of the original reference variable and replacing by referenced l-value.
llvm-svn: 245674
Standard allows to use 'uval' and 'ref' modifiers in 'linear' clause for variables with reference types only. Added check for it and modified test.
llvm-svn: 245556
OpenMP 4.1 adds 3 optional modifiers to 'linear' clause.
Format of 'linear' clause has changed to:
```
linear(linear-list[ : linear-step])
```
where linear-list is one of the following
```
list
modifier(list)
```
where modifier is one of the following:
```
ref (C++)
val (C/C++)
uval (C++)
```
Patch adds parsing and sema analysis for these modifiers.
llvm-svn: 245550
Adds libomp.lib for -fopenmp=libomp and libiomp5md.lib for -fopenmp=libiomp5 on Windows
Differential Revision: http://reviews.llvm.org/D11932
llvm-svn: 245414
OpenMP 4.1 allows to use variables with reference types in all private clauses (private, firstprivate, lastprivate, linear etc.). Patch allows to use such variables and fixes codegen for linear variables with reference types.
llvm-svn: 245268
blender uses statements expression in condition of the loop under control of the '#pragma omp parallel for'. This condition is used several times in different expressions required for codegen of the loop directive. If there are some variables defined in statement expression, it fires an assert during codegen because of redefinition of the same variables.
We have to rebuild several expression to be sure that all variables are unique.
llvm-svn: 245041
OpenMP 4.1 allows to use variables with reference types in private clauses and, therefore, in init expressions of the cannonical loop forms.
llvm-svn: 244209
If a global variable is marked as private in OpenMP construct and then is used in of the private clauses of the same construct, it might cause compiler crash because of incorrect capturing.
llvm-svn: 243964
OpenMP 4.1 introduces optional argument '(n)' for 'ordered' clause, where 'n' is a number of loops that immediately follow the directive.
'n' must be constant positive integer expressions and it must be less or equal than the number of the loops in the resulting loop nest.
Patch adds parsing and semantic analysis for this optional argument.
llvm-svn: 243635
If the variable is marked as private in OpenMP construct, the reference to this variable should not keep type qualifiers for the original variable. Private copy is not volatile or constant, so we can use unqualified type for private copy.
llvm-svn: 242133
This patch adds ObjectFilePCHContainerOperations uses the LLVM backend
to put the contents of a PCH into a __clangast section inside a COFF, ELF,
or Mach-O object file container.
This is done to facilitate module debugging by makeing it possible to
store the debug info for the types defined by a module alongside the AST.
rdar://problem/20091852
llvm-svn: 241620
The next code is generated for this construct:
```
if (__kmpc_cancellationpoint(ident_t *loc, kmp_int32 global_tid, kmp_int32 cncl_kind) != 0)
<exit from outer innermost construct>;
```
llvm-svn: 241239
Several tests wouldn't pass when executed on an armv7a_pc_linux triple
due to the non-default arm_aapcs calling convention produced on the
function definitions in the IR output. Account for this with the
application of a little regex.
Patch by Ying Yi.
llvm-svn: 240971
If task directive has associated 'depend' clause then function kmp_int32 __kmpc_omp_task_with_deps ( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) must be called instead of __kmpc_omp_task().
If this directive has associated 'if' clause then also before a call of kmpc_omp_task_begin_if0() a function void __kmpc_omp_wait_deps ( ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) must be called.
Array sections are not supported yet.
llvm-svn: 240532
Parsing and sema analysis (without support for array sections in arguments) for 'depend' clause (used in 'task' directive, OpenMP 4.0).
llvm-svn: 240409
Currently if the variable is captured in captured region, capture record for this region stores reference to this variable for future use. But we don't need to provide the reference to the original variable if it was explicitly marked as private in the 'private' clause of the OpenMP construct, this variable is replaced by private copy.
Differential Revision: http://reviews.llvm.org/D9550
llvm-svn: 240377
As specified in the SysV AVX512 ABI drafts. It follows the same scheme
as AVX2:
Arguments of type __m512 are split into eight eightbyte chunks.
The least significant one belongs to class SSE and all the others
to class SSEUP.
This also means we change the OpenMP SIMD default alignment on AVX512.
Based on r240337.
Differential Revision: http://reviews.llvm.org/D9894
llvm-svn: 240338
Added parsing, sema analysis and codegen for '#pragma omp taskgroup' directive (OpenMP 4.0).
The code for directive is generated the following way:
#pragma omp taskgroup
<body>
void __kmpc_taskgroup(<loc>, thread_id);
<body>
void __kmpc_end_taskgroup(<loc>, thread_id);
llvm-svn: 240011
Added codegen for combined 'omp for simd' directives, that is a combination of 'omp for' directive followed by 'omp simd' directive. Includes support for all clauses.
llvm-svn: 239990
The following code is generated for reduction clause within 'omp simd' loop construct:
#pragma omp simd reduction(op:var)
for (...)
<body>
alloca priv_var
priv_var = <initial reduction value>;
<loop_start>:
<body> // references to original 'var' are replaced by 'priv_var'
<loop_end>:
var op= priv_var;
llvm-svn: 239881
Previously the last iteration for simd loop-based OpenMP constructs were generated as a separate code. This feature is not required and codegen is simplified.
llvm-svn: 239810
If loop control variable in a worksharing construct is marked as lastprivate, we should copy last calculated value of private counter back to original variable.
llvm-svn: 237879
-fopenmp turns on OpenMP support and links libiomp5 as OpenMP library. Also there is -fopenmp={libiomp5|libgomp} option that allows to override effect of -fopenmp and link libgomp library (if -fopenmp=libgomp is specified).
Differential Revision: http://reviews.llvm.org/D9736
llvm-svn: 237769
Patch fixes codegen for aggregate copying of VLAs. Currently method CodeGenFunction::EmitAggregateCopy() does not support copying of VLAs. Patch checks if the size of the type is 0, then checks if the type is actually a variable-length array. Then it calculates total length for this array and calculates total size of the array in bytes:
<total number of elements in array> * aligned_sizeof(ElementType) (if copy assignment is requested).
If simple copying is requested, size is calculated like:
<total number of elements in array> * aligned_sizeof(ElementType) - aligned_sizeof(ElementType) + sizeof(ElementType).
memcpy() is used with this calculated size of the VLA.
Differential Revision: http://reviews.llvm.org/D9851
llvm-svn: 237768
This modification generates proper copyin/initialization sequences for array variables/parameters. Before they were considered as pointers, not arrays.
llvm-svn: 237691
Internal task structure must be generated like
typedef struct kmp_task {
void * shareds;
kmp_routine_entry_t routine;
kmp_int32 part_id;
kmp_routine_entry_t destructors;
} kmp_task_t;
struct kmp_task_t_with_privates {
kmp_task_t task_data;
.kmp_private. privates;
};
to avoid possible additional alignment bytes in first fields (shareds, routine, part_id and destructors). Runtime library is not aware of such kind additional alignment bytes.
llvm-svn: 237561
'schedule' clause for combined directives requires additional processing. Special helper variable is generated, that is captured in the outlined parallel region for 'parallel for' region. This captured variable is used to store chunk expression from the 'schedule' clause in this 'parallel for' region.
llvm-svn: 237100
Inner bodies of OpenMP worksharing loop-based constructs with dynamic or guided scheduling are allowed to be marked with !llvm.mem.parallel_loop_access metadata for better optimization. Worksharing constructs with static scheduling cannot be marked this way (according to OpenMP standard "A data dependence between the same logical iterations in two such loops is guaranteed").
Constructs with auto and runtime scheduling are also not marked because automatically chosen scheduling may be static also.
Differential Revision: http://reviews.llvm.org/D9518
llvm-svn: 236693
Fixed codegen for reduction operations min, max, && and ||. Codegen for them is quite similar and I was confused by this similarity.
Also added a call to kmpc_end_reduce() in atomic part of reduction codegen (call to kmpc_end_reduce_nowait() is not required).
Differential Revision: http://reviews.llvm.org/D9513
llvm-svn: 236689
For tasks codegen for private/firstprivate variables are different rather than for other directives.
1. Build an internal structure of privates for each private variable:
struct .kmp_privates_t. {
Ty1 var1;
...
Tyn varn;
};
2. Add a new field to kmp_task_t type with list of privates.
struct kmp_task_t {
void * shareds;
kmp_routine_entry_t routine;
kmp_int32 part_id;
kmp_routine_entry_t destructors;
.kmp_privates_t. privates;
};
3. Create a function with destructors calls for all privates after end of task region.
kmp_int32 .omp_task_destructor.(kmp_int32 gtid, kmp_task_t *tt) {
~Destructor(&tt->privates.var1);
...
~Destructor(&tt->privates.varn);
return 0;
}
4. Perform initialization of all firstprivate fields (by simple copying for POD data, copy constructor calls for classes) + provide address of a destructor function after kmpc_omp_task_alloc() and before kmpc_omp_task() calls.
kmp_task_t *new_task = __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry);
CopyConstructor(new_task->privates.var1, *new_task->shareds.var1_ref);
new_task->shareds.var1_ref = &new_task->privates.var1;
...
CopyConstructor(new_task->privates.varn, *new_task->shareds.varn_ref);
new_task->shareds.varn_ref = &new_task->privates.varn;
new_task->destructors = .omp_task_destructor.;
kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task)
Differential Revision: http://reviews.llvm.org/D9370
llvm-svn: 236479
For tasks codegen for private/firstprivate variables are different rather than for other directives.
1. Build an internal structure of privates for each private variable:
struct .kmp_privates_t. {
Ty1 var1;
...
Tyn varn;
};
2. Add a new field to kmp_task_t type with list of privates.
struct kmp_task_t {
void * shareds;
kmp_routine_entry_t routine;
kmp_int32 part_id;
kmp_routine_entry_t destructors;
.kmp_privates_t. privates;
};
3. Create a function with destructors calls for all privates after end of task region.
kmp_int32 .omp_task_destructor.(kmp_int32 gtid, kmp_task_t *tt) {
~Destructor(&tt->privates.var1);
...
~Destructor(&tt->privates.varn);
return 0;
}
4. Perform default initialization of all private fields (no initialization for POD data, default constructor calls for classes) + provide address of a destructor function after kmpc_omp_task_alloc() and before kmpc_omp_task() calls.
kmp_task_t *new_task = __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry);
DefaultConstructor(new_task->privates.var1);
new_task->shareds.var1_ref = &new_task->privates.var1;
...
DefaultConstructor(new_task->privates.varn);
new_task->shareds.varn_ref = &new_task->privates.varn;
new_task->destructors = .omp_task_destructor.;
kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task)
Differential Revision: http://reviews.llvm.org/D9322
llvm-svn: 236207
For proper codegen we need to capture variable in the OpenMP region. In loop-based directives loop control variables are private by default and they must be captured in this region. There was a problem with capturing of globals, used as lcv, as they was not marked as private by default.
Differential Revision: http://reviews.llvm.org/D9336
llvm-svn: 236201
Fixed initialization of 'single' region completion + changed type of the third argument of __kmpc_copyprivate() runtime function to size_t.
llvm-svn: 236198
LLVM r236120 renamed debug info IR constructs to use a `DI` prefix, now
that the `DIDescriptor` hierarchy has been gone for about a week. This
commit was generated using the rename-md-di-nodes.sh upgrade script
attached to PR23080, followed by running clang-format-diff.py on the
`lib/` portion of the patch.
llvm-svn: 236121
Emit the following code for 'taskwait' directive within tied task:
call i32 @__kmpc_omp_taskwait(<loc>, i32 <thread_id>);
Differential Revision: http://reviews.llvm.org/D9245
llvm-svn: 235836
Emit a code for reduction clause. Next code should be emitted for reductions:
static kmp_critical_name lock = { 0 };
void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
*(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
...
*(Type<n>-1*)lhs[<n>-1] =
ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
*(Type<n>-1*)rhs[<n>-1]);
}
...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
...
<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
__kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
break;
case 2:
Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
...
Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242
llvm-svn: 235835
#pragma omp sections lastprivate(<var>)
<BODY>;
This construct is translated into something like:
<last_iter> = alloca i32
<init for lastprivates>;
<last_iter> = 0
; No initializer for simple variables or a default constructor is called for objects.
; For arrays perform element by element initialization by the call of the default constructor.
...
OMP_FOR_START(...,<last_iter>, ..); sets <last_iter> to 1 if this is the last iteration.
<BODY>
...
OMP_FOR_END
if (<last_iter> != 0) {
<final copy for lastprivate>; Update original variable with the lastprivate value.
}
call __kmpc_cancel_barrier() ; an implicit barrier to avoid possible data race.
If there is only one section, there is no special code generation, original shared variables are used + barrier is emitted at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9240
llvm-svn: 235834
If there are 2 or more sections in a 'section' directive the following code is generated:
<default init for privates>
@__kmpc_for_static_init_4();
<BODY for sections directive>
@__kmpc_for_static_fini()
If there is only one section, the following code is generated:
if (@__kmpc_single()) {
<default init for privates>
@__kmpc_end_single();
}
Differential Revision: http://reviews.llvm.org/D9239
llvm-svn: 235833
Emit the following code for 'single' directive with 'private' clause:
if (@__kmpc_single()) {
<default init for privates>
@__kmpc_end_single();
}
Differential Revision: http://reviews.llvm.org/D9238
llvm-svn: 235832
Emit the following code for 'single' directive with 'firtstprivate' clause:
if (@__kmpc_single()) {
<init for firstprivates>
@__kmpc_end_single();
}
@__kmpc_cancel_barrier(); // To avoid data race in firstprivate init
Differential Revision: http://reviews.llvm.org/D9223
llvm-svn: 235694
Runtime function for 'copyprivate' directive generates implicit barriers, so no need to emit it.
Differential Revision: http://reviews.llvm.org/D9215
llvm-svn: 235692
If there are 2 or more sections in a 'section' directive the following code is generated:
<init for firstprivates>
@__kmpc_cancel_barrier();// To avoid data race in firstprivate init
@__kmpc_for_static_init_4();
<BODY for sections directive>
@__kmpc_for_static_fini()
If there is only one section, the following code is generated:
if (@__kmpc_single()) {
<init for firstprivates>
@__kmpc_end_single();
}
@__kmpc_cancel_barrier(); // To avoid data race in firstprivate init
Differential Revision: http://reviews.llvm.org/D9214
llvm-svn: 235691
Adds codegen for 'atomic capture' constructs with the following forms of expressions/statements:
v = x binop= expr;
v = x++;
v = ++x;
v = x--;
v = --x;
v = x = x binop expr;
v = x = expr binop x;
{v = x; x = binop= expr;}
{v = x; x++;}
{v = x; ++x;}
{v = x; x--;}
{v = x; --x;}
{x = x binop expr; v = x;}
{x binop= expr; v = x;}
{x++; v = x;}
{++x; v = x;}
{x--; v = x;}
{--x; v = x;}
{x = x binop expr; v = x;}
{x = expr binop x; v = x;}
{v = x; x = expr;}
If x and expr are integer and binop is associative or x is a LHS in a RHS of the assignment expression, and atomics are allowed for type of x on the target platform atomicrmw instruction is emitted.
Otherwise compare-and-swap sequence is emitted.
Update of 'v' is not required to be be atomic with respect to the read or write of the 'x'.
bb:
...
atomic load <x>
cont:
<expected> = phi [ <x>, label %bb ], [ <new_failed>, %cont ]
<desired> = <expected> binop <expr>
<res> = cmpxchg atomic &<x>, desired, expected
<new_failed> = <res>.field1;
br <res>field2, label %exit, label %cont
exit:
atomic store <old/new x>, <v>
...
Differential Revision: http://reviews.llvm.org/D9049
llvm-svn: 235573
If condition evaluates to true, the code executes task by calling @__kmpc_omp_task() runtime function.
If condition evaluates to false, the code executes serial version of the code by executing the following code:
call void @__kmpc_omp_task_begin_if0(<loc>, <threadid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
proxy_task_entry(<gtid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
call void @__kmpc_omp_task_complete_if0(<loc>, <threadid>, <task_t_ptr, returned by @__kmpc_omp_task_alloc()>);
Also it checks if the condition is constant and if it is constant it evaluates its value and then generates either parallel version of the code (if the condition evaluates to true), or the serial version of the code (if the condition evaluates to false).
Differential Revision: http://reviews.llvm.org/D9143
llvm-svn: 235507
This patch generates helper variables which used as a private copies of the corresponding original variables inside an OpenMP 'for' directive. These generated variables are initialized by default (with the default constructor, if any). In OpenMP region references to original variables are replaced by the references to these private helper variables.
Differential Revision: http://reviews.llvm.org/D9106
llvm-svn: 235503
Patch fixes bugs in codegen for loops with unsigned counters and zero trip count. Previously preconditions for all loops were built using logic (Upper - Lower) > 0. But if the loop is a loop with zero trip count, then Upper - Lower is < 0 only for signed integer, for unsigned we're running into an underflow situation.
In this patch we're using original Lower<Upper condition to check that loop body can be executed at least once. Also this allows to skip code generation for loops, if it is known that preconditions for the loop are always false.
Differential Revision: http://reviews.llvm.org/D9103
llvm-svn: 235500
Add codegen for 'ordered' directive:
__kmpc_ordered(ident_t *, gtid);
<associated statement>;
__kmpc_end_ordered(ident_t *, gtid);
Also for 'for' directives with the dynamic scheduling and an 'ordered' clause added a call to '__kmpc_dispatch_fini_(4|8)[u]()' function after increment expression for loop control variable:
while(__kmpc_dispatch_next(&LB, &UB)) {
idx = LB;
while (idx <= UB) { BODY; ++idx;
__kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only.
} // inner loop
}
Differential Revision: http://reviews.llvm.org/D9070
llvm-svn: 235496
Currently checks for active data-sharing attributes for variables are performed for found var decls. Instead these checks must be performed for canonical decls of these variables to avoid possible troubles with with the differently qualified re-declarations of the same variable, for example:
namespace A { int x; }
namespace B { using A::x; }
Both A::x and B::x actually reference the same object A::x and this fact must be taken into account during data-sharing attributes analysis.
llvm-svn: 235096
Emits the following code for the clause at the beginning of the outlined function for implicit threads:
if (<not a master thread>) {
...
<thread local copy of var> = <master thread local copy of var>;
...
}
<sync point>;
Checking for a non-master thread is performed by comparing of the address of the thread local variable with the address of the master's variable. Master thread always uses original variables, so you always know the address of the variable in the master thread.
Differential Revision: http://reviews.llvm.org/D9026
llvm-svn: 235075
#pragma omp for lastprivate(<var>)
for (i = a; i < b; ++b)
<BODY>;
This construct is translated into something like:
<last_iter> = alloca i32
<lastprivate_var> = alloca <type>
<last_iter> = 0
; No initializer for simple variables or a default constructor is called for objects.
; For arrays perform element by element initialization by the call of the default constructor.
...
OMP_FOR_START(...,<last_iter>, ..); sets <last_iter> to 1 if this is the last iteration.
<BODY>
...
OMP_FOR_END
if (<last_iter> != 0) {
<var> = <lastprivate_var> ; Update original variable with the lastprivate value.
}
call __kmpc_cancel_barrier() ; an implicit barrier to avoid possible data race.
Differential Revision: http://reviews.llvm.org/D8658
llvm-svn: 235074
Adds proper codegen for 'firstprivate' clause in for directive. Initially codegen for 'firstprivate' clause was implemented for 'parallel' directive only.
Also this patch emits sync point only after initialization of firstprivate variables, not all private variables. This sync point is not required for privates, lastprivates etc., only for initialization of firstprivate variables.
Differential Revision: http://reviews.llvm.org/D8660
llvm-svn: 234978
Fixed a bug with codegen of variables with array types specified in 'copyprivate' clause of 'single' directive.
Differential Revision: http://reviews.llvm.org/D8914
llvm-svn: 234856
Update the test cases to pass when lambda call operators use thiscall.
Update the lambda-to-block conversion operator to use the default free
function calling convention instead of the call operator's convention.
This reverts commit r233082 and re-instates r233023.
llvm-svn: 233835
Added sema checks for forms of expressions/statements allowed under control of 'atomic capture' directive + generation of helper objects for future codegen.
llvm-svn: 233785
Adds atomic update codegen for the following forms of expressions:
x binop= expr;
x++;
++x;
x--;
--x;
x = x binop expr;
x = expr binop x;
If x and expr are integer and binop is associative or x is a LHS in a RHS of the assignment expression, and atomics are allowed for type of x on the target platform atomicrmw instruction is emitted.
Otherwise compare-and-swap sequence is emitted:
bb:
...
atomic load <x>
cont:
<expected> = phi [ <x>, label %bb ], [ <new_failed>, %cont ]
<desired> = <expected> binop <expr>
<res> = cmpxchg atomic &<x>, desired, expected
<new_failed> = <res>.field1;
br <res>field2, label %exit, label %cont
exit:
...
Differential Revision: http://reviews.llvm.org/D8536
llvm-svn: 233513
Replace boolean IsExplicit parameter of OpenMPRuntime::emitBarrierCall() method by OpenMPDirectiveKind Kind for better compatibility with the runtime library. Also add processing of 'nowait' clause on worksharing directives.
Differential Revision: http://reviews.llvm.org/D8659
llvm-svn: 233511
If there is at least one 'copyprivate' clause is associated with the single directive, the following code is generated:
```
i32 did_it = 0; \\ for 'copyprivate' clause
if(__kmpc_single(ident_t *, gtid)) {
SingleOpGen();
__kmpc_end_single(ident_t *, gtid);
did_it = 1; \\ for 'copyprivate' clause
}
<copyprivate_list>[0] = &var0;
...
<copyprivate_list>[n] = &varn;
call __kmpc_copyprivate(ident_t *, gtid, <copyprivate_list_size>,
<copyprivate_list>, <copy_func>, did_it);
...
void<copy_func>(void *LHSArg, void *RHSArg) {
Dst = (void * [n])(LHSArg);
Src = (void * [n])(RHSArg);
Dst[0] = Src[0];
... Dst[n] = Src[n];
}
```
All list items from all 'copyprivate' clauses are gathered into single <copyprivate list> (<copyprivate_list_size> is a size in bytes of this list) and <copy_func> is used to propagate values of private or threadprivate variables from the 'single' region to other implicit threads from outer 'parallel' region.
Differential Revision: http://reviews.llvm.org/D8410
llvm-svn: 232932
The linear variable is privatized (similar to 'private') and its
value on current iteration is calculated, similar to the loop
counter variables.
Differential revision: http://reviews.llvm.org/D8375
llvm-svn: 232890
Codegen for threadprivate variables (and in some other cases) may cause crash of the compiler if some diagnostic is produced later. This happens because some of the autogenerated globals are not removed from InternalVars StringMap when llvm::Module is reset.
Differential Revision: http://reviews.llvm.org/D8360
llvm-svn: 232610
Support for the QPX vector instruction set, used on the IBM BG/Q supercomputer,
has recently been added to the LLVM PowerPC backend. This vector instruction
set requires some ABI modifications because the ABI on the BG/Q expects
<4 x double> vectors to be provided with 32-byte stack alignment, and to be
handled as native vector types (similar to how Altivec vectors are handled on
mainline PPC systems). I've named this ABI variant elfv1-qpx, have made this
the default ABI when QPX is supported, and have updated the ABI handling code
to provide QPX vectors with the correct stack alignment and associated
register-assignment logic.
llvm-svn: 231960
This patch allows using of ExprWithCleanups expressions and other complex expressions in 'omp atomic' construct
Differential Revision: http://reviews.llvm.org/D8200
llvm-svn: 231905
The task region is emmitted in several steps:
Emit a call to kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry).
Here task_entry is a pointer to the function:
kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
TaskFunction(gtid, tt->part_id, tt->shareds);
return 0;
}
Copy a list of shared variables to field shareds of the resulting structure kmp_task_t returned by the previous call (if any).
Copy a pointer to destructions function to field destructions of the resulting structure kmp_task_t.
Emit a call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task), where new_task is a resulting structure from previous items.
Differential Revision: http://reviews.llvm.org/D7560
llvm-svn: 231762
Patch adds proper generation of debug info for all OpenMP regions. Also, all OpenMP regions are generated in a termination scope, because standard does not allow to throw exceptions out of structured blocks, associated with the OpenMP regions
Differential Revision: http://reviews.llvm.org/D7935
llvm-svn: 231757
This reverts commit r231752.
It was failing to link with cmake:
lib64/libclangCodeGen.a(CGOpenMPRuntime.cpp.o):/home/espindola/llvm/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp:function clang::CodeGen::InlinedOpenMPRegionRAII::~InlinedOpenMPRegionRAII(): error: undefined reference to 'clang::CodeGen::EHScopeStack::popTerminate()'
clang-3.7: error: linker command failed with exit code 1 (use -v to see invocation)
llvm-svn: 231754
Patch adds proper generation of debug info for all OpenMP regions. Also, all OpenMP regions are generated in a termination scope, because standard does not allow to throw exceptions out of structured blocks, associated with the OpenMP regions
Differential Revision: http://reviews.llvm.org/D7935
llvm-svn: 231752
For global reg lvalue - use regular store through global register.
For simple lvalue - use simple atomic store.
For bitfields, vector element, extended vector elements - the original value of the whole storage (for vector elements) or of some aligned value (for bitfields) is atomically read, the part of this value for the given lvalue is modified and then use atomic compare-and-exchange operation to try to atomically write modified value (if it was not modified).
Also, changes in this patch fix the bug for '#pragma omp atomic read' applied to extended vector elements.
Differential Revision: http://reviews.llvm.org/D7369
llvm-svn: 230736
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
This reapplies r230044 with a fixed configure+make build and updated
dependencies and testcase requirements. Over the last iteration this
version adds
- missing target requirements for testcases that specify an x86 triple,
- a missing clangCodeGen.a dependency to libClang.a in the make build.
rdar://problem/19104245
llvm-svn: 230423
__kmpc_omp_flush() runtime library now has only one argument and is not a vararg
anymore. This update makes the codegen compatible with these changes.
llvm-svn: 230331
The /volatile:ms semantics turn volatile loads and stores into atomic
acquire and release operations. This distinction is important because
volatile memory operations do not form a happens-before relationship
with non-atomic memory. This means that a volatile store is not
sufficient for implementing a mutex unlock routine.
Differential Revision: http://reviews.llvm.org/D7580
llvm-svn: 229082
This patch emits the following code for the single directive:
#pragma omp single
<body>
<---->
if(__kmpc_single(...)) {
<body>
__kmpc_end_single(...);
}
Differential Revision: http://reviews.llvm.org/D7045
llvm-svn: 228275
For 'taskyield' directive emit call to kmp_int32 __kmpc_omp_taskyield(ident_t *,
kmp_int32 global_tid, int end_part); runtime function call with end_part arg set
to 0 (it is ignored).
Differential Revision: http://reviews.llvm.org/D7047
llvm-svn: 228272
"omp atomic read [seq_cst]" accepts expressions "v=x;". In this patch we perform
an atomic load of "x" (using builtin atomic loading instructions or a call to
"atomic_load()" for simple lvalues and "kmpc_atomic_start();load
<x>;kmpc_atomic_end();" for other lvalues), convert the result of loading to
type of "v" (using EmitScalarConversion() for simple types and
EmitComplexToScalarConversion() for conversions from complex to scalar) and then
store the result in "v".)
Differential Revision: http://reviews.llvm.org/D6431
llvm-svn: 226788
"omp atomic read [seq_cst]" accepts expressions "v=x;". In this patch we perform
an atomic load of "x" (using builtin atomic loading instructions or a call to
"atomic_load()" for simple lvalues and "kmpc_atomic_start();load
<x>;kmpc_atomic_end();" for other lvalues), convert the result of loading to
type of "v" (using EmitScalarConversion() for simple types and
EmitComplexToScalarConversion() for conversions from complex to scalar) and then
store the result in "v".)
Differential Revision: http://reviews.llvm.org/D6431
llvm-svn: 226786
"omp atomic read [seq_cst]" accepts expressions "v=x;". In this patch we perform
an atomic load of "x" (using builtin atomic loading instructions or a call to
"atomic_load()" for simple lvalues and "kmpc_atomic_start();load
<x>;kmpc_atomic_end();" for other lvalues), convert the result of loading to
type of "v" (using EmitScalarConversion() for simple types and
EmitComplexToScalarConversion() for conversions from complex to scalar) and then
store the result in "v".
Differential Revision: http://reviews.llvm.org/D6431
llvm-svn: 226784
The lowering looks a lot like normal EH lowering, with the exception
that the exceptions are caught by executing filter expression code
instead of matching typeinfo globals. The filter expressions are
outlined into functions which are used in landingpad clauses where
typeinfo would normally go.
Major aspects that still need work:
- Non-call exceptions in __try bodies won't work yet. The plan is to
outline the __try block in the frontend to keep things simple.
- Filter expressions cannot use local variables until capturing is
implemented.
- __finally blocks will not run after exceptions. Fixing this requires
work in the LLVM SEH preparation pass.
The IR lowering looks like this:
// C code:
bool safe_div(int n, int d, int *r) {
__try {
*r = normal_div(n, d);
} __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) {
return false;
}
return true;
}
; LLVM IR:
define i32 @filter(i8* %e, i8* %fp) {
%ehptrs = bitcast i8* %e to i32**
%ehrec = load i32** %ehptrs
%code = load i32* %ehrec
%matches = icmp eq i32 %code, i32 u0xC0000094
%matches.i32 = zext i1 %matches to i32
ret i32 %matches.i32
}
define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) {
%rr = invoke i32 @normal_div(i32 %n, i32 %d)
to label %normal unwind to label %lpad
normal:
store i32 %rr, i32* %r
ret i1 1
lpad:
%ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler
catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*)
%ehptr = extractvalue {i8*, i32} %ehvals, i32 0
%sel = extractvalue {i8*, i32} %ehvals, i32 1
%filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*))
%matches = icmp eq i32 %sel, %filter_sel
br i1 %matches, label %eh.except, label %eh.resume
eh.except:
ret i1 false
eh.resume:
resume
}
Reviewers: rjmccall, rsmith, majnemer
Differential Revision: http://reviews.llvm.org/D5607
llvm-svn: 226760
storage.
This fix allows to use non-constant global variables, static local variables and static data
members in data-sharing attribute clauses in parallel and task regions.
llvm-svn: 226250
Currently, if global variable is marked as a private OpenMP variable, the compiler crashes in debug version or generates incorrect code in release version. It happens because in the OpenMP region the original global variable is used instead of the generated private copy. It happens because currently globals variables are not captured in the OpenMP region.
This patch adds capturing of global variables iff private copy of the global variable must be used in the OpenMP region.
Differential Revision: http://reviews.llvm.org/D6259
llvm-svn: 224323
Adds generation of call to "i32 kmpc_cancel_barrier(ident_t *, i32)" libcall for explicitly specified barriers (OMP_IDENT_BARRIER_EXPL flag is added to "flags" field of "ident_t" structure).
Also this patch replaces all calls to "kmpc_barrier" function by calls of "__kmpc_cancel_barrier" function which provides additional functionality for OpenMP 4.0.
Also, library specific enum OpenMPLocationFlags moved to private section of CGOpenMPRuntime class to make it more independent from library implementation.
Differential Revision: http://reviews.llvm.org/D6447
llvm-svn: 223444
According to OpenMP standard, Section 2.12.6, atomic Construct, '#pragma omp atomic write' is allowed to be used only for expression statements of form 'x = expr;', where x is a lvalue expression and expr is an expression with scalar type. Patch adds checks for it.
llvm-svn: 222913
The Mips target adds the signext attribute to signed 32-bit integers in order
to support the N32/N64 correctly. Integers must be promoted to 64-bit bit on
these ABI's.
llvm-svn: 222618
For each "omp flush" directive a call to "void kmpc_flush(ident_t *, ...)" function is generated.
Directive "omp flush" may have an associated list of variables to flush, but currently runtime function ignores them. So the patch generates just "call kmpc_flush(ident_t *<loc>, i32 0)".
Differential Revision: http://reviews.llvm.org/D6292
llvm-svn: 222409
According to OpenMP standard, Section 2.12.6, atomic Construct, '#pragma omp atomic read' is allowed to be used only for expression statements of form 'v = x;', where x and v (as applicable) are both l-value expressions with scalar type. Patch adds checks for it.
llvm-svn: 222231
Currently there is a bug in processing of global variables used as loop control variables in 'omp for/simd' constructs: these globals must be captured as private variables, but currently they are nor. This is a temporary bug fix for this problem until the correct solution is prepared. If a global var used as lcv without explicit mark as a private/linear/lastprivate the error message is emitted.
llvm-svn: 221970
For all threadprivate variables which have constructor/destructor emit call to void __kmpc_threadprivate_register(ident_t * <Current Location>, void *<Original Global Addr>, kmpc_ctor <Constructor>, kmpc_cctor NULL, kmpc_dtor <Destructor>);
In expressions all references to such variables are replaced by calls to void *__kmpc_threadprivate_cached(ident_t *<Current Location>, kmp_int32 <Current Thread Id>, void *<Original Global Addr>, size_t <Size of Data>, void ***<Pointer to autogenerated cache – array of private copies of threadprivate variable>);
Test test/OpenMP/threadprivate_codegen.cpp checks that codegen is correct. Also it checks that codegen is correct after serialization/deserialization and one of passes verifies debug info.
Differential Revision: http://reviews.llvm.org/D4002
llvm-svn: 221663
This patch generates some helper variables which used as a private copies of the corresponding original variables inside an OpenMP 'parallel' directive. These generated variables are initialized by default (with the default constructor, if any). In outlined function references to original variables are replaced by the references to these private helper variables. At the end of the initialization of the private variables and implicit barier is set by calling __kmpc_barrier(...) runtime function to be sure that all threads were initialized using original values of the variables.
Differential Revision: http://reviews.llvm.org/D4752
llvm-svn: 220262
This patch generates call to "kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads);" library function before calling "kmpc_fork_call" each time there is an associated "num_threads" clause in the "omp parallel" directive.
Differential Revision: http://reviews.llvm.org/D5145
llvm-svn: 219599
Adds codegen for 'if' clause. Currently only for 'if' clause used with the 'parallel' directive.
If condition evaluates to true, the code executes parallel version of the code by calling __kmpc_fork_call(loc, 1, microtask, captured_struct/*context*/), where loc - debug location, 1 - number of additional parameters after "microtask" argument, microtask - is outlined finction for the code associated with the 'parallel' directive, captured_struct - list of variables captured in this outlined function.
If condition evaluates to false, the code executes serial version of the code by executing the following code:
global_thread_id.addr = alloca i32
store i32 global_thread_id, global_thread_id.addr
zero.addr = alloca i32
store i32 0, zero.addr
kmpc_serialized_parallel(loc, global_thread_id);
microtask(global_thread_id.addr, zero.addr, captured_struct/*context*/);
kmpc_end_serialized_parallel(loc, global_thread_id);
Where loc - debug location, global_thread_id - global thread id, returned by __kmpc_global_thread_num() call or passed as a first parameter in microtask() call, global_thread_id.addr - address of the variable, where stored global_thread_id value, zero.addr - implicit bound thread id (should be set to 0 for serial call), microtask() and captured_struct are the same as in parallel call.
Also this patch checks if the condition is constant and if it is constant it evaluates its value and then generates either parallel version of the code (if the condition evaluates to true), or the serial version of the code (if the condition evaluates to false).
Differential Revision: http://reviews.llvm.org/D4716
llvm-svn: 219597
Moved CGOpenMPRegionInfo from CGOpenMPRuntime.h to CGOpenMPRuntime.cpp file and reworked the code for this change. Also added processing of ThreadID variable passed as an argument in outlined functions in parallel and task directives.
llvm-svn: 219490
Includes parsing and semantic analysis for 'omp teams' directive support from OpenMP 4.0. Adds additional analysis to 'omp target' directive with 'omp teams' directive.
llvm-svn: 219385
This patch generates some helper variables that used as private copies of the corresponding original variables inside an OpenMP 'parallel' directive. These generated variables are initialized by copy using values of the original variables (with the copy constructor, if any). For arrays, initializator is generated for single element and in the codegen procedure this initial value is automatically propagated between all elements of the private copy.
In outlined function, references to original variables are replaced by the references to these private helper variables. At the end of the initialization of the private variables an implicit barier is generated by calling __kmpc_barrier(...) runtime function to be sure that all threads were initialized using original values of the variables.
Differential Revision: http://reviews.llvm.org/D5140
llvm-svn: 219306
This patch generates some helper variables that used as private copies of the corresponding original variables inside an OpenMP 'parallel' directive. These generated variables are initialized by copy using values of the original variables (with the copy constructor, if any). For arrays, initializator is generated for single element and in the codegen procedure this initial value is automatically propagated between all elements of the private copy.
In outlined function, references to original variables are replaced by the references to these private helper variables. At the end of the initialization of the private variables an implicit barier is generated by calling __kmpc_barrier(...) runtime function to be sure that all threads were initialized using original values of the variables.
Differential Revision: http://reviews.llvm.org/D5140
llvm-svn: 219297
This patch generates some helper variables that used as private copies of the corresponding original variables inside an OpenMP 'parallel' directive. These generated variables are initialized by copy using values of the original variables (with the copy constructor, if any). For arrays, initializator is generated for single element and in the codegen procedure this initial value is automatically propagated between all elements of the private copy.
In outlined function, references to original variables are replaced by the references to these private helper variables. At the end of the initialization of the private variables an implicit barier is generated by calling __kmpc_barrier(...) runtime function to be sure that all threads were initialized using original values of the variables.
Differential Revision: http://reviews.llvm.org/D5140
llvm-svn: 219295
Includes parsing and semantic analysis for 'omp teams' directive support from OpenMP 4.0. Adds additional analysis to 'omp target' directive with 'omp teams' directive.
llvm-svn: 219197
When the aligned clause of an OpenMP simd pragma is not provided with an
explicit alignment, a target-dependent default must be used. This adds such a
default of PPC targets.
This will become slightly more complicated when BG/Q support is added (because
then it will depend on the type). For now, 16 is a correct value for all
systems, and covers Altivec and VSX vectors.
llvm-svn: 218994
This patch implements collapsing of the loops (in particular, in
presense of clause 'collapse'). It calculates number of iterations N
and expressions nesessary to calculate the nested loops counters
values based on new iteration variable (that goes from 0 to N-1)
in Sema. It also adds Codegen for 'omp simd', which uses
(and tests) this feature.
Differential Revision: http://reviews.llvm.org/D5184
llvm-svn: 218743
This patch adds codegen for constructs:
#pragma omp critical [name]
<body>
It generates global variable ".gomp_critical_user_[name].var" of type int32[8]. Then it generates library call "kmpc_critical(loc, gtid, .gomp_critical_user_[name].var)", code for <body> statement and final call "kmpc_end_critical(loc, gtid, .gomp_critical_user_[name].var)".
Differential Revision: http://reviews.llvm.org/D5202
llvm-svn: 218239
[Clang part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
llvm-svn: 211712
This reverts commit r211096. Looks like it broke the msvc build:
SemaOpenMP.cpp(140) : error C4519: default template arguments are only allowed on a class template
llvm-svn: 211113
This patch implements semantic analysis to make sure that the loop is in OpenMP canonical form.
This is the form required for 'omp simd', 'omp for' and other loop pragmas.
Differential revision: http://reviews.llvm.org/D3778
llvm-svn: 210095
Allow the tests to succeed with tne signext (or other) attribute is present. The attributes
show up for Power, but not for x86*, so need to be appropriately wildcarded.
llvm-svn: 210050
It also adds a simple initial version of codegen for pragma omp simd (it will change in the future to support all the clauses).
Differential revision: http://reviews.llvm.org/D3644
llvm-svn: 209411
For namespaces, this is consistent with mangling and GCC's debug info
behavior. For structs, GCC uses <anonymous struct> but we prefer
consistency between all anonymous entities but don't want to confuse
them with template arguments, etc, so we'll just go with parens in all
cases.
llvm-svn: 205398