This is already done within InstCombine:
https://alive2.llvm.org/ce/z/MiGE22
...but leaving it out of analysis makes it
harder to avoid infinite loops there.
This is already done within InstCombine:
https://alive2.llvm.org/ce/z/MiGE22
...but leaving it out of analysis makes it
harder to avoid infinite loops there.
ValueTracking should allow for value ranges that may satisfy
llvm.assume, instead of restricting the ranges only to values that
will always satisfy the condition.
Differential Revision: https://reviews.llvm.org/D107298
Proposed alternative to D105338.
This is ugly, but short-term I think it's the best way forward: first,
let's formalize the hacks into a coherent model. Then we can consider
extensions of that model (we could have different flavors of volatile
with different rules).
Differential Revision: https://reviews.llvm.org/D106309
This replaces the current ad-hoc implementation,
by syncing the code from InstCombine's implementation in `InstCombinerImpl::visitUnreachableInst()`,
with one exception that here in SimplifyCFG we are allowed to remove EH instructions.
Effectively, this now allows SimplifyCFG to remove calls (iff they won't throw and will return),
arithmetic/logic operations, etc.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D105374
This borrows as much as possible from the SDAG version of the code
(originally added with D27129 and since updated with big endian support).
In IR, we can test more easily for correctness than we did in the
original patch. I'm using the simplest cases that I could find for
InstSimplify: we computeKnownBits on variable shift amounts to see if
they are zero or in range. So shuffle constant elements into a vector,
cast it, and shift it.
The motivating x86 example from https://llvm.org/PR50123 is also here.
We computeKnownBits in the caller code, but we only check if the shift
amount is in range. That could be enhanced to catch the 2nd x86 test -
if the shift amount is known too big, the result is 0.
Alive2 understands the datalayout and agrees that the tests here are
correct - example:
https://alive2.llvm.org/ce/z/KZJFMZ
Differential Revision: https://reviews.llvm.org/D104472
This was reverted because of a reported problem. It turned out this patch didn't introduce said problem, it just exposed it more widely. 15a4233 fixes the root issue, so this simple a) rebases over that, and b) adds a much more extensive comment explaining why that weakened assert is correct.
Original commit message follows:
Follow up to D99912, specifically the revert, fix, and reapply thereof.
This generalizes the invertible recurrence logic in two ways:
* By allowing mismatching operand numbers of the phi, we can recurse through a pair of phi recurrences whose operand orders have not been canonicalized.
* By allowing recurrences through operand 1, we can invert these odd (but legal) recurrence.
Differential Revision: https://reviews.llvm.org/D100884
There's a TODO comment in the code and discussion in D99912
about generalizing this, but I wasn't sure how to implement that,
so just going with a potential minimal fix to avoid crashing.
The test is a reduction beyond useful code (there's no user of
%user...), but it is based on https://llvm.org/PR50191, so this
is asserting on real code.
Differential Revision: https://reviews.llvm.org/D101772
This update supports the following transformation:
```
select(extract(mul_with_overflow(a, _), _), (a == 0), false)
=>
and(extract(mul_with_overflow(a, _), _), (a == 0))
```
which is correct because if `a` was poison the select's condition was
also poison.
This update is splitted from D101423.
The current code can scan an unlimited number of instructions,
if the containing basic block is very large. The test case from
PR50155 contains a basic block with approximately 100k instructions.
To avoid this, limit the number of instructions we inspect. At
the same time, drop the limit on the number of basic blocks, as
this will be implicitly limited by the number of instructions as
well.
This seems like a reasonable upper bound on VL. WG discussions for
the V spec would probably allow us to use 2^16 as an upper bound
on VLEN, but this is good enough for now.
This allows us to remove sext and zext if user happens to assign
the size_t result into an int and then uses it as a VL intrinsic
argument which is size_t.
Reviewed By: frasercrmck, rogfer01, arcbbb
Differential Revision: https://reviews.llvm.org/D101472
Follow up to D99912, specifically the revert, fix, and reapply thereof.
This generalizes the invertible recurrence logic in two ways:
* By allowing mismatching operand numbers of the phi, we can recurse through a pair of phi recurrences whose operand orders have not been canonicalized.
* By allowing recurrences through operand 1, we can invert these odd (but legal) recurrence.
Differential Revision: https://reviews.llvm.org/D100884
I'd reverted this in commit 3b6acb1797 due to buildbot failures. This patch contains the fix for said issue. I'd forgotten to handle the case where two phis in the same block have different operand order. We canonicalize away from this, but it's still valid IR. The tests included in this change (as opposed to simply having test output changed), crashed without the fix.
Original commit message follows...
This extends the phi handling in isKnownNonEqual with a special case based on invertible recurrences. If we can prove the recurrence is invertible (which many common ones are), we can recurse through the start operands of the recurrence skipping the phi cycle.
(Side note: Instcombine currently does not push back through these cases. I will implement that in a follow up change w/separate review.)
Differential Revision: https://reviews.llvm.org/D99912
This extends the phi handling in isKnownNonEqual with a special case based on invertible recurrences. If we can prove the recurrence is invertible (which many common ones are), we can recurse through the start operands of the recurrence skipping the phi cycle.
(Side note: Instcombine currently does not push back through these cases. I will implement that in a follow up change w/separate review.)
Differential Revision: https://reviews.llvm.org/D99912
This is an alternative to D99759 to avoid the compile-time explosion seen in:
https://llvm.org/PR49785
Another potential solution would make the exclusion logic stronger to avoid
blowing up, but note that we reduced the complexity of the exclusion mechanism
in D16204 because it was too costly.
So I'm questioning the need for recursion/exclusion entirely - what is the
optimization value vs. cost of recursively computing known bits based on
assumptions?
This was built into the implementation from the start with 60db058,
and we have kept adding code/cost to deal with that capability.
By clearing the query's AssumptionCache inside computeKnownBitsFromAssume(),
this patch retains all existing assume functionality except refining known
bits based on even more assumptions.
We have 1 regression test that shows a difference in optimization power.
Differential Revision: https://reviews.llvm.org/D100573
Just like in the mul nuw case, it's sufficient that the step is
non-zero. If the step is negative, then the values will jump
between positive and negative, "crossing" zero, but the value of
the recurrence is never actually zero.
It's okay if the step is zero, we'll just stay at the same non-zero
value in that case. The valuable part of this is that the step
doesn't even need to be a constant anymore.
The start value can't be null for something to be a non-zero
recurrence, so hoist that common check out of the switch.
Subsequent checks may be incomplete or over-specified as noted in:
D100408
For use in an uncoming patch. Left out the phi case (which could otherwise fit in this framework) as it would cause infinite recursion in said patch. We can probably also leverage this in instcombine to ensure we keep the two sets of related analysis and transforms in sync.
This is a patch teaching ValueTracking that `s/u*.with.overflow` intrinsics do not
create undef/poison and they propagate poison.
I couldn't write a nice example like the one with ctpop; ValueTrackingTest.cpp were simply updated
to check these instead.
This patch helps reducing regression while fixing https://llvm.org/pr49688 .
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99671
Handle (x << s) != (y << s) where x != y and the shifts are
non-wrapping. Once again, this establishes parity with the
corresponing mul fold that already exists. The shift case is
more powerful because we don't need to guard against multiplies
by zero.
This handles the pattern X != X << C for non-zero X and C and a
non-overflowing shift. This establishes parity with the corresponing
fold for multiplies.
This is mainly for clarity: It doesn't make sense to do any
negative/positive checks when dealing with a nuw add/mul. These
only make sense to nsw add/mul.
loop:
%cmp.0 = phi i32 [ 3, %entry ], [ %inc, %loop ]
%pos.0 = phi i32 [ 1, %entry ], [ %cmp.0, %loop ]
...
%inc = add i32 %cmp.0, 1
br label %loop
On above example, %pos.0 uses previous iteration's %cmp.0 with backedge
according to PHI's instruction's defintion. If the %inc is not same among
iterations, we can say the two PHIs are not same.
Differential Revision: https://reviews.llvm.org/D98422
This is similar to the select logic just ahead of the new code.
Min/max choose exactly one value from the inputs, so if both of
those are a power-of-2, then the result must be a power-of-2.
This might help with D98152, but we likely still need other
pieces of the puzzle to avoid regressions.
The change in PatternMatch.h is needed to build with clang.
It's possible there is a better way to deal with the 'const'
incompatibities.
Differential Revision: https://reviews.llvm.org/D99276
This select of ctpop with 0 pattern can get left behind after
loop idiom recognize converts a loop to ctpop. LLVM 10 was able
to optimize this, but LLVM 11 and later is not. The difference
seems to be that some select transforms are now limited based
on canCreateUndefOrPoison.
Teaching canCreateUndefOrPoison about ctpop restores the
LLVM 10 codegen.
Differential Revision: https://reviews.llvm.org/D99207
X != X * C is true if:
* C is not 0 or 1
* X is not 0
* mul is nsw or nuw
Proof: https://alive2.llvm.org/ce/z/uwF29z
This is motivated by one of the cases in D98422.
Normally, this function just doesn't bother about cycles,
and hopes that the caller supplied small-enough depth
so that at worst it will take a potentially large,
but limited amount of time. But that obviously doesn't work
if there is no depth limit.
This reapples 36f1c3db66,
but without asserting, just bailout once cycle is detected.
Jeroen Dobbelaere in
https://lists.llvm.org/pipermail/llvm-dev/2021-March/149206.html
is reporting that this function can end up in an endless loop
when called from SROA w/ full restrict patches.
For now, simply ensure that such problems are caught earlier/easier.
This clarifies the interface of the matchSimpleRecurrence helper introduced in 8020be0b8 for non-commutative operators. After ebd3aeba, I realized the original way I framed the routine was inconsistent. For shifts, we only matched the the LHS form, but for sub we matched both and the caller wanted that information. So, instead, we now consistently match both forms for non-commutative operators and the caller becomes responsible for filtering if needed. I tried to put a clear warning in the header because I suspect the RHS form of e.g. a sub recurrence is non-obvious for most folks. (It was for me.)
Followup to D72573 - as detailed in https://blog.regehr.org/archives/1709 we don't make use of the known leading/trailing zeros for shifted values in cases where we don't know the shift amount value.
Stop ValueTracking returning zero for poison shift patterns and use the KnownBits shift helpers directly.
Extend KnownBits::shl to combine all possible shifted combinations if both min/max shift amount values are in range.
Differential Revision: https://reviews.llvm.org/D90479
The result will have the same sign as the dividend unless the
result is 0. The magnitude of the result will always be less
than or equal to the dividend. So the result will have at least
as many sign bits as the dividend.
Previously we would do this if the divisor was a positive constant,
but that isn't required.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97170
The existing implementation was relying on order of evaluation to achieve a particular result. This got really confusing when wanting to change the handling for arguments in a later patch.
This moves the willReturn() helper from CallBase to Instruction,
so that it can be used in a more generic manner. This will make
it easier to fix additional passes (ADCE and BDCE), and will give
us one place to change if additional instructions should become
non-willreturn (e.g. there has been talk about handling volatile
operations this way).
I have also included the IntrinsicInst workaround directly in
here, so that it gets applied consistently. (As such this change
is not entirely NFC -- FuncAttrs will now use this as well.)
Differential Revision: https://reviews.llvm.org/D96992
In the motivating example from https://llvm.org/PR49171 and
reduced test here, we would unroll and clone assumes so much
that compile-time effectively became infinite while analyzing
all of those assumes.
This is a follow-up of D95238's LangRef update.
This patch updates `programUndefinedIfUndefOrPoison(V)` to return true if
`V` is used by any memory-accessing instruction.
Interestingly, this affected many tests in Attributors, mainly about adding noundefs.
The tests are updated using llvm/utils/update_test_checks.py. I checked that the diffs
are about updating noundefs.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96642
The motivation for this is that I'm looking at an example that uses shifts as induction variables. There's lots of other omissions, but one of the first I noticed is that we can't compute tight known bits. (This indirectly causes SCEV's range analysis to produce very poor results as well.)
Differential Revision: https://reviews.llvm.org/D96440
This is based on the example/comments in:
https://llvm.org/PR48984
I tried just lifting the restriction in computeKnownBitsFromShiftOperator()
as suggested in the bug report, but that doesn't catch all of the cases
shown here. I didn't step through to see exactly why that happened. But it
seems like a reasonable compromise to cheaply check the special-case of
shifting a constant.
There's a slight regression on a cmp transform as noted, but this is likely
the more important/common pattern, so we can fix that icmp pattern later if
needed.
Differential Revision: https://reviews.llvm.org/D95959
This is similar to D94106, but for the
isGuaranteedToTransferExecutionToSuccessor() helper. We should not
assume that readonly functions will return, as this is only true for
mustprogress functions (in which case we already infer willreturn).
As with the DCE change, for now continue assuming that readonly
intrinsics will return, as not all target intrinsics have been
annotated yet.
Differential Revision: https://reviews.llvm.org/D95288
Currently LLVM is relying on ValueTracking's `isKnownNonZero` to attach `nonnull`, which can return true when the value is poison.
To make the semantics of `nonnull` consistent with the behavior of `isKnownNonZero`, this makes the semantics of `nonnull` to accept poison, and return poison if the input pointer isn't null.
This makes many transformations like below legal:
```
%p = gep inbounds %x, 1 ; % p is non-null pointer or poison
call void @f(%p) ; instcombine converts this to call void @f(nonnull %p)
```
Instead, this semantics makes propagation of `nonnull` to caller illegal.
The reason is that, passing poison to `nonnull` does not immediately raise UB anymore, so such program is still well defined, if the callee does not use the argument.
Having `noundef` attribute there re-allows this.
```
define void @f(i8* %p) { ; functionattr cannot mark %p nonnull here anymore
call void @g(i8* nonnull %p) ; .. because @g never raises UB if it never uses %p.
ret void
}
```
Another attribute that needs to be updated is `align`. This patch updates the semantics of align to accept poison as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90529
Just like llvm.assume, there are a lot of cases where we can just ignore llvm.experimental.noalias.scope.decl.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93042
Split impliesPoison into two recursive walks, one over V, the
other over ValAssumedPoison. This allows us to reason about poison
implications in a number of additional cases that are important
in practice. This is a generalized form of D94859, which handles
the cmp to cmp implication in particular.
Differential Revision: https://reviews.llvm.org/D94866
This patch
- Adds containsPoisonElement that checks existence of poison in constant vector elements,
- Renames containsUndefElement to containsUndefOrPoisonElement to clarify its behavior & updates its uses properly
With this patch, isGuaranteedNotToBeUndefOrPoison's tests w.r.t constant vectors are added because its analysis is improved.
Thanks!
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94053
This PR adds impliesPoison(ValAssumedPoison, V) that returns true if V is
poison under the assumption that ValAssumedPoison is poison.
For example, impliesPoison('icmp X, 10', 'icmp X, Y') return true because
'icmp X, Y' is poison if 'icmp X, 10' is poison.
impliesPoison can be used for sound optimization of select, as discussed in
D77868.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D78152
Confusingly, BinaryOperator is not an Operator,
OverflowingBinaryOperator is... We were implicitly assuming that
the multiply is an Instruction here.
This fixes the assertion failure reported in
https://reviews.llvm.org/D92726#2472827.
This patch updates isImpliedCondition/isKnownNonZero to look into select form of
and/or as well.
See llvm.org/pr48353 and D93065 for more context
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93845
In 35676a4f9a I've added handling for
non-trivial dominating conditions that imply non-zero on the true
branch. This adds the same support for the false branch.
The changes in pr45360.ll change block ordering and naming, but
don't change the control flow. The urem is still guaraded by a
non-zero check correctly.
The dominating condition handling in isKnownNonZero() currently
only takes into account conditions of the form "x != 0" or "x == 0".
However, there are plenty of other conditions that imply non-zero,
a common one being "x s> 0".
Peculiarly, the handling for assumes was already dealing with more
general non-zero-ness conditions, so this just reuses the same
logic for the dominating condition case.
Build on the work started in 8f07629, and add the multiply case. In the process, more clearly describe the requirement for the operation we're looking through.
Differential Revision: https://reviews.llvm.org/D92726
The basic idea is that by looking through operand instructions which don't change the equality result that we can push the existing known bits comparison down past instructions which would obscure them.
We have analogous handling in InstSimplify for most - though weirdly not all - of these cases starting from an icmp root. It's a bit unfortunate to duplicate logic, but since my actual goal is to extend BasicAA, the icmp logic doesn't help. (And just makes it hard to test here.) The BasicAA change will be posted separately for review.
Differential Revision: https://reviews.llvm.org/D92698
This change introduces a new IR intrinsic named `llvm.pseudoprobe` for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.
A pseudo probe is used to collect the execution count of the block where the probe is instrumented. This requires a pseudo probe to be persisting. The LLVM PGO instrumentation also instruments in similar places by placing a counter in the form of atomic read/write operations or runtime helper calls. While these operations are very persisting or optimization-resilient, in theory we can borrow the atomic read/write implementation from PGO counters and cut it off at the end of compilation with all the atomics converted into binary data. This was our initial design and we’ve seen promising sample correlation quality with it. However, the atomics approach has a couple issues:
1. IR Optimizations are blocked unexpectedly. Those atomic instructions are not going to be physically present in the binary code, but since they are on the IR till very end of compilation, they can still prevent certain IR optimizations and result in lower code quality.
2. The counter atomics may not be fully cleaned up from the code stream eventually.
3. Extra work is needed for re-targeting.
We choose to implement pseudo probes based on a special LLVM intrinsic, which is expected to have most of the semantics that comes with an atomic operation but does not block desired optimizations as much as possible. More specifically the semantics associated with the new intrinsic enforces a pseudo probe to be virtually executed exactly the same number of times before and after an IR optimization. The intrinsic also comes with certain flags that are carefully chosen so that the places they are probing are not going to be messed up by the optimizer while most of the IR optimizations still work. The core flags given to the special intrinsic is `IntrInaccessibleMemOnly`, which means the intrinsic accesses memory and does have a side effect so that it is not removable, but is does not access memory locations that are accessible by any original instructions. This way the intrinsic does not alias with any original instruction and thus it does not block optimizations as much as an atomic operation does. We also assign a function GUID and a block index to an intrinsic so that they are uniquely identified and not merged in order to achieve good correlation quality.
Let's now look at an example. Given the following LLVM IR:
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
br i1 %cmp, label %bb1, label %bb2
bb1:
br label %bb3
bb2:
br label %bb3
bb3:
ret void
}
```
The instrumented IR will look like below. Note that each `llvm.pseudoprobe` intrinsic call represents a pseudo probe at a block, of which the first parameter is the GUID of the probe’s owner function and the second parameter is the probe’s ID.
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
call void @llvm.pseudoprobe(i64 837061429793323041, i64 1)
br i1 %cmp, label %bb1, label %bb2
bb1:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 2)
br label %bb3
bb2:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 3)
br label %bb3
bb3:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 4)
ret void
}
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D86490
These are all lightweight to compute and helps avoid issues with Known being used to hold both the shift amount and then the shifted result.
Minor cleanup for D90479.
ValueTracking was using a more powerful abs() implementation. Roll
it into KnownBits::abs(). Also add an exhaustive test for abs(),
in both the poisoning and non-poisoning variants.
When computing the known bits for a GEP, don't set the nsw flag
when adding an offset to an address. The nsw flag only applies to
pure offset additions (see also D90708).
The nsw flag is only used in a very minor way by the code, to the
point that I was not able to come up with a test case where it
makes a difference.
Differential Revision: https://reviews.llvm.org/D90637
Another cleanup for D90479 - handle the Known Ones/Zeros in a single callback, which will make it much easier to jump over to the KnownBits shift handling.
We have a frequent pattern where we're merging two KnownBits to get the common/shared bits, and I just fell for the gotcha where I tried to use the & operator to merge them........