As suggested from 02f8519502, this uses the
isAnyConstantBuildVector method in lieu of separate
isBuildVectorOfConstantSDNodes calls. It should
otherwise be an NFC.
This prevents an infinite loop from D123801, where code trying to reduce
the total number of bitcasts, but also handling constants, could create
the opposite transform. Prevent the transform in these case to let the
bitcast of a constant transform naturally.
Fixes#55345
Like other shifts, the type isn't required to match. We shouldn't
assume we can call ZExtPromotedInteger.
I tested the PromoteIntOp_FunnelShift locally by removing the promotion
of the shift amount from PromoteIntRes_FunnelShift. But with the final
version of this patch it is never executed on any tests.
Differential Revision: https://reviews.llvm.org/D125106
This is part of an ongoing effort toward making DAGCombine process the nodes in topological order.
This is able to discover a couple of new optimizations, but also causes a couple of regression. I nevertheless chose to submit this patch for review as to start the discussion with people working on the backend so we can find a good way forward.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D124743
Add helper functions to query the signed and scaled properties
of ISD::IndexType along with functions to change them.
Remove setIndexType from MaskedGatherSDNode because it only has
one usage and typically should only be changed alongside its
index operand.
Minimise the direct use of the enum values to lay the groundwork
for more refactoring.
Differential Revision: https://reviews.llvm.org/D123347
Something is going wrong with the BigEndian PowerPC bot. It is hard to
tell what is wrong from here, but attempt to fix it by disabling the
combineShuffleOfBitcast combine for bigendian.
Otherwise we have garbage in the upper bits that can affect the
results of the UREM.
Fixes PR55296.
Differential Revision: https://reviews.llvm.org/D125076
If the mask is made up of elements that form a mask in the higher type
we can convert shuffle(bitcast into the bitcast type, simplifying the
instruction sequence. A v4i32 2,3,0,1 for example can be treated as a
1,0 v2i64 shuffle. This helps clean up some of the AArch64 concat load
combines, along with helping simplify a number of other tests.
The PowerPC combine for v16i8 splat vector loads needed some fixes to
keep it working for v16i8 vectors. This improves the handling of v2i64
shuffles to match too, hopefully improving them in general.
Differential Revision: https://reviews.llvm.org/D123801
The result of sign_extend_inreg needs to have as many sign bits
as requested by the VT argument. The easiest way to guarantee this
is to fold it to 0.
SystemZ test was modified to avoid using undef.
Fixes https://github.com/llvm/llvm-project/issues/55178
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D124696
This extends the (X & ~Y) | Y to X | Y fold to also work if ~Y is
a truncated not (when taking into account the mask X). This is
done by exporting the infrastructure added in D124856 and reusing
it here.
I've retained the old value of AllowUndefs=false, though probably
this can be switched to true with extra test coverage.
Differential Revision: https://reviews.llvm.org/D124930
Demanded bits analysis may replace a full-width not with a
any_extend (not (truncate X)) pattern. This patch looks through
this kind of pattern in haveNoCommonBitsSet(). Of course, we can
only do this if we only need negated bits in the non-extended part,
as the other bits may now be arbitrary. For example, if we have
haveNoCommonBitsSet(~X & Y, X) then ~X only needs to actually
negate bits set in Y.
This is only a partial solution to the problem in that it allows
add -> or conversion, but the resulting or doesn't get folded yet.
(I guess that will involve exposing getBitwiseNotOperand() as a
more general helper and using that in the relevant transform.)
Differential Revision: https://reviews.llvm.org/D124856
Don't assume the rotation amounts have been correctly normalized - do it as part of the constant folding.
Also, the normalization should be performed with UREM not SREM.
This is the DAG variant of D124763. The code already handles the
general pattern, but not this degenerate case.
This allows folding A + (B&~A) to A | (B&~A) which further holds
to A | B.
Handling on the SDAG level is needed because in the motivating
case the add is actually a getelementptr, which only gets converted
into an add on the SDAG level. However, this patch is not quite
sufficient to handle the getelementptr case yet, because of an
interfering demanded bits simplification.
Differential Revision: https://reviews.llvm.org/D124772
When looking for memory uses,
reassociationCanBreakAddressingModePattern should check uses of
the outer ADD rather than the inner ADD. We want to know if the
two ops we're reassociating are used by a load/store.
In practice, the existing check usually works because CodeGenPrepare
will make one of the load/stores have an offset of 0 relative to
split GEP. That will make the inner add have a memory use.
To test this, I've manually split the GEPs so there is no 0 offset
store.
This issue was recently discussed in the original review D60294.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D124644
SIGN_EXTEND_INREG expansion can trigger a TypeSize error because
"VT.getSizeInBits() == 1" is used to detect for a boolean without
first verifying VT is a scalar.
We try to match as a disguised rotate by constant of these forms
(shl (X | Y), C1) | (srl X, C2) --> (rotl X, C1) | (shl Y, C1)
(shl X, C1) | (srl (X | Y), C2) --> (rotl X, C1) | (srl Y, C2)
We may have also looked through an AND to find the shift. If we
did, we need to apply a mask to the result.
I'll add an AArch64 test and pre-commit it and the RISC-V test
tomorrow.
Fixes PR55201.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D124711
When looking through extends of gather/scatter indices it's safe
to convert a known positive signed index to unsigned, but unsigned
indices must remain unsigned.
Depends On D123318
Differential Revision: https://reviews.llvm.org/D123326
This is an alternative to D124530. In getUniformBase() only create
scales that match the gather/scatter element size. If targets also
support other scales, then they can produce those scales in target
DAG combines. This is what X86 already does (as long as the
resulting scale would be 1, 2, 4 or 8).
This essentially restores the pre-opaque-pointer state of things.
Fixes https://github.com/llvm/llvm-project/issues/55021.
Differential Revision: https://reviews.llvm.org/D124605
refineUniformBase and selectGatherScatterAddrMode both attempt the
transformation:
base(0) + index(A+splat(B)) => base(B) + index(A)
However, this is only safe when index is not implicitly scaled.
Differential Revision: https://reviews.llvm.org/D123222
PowerPC supports `ppc_fp128`, which is not an IEEE floating point
type. The generic lowering of llvm.is_fpclass could not handle it
properly. This change extends the generic lowering code to
support `ppc_fp128`.
The change was tested on emulator using runtime tests from
https://reviews.llvm.org/D112933 and the patch for clang
https://reviews.llvm.org/D112932.
Differential Revision: https://reviews.llvm.org/D113908
Introduced masks where they are not added and improved target dependent
cost models to avoid returning of the incorrect cost results after
adding masks.
Differential Revision: https://reviews.llvm.org/D100486
The description of SETCC says
/// SetCC operator - This evaluates to a true value iff the condition is
/// true. If the result value type is not i1 then the high bits conform
/// to getBooleanContents.
Without this patch, we sign extended the i1 to the used larger type
regardless of getBooleanContents. This resulted in miscompiles, as
shown in the attached testcase that ended up returning -1 instead of
1 when using -mattr=+v.
Fixes https://github.com/llvm/llvm-project/issues/55168
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D124618
Introduced masks where they are not added and improved target dependent
cost models to avoid returning of the incorrect cost results after
adding masks.
Differential Revision: https://reviews.llvm.org/D100486
Cuurently we always export STATEPOINT results (GC pointers lowered via VRegs)
to virtual registers. When processing gc.relocate instructions we have to
generate CopyFromRegs node and then export it to VReg again if gc.relocate
is used in other basic blocks. This results in generation of extra COPY MIR
instruction if statepoint and its gc.relocate are in the same BB, but gc.relocate
result is used in other blocks.
This patch changes this behavior to export statepoint results only if used
in other basic blocks. For local uses StatepointLoweringState.(get|set)Location()
API is used to communicate appropriate statepoint result from `LowerStatepoint()`
to `visitGCRelocate()`
This is NFC and is purely compile time optimization. On big methids it can improve
codegen compile time up to 10%.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D124444
This change introduces a new intrinsic, `llvm.is.fpclass`, which checks
if the provided floating-point number belongs to any of the the specified
value classes. The intrinsic implements the checks made by C standard
library functions `isnan`, `isinf`, `isfinite`, `isnormal`, `issubnormal`,
`issignaling` and corresponding IEEE-754 operations.
The primary motivation for this intrinsic is the support of strict FP
mode. In this mode using compare instructions or other FP operations is
not possible, because if the value is a signaling NaN, floating-point
exception `Invalid` is raised, but the aforementioned functions must
never raise exceptions.
Currently there are two solutions for this problem, both are
implemented partially. One of them is using integer operations to
implement the check. It was implemented in https://reviews.llvm.org/D95948
for `isnan`. It solves the problem of exceptions, but offers one
solution for all targets, although some can do the check in more
efficient way.
The other, implemented in https://reviews.llvm.org/D96568, introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects a target
specific code into IR to implement `isnan` and some other functions. It is
convenient for targets that have dedicated instruction to determine FP data
class. However using target-specific intrinsic complicates analysis and can
prevent some optimizations.
A special intrinsic for value class checks allows representing data class
tests with enough flexibility. During IR transformations it represents the
check in target-independent way and saves it from undesired transformations.
In the instruction selector it allows efficient lowering depending on the
used target and mode.
This implementation is an extended variant of `llvm.isnan` introduced
in https://reviews.llvm.org/D104854. It is limited to minimal intrinsic
support. Target-specific treatment will be implemented in separate
patches.
Differential Revision: https://reviews.llvm.org/D112025
This is a very specific fold to fix an upstream poor codegen issue.
InstCombine has the much more flexible pushFreezeToPreventPoisonFromPropagating but I don't think we're quite there with DAG/TLI handling for canCreateUndefOrPoison/isGuaranteedNotToBeUndefOrPoison value tracking yet.
Fixes#54911
Differential Revision: https://reviews.llvm.org/D124185
We can process the long shuffles (working across several actual
vector registers) in the best way if we take the actual register
represantion into account. We can build more correct representation of
register shuffles, improve number of recognised buildvector sequences.
Also, same function can be used to improve the cost model for the
shuffles. in future patches.
Part of D100486
Differential Revision: https://reviews.llvm.org/D115653