This patch emits DW_TAG_namelist and DW_TAG_namelist_item for fortran
namelist variables. DICompositeType is extended to support this fortran
feature.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D108553
Some buildbots fail with:
> C:\a\llvm-clang-x86_64-expensive-checks-win\llvm-project\llvm\lib\IR\Verifier.cpp(4352): error C2678: binary '==': no operator found which takes a left-hand operand of type 'const llvm::MDOperand' (or there is no acceptable conversion)
Possibly the explicit MDOperand to Metadata* conversion will help?
integer 0/1 for the operand of bundle "clang.arc.attachedcall"
https://reviews.llvm.org/D102996 changes the operand of bundle
"clang.arc.attachedcall". This patch makes changes to llvm that are
needed to handle the new IR.
This should make it easier to understand what the IR is doing and also
simplify some of the passes as they no longer have to translate the
integer values to the runtime functions.
Differential Revision: https://reviews.llvm.org/D103000
This patch emits DW_TAG_namelist and DW_TAG_namelist_item for fortran
namelist variables. DICompositeType is extended to support this fortran
feature.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D108553
The COFF specific `DataReferencedByCode` complexity (D103372 D103717) is due to
a link.exe limitation: an external symbol in IMAGE_COMDAT_SELECT_ASSOCIATIVE is
not really dropped, so it can cause duplicate definition error.
SwitchInst should have a void result type.
Add a check to the verifier to catch this error.
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D108084
For musttail calls, ABI attributes between the function and the
musttail call must match. The current check discards the type of
type attributes like byval, which means that it will consider
byval(i32) and byval(i64) (or similar) as compatible.
I assume this is a leftover from before these attributes had a
type argument. Ran into this while trying to tighten an assertion
in AttrBuilder.
Differential Revision: https://reviews.llvm.org/D105841
Use the elementtype attribute introduced in D105407 for the
llvm.preserve.array/struct.index intrinsics. It carries the
element type of the GEP these intrinsics effectively encode.
This patch:
* Adds a verifier check that the attribute is required.
* Adds it in the IRBuilder methods for these intrinsics.
* Autoupgrades old bitcode without the attribute.
* Updates the lowering code to use the attribute rather than
the pointer element type.
* Updates lots of tests to specify the attribute.
* Adds -force-opaque-pointers to the intrinsic-array.ll test
to demonstrate they work now.
https://reviews.llvm.org/D106184
As suggested on D105733, this adds a verifier rule that calls to
intrinsics must match the signature of the intrinsic.
Without opaque pointers this is automatically enforced for all
calls, because the pointer types need to match. If the signatures
don't match, a pointer bitcast has to be inserted. For intrinsics
in particular, such bitcasts are not legal, because the address of
intrinsics cannot be taken.
With opaque pointers, there are no more pointer bitcasts, so it's
generally possible for the call and the callee signature to differ.
However, for intrinsics we still want to enforce that the signatures
must match, the same as was done before through the address taken
check.
We can't enforce this more generally for non-intrinsics, because
calls with mismatched signatures at the very least can legally
occur in unreachable code, and might also be valid in some other
cases, depending on how exactly the signatures differ.
Differential Revision: https://reviews.llvm.org/D106013
Intrinsics can only be called directly, taking their address is not
legal. This is currently only enforced for intrinsics that have an
ID, rather than all intrinsics. Adjust the check to cover all
intrinsics.
This came up in D106013.
Differential Revision: https://reviews.llvm.org/D106095
This implements the elementtype attribute specified in D105407. It
just adds the attribute and the specified verifier rules, but
doesn't yet make use of it anywhere.
Differential Revision: https://reviews.llvm.org/D106008
A couple of attributes had explicit checks for incompatibility
with pointer types. However, this is already handled generically
by the typeIncompatible() check. We can drop these after adding
SwiftError to typeIncompatible().
However, the previous implementation of the check prints out all
attributes that are incompatible with a given type, even though
those attributes aren't actually used. This has the annoying
result that the error message changes every time a new attribute
is added to the list. Improve this by explicitly finding which
attribute isn't compatible and printing just that.
Continuing from D105763, this allows placing certain properties
about attributes in the TableGen definition. In particular, we
store whether an attribute applies to fn/param/ret (or a combination
thereof). This information is used by the Verifier, as well as the
ForceFunctionAttrs pass. I also plan to use this in LLParser,
which also duplicates info on which attributes are valid where.
This keeps metadata about attributes in one place, and makes it
more likely that it stays in sync, rather than in various
functions spread across the codebase.
Differential Revision: https://reviews.llvm.org/D105780
This is now the same as isIntAttrKind(), so use that instead, as
it does not require manual maintenance. The naming is also more
accurate in that both int and type attributes have an argument,
but this method was only targeting int attributes.
I initially wanted to tighten the AttrBuilder assertion, but we
have some in-tree uses that would violate it.
the call's return type is void
Instead of trying hard to prevent global optimization passes such as
deadargelim from changing the return type to void, just ignore the
bundle if the return type is void. clang currently emits calls to
@llvm.objc.clang.arc.noop.use, which consumes the function call result,
immediately after the function call to prevent changes to the return
type, but optimization passes can delete the call to
@llvm.objc.clang.arc.noop.use if the function call doesn't return, which
enables deadargelim to change the return type.
rdar://76671438
Differential Revision: https://reviews.llvm.org/D103062
Add support for call of opaque pointer, currently only possible for
indirect calls.
This requires a bit of special casing in LLParser, as calls do not
specify the callee operand type explicitly.
Differential Revision: https://reviews.llvm.org/D104740
With regards to overrunning, the langref (llvm/docs/LangRef.rst)
specifies:
(llvm.experimental.vector.insert)
Elements ``idx`` through (``idx`` + num_elements(``subvec``) - 1)
must be valid ``vec`` indices. If this condition cannot be determined
statically but is false at runtime, then the result vector is
undefined.
(llvm.experimental.vector.extract)
Elements ``idx`` through (``idx`` + num_elements(result_type) - 1)
must be valid vector indices. If this condition cannot be determined
statically but is false at runtime, then the result vector is
undefined.
For the non-mixed cases (e.g. inserting/extracting a scalable into/from
another scalable, or inserting/extracting a fixed into/from another
fixed), it is possible to statically check whether or not the above
conditions are met. This was previously missing from the verifier, and
if the conditions were found to be false, the result of the
insertion/extraction would be replaced with an undef.
With regards to invalid indices, the langref (llvm/docs/LangRef.rst)
specifies:
(llvm.experimental.vector.insert)
``idx`` represents the starting element number at which ``subvec``
will be inserted. ``idx`` must be a constant multiple of
``subvec``'s known minimum vector length.
(llvm.experimental.vector.extract)
The ``idx`` specifies the starting element number within ``vec``
from which a subvector is extracted. ``idx`` must be a constant
multiple of the known-minimum vector length of the result type.
Similarly, these conditions were not previously enforced in the
verifier. In some circumstances, invalid indices were permitted
silently, and in other circumstances, an undef was spawned where a
verifier error would have been preferred.
This commit adds verifier checks to enforce the constraints above.
Differential Revision: https://reviews.llvm.org/D104468
Verifying opaque pointer as function parameter when using with `byval`, `byref`,
`inalloca`, `preallocated`.
Differential Revision: https://reviews.llvm.org/D104309
I don't like landing this change, but it's an acknowledgement of a practical reality. Despite not having well specified semantics for inttoptr and ptrtoint involving non-integral pointer types, they are used in practice. Here's a quick summary of the current pragmatic reality:
* I happen to know that the main external user of non-integral pointers has effectively disabled the verifier rules.
* RS4GC (the lowering pass for abstract GC machine model which is the key motivation for non-integral pointers), even supports them. We just have all the tests using an integral pointer space to let the verifier run.
* Certain idioms (such as alignment checks for alignment N, where any relocation is guaranteed to be N byte aligned) are fine in practice.
* As implemented, inttoptr/ptrtoint are CSEd and are not control dependent. This means that any code which is intending to check a particular bit pattern at site of use must be wrapped in an intrinsic or external function call.
This change allows them in the Verifier, and updates the LangRef to specific them as implementation dependent. This allows us to acknowledge current reality while still leaving ourselves room to punt on figuring out "good" semantics until the future.
SwiftTailCC has a different set of requirements than the C calling convention
for a tail call. The exact argument sequence doesn't have to match, but fewer
ABI-affecting attributes are allowed.
Also make sure the musttail diagnostic triggers if a musttail call isn't
actually a tail call.
There can be a need for some optimizations to get (base, offset)
for any GC pointer. The base can be calculated by generating
needed instructions as it is done by the
RewriteStatepointsForGC::findBasePointer() function. The offset
can be calculated in the same way. Though to not expose the base
calculation and to make the offset calculation as simple as
ptrtoint(derived_ptr) - ptrtoint(base_ptr), which is illegal
outside RS4GC, this patch introduces 2 intrinsics:
@llvm.experimental.gc.get.pointer.base(%derived_ptr)
@llvm.experimental.gc.get.pointer.offset(%derived_ptr)
These intrinsics are inlined by RS4GC along with generation of
statepoint sequences.
With these new intrinsics the GC parseable lowering for atomic
memcpy intrinsics (6ec2c5e402)
could be implemented as a separate pass.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D100445
We really ought to support no_sanitize("coverage") in line with other
sanitizers. This came up again in discussions on the Linux-kernel
mailing lists, because we currently do workarounds using objtool to
remove coverage instrumentation. Since that support is only on x86, to
continue support coverage instrumentation on other architectures, we
must support selectively disabling coverage instrumentation via function
attributes.
Unfortunately, for SanitizeCoverage, it has not been implemented as a
sanitizer via fsanitize= and associated options in Sanitizers.def, but
rolls its own option fsanitize-coverage. This meant that we never got
"automatic" no_sanitize attribute support.
Implement no_sanitize attribute support by special-casing the string
"coverage" in the NoSanitizeAttr implementation. To keep the feature as
unintrusive to existing IR generation as possible, define a new negative
function attribute NoSanitizeCoverage to propagate the information
through to the instrumentation pass.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49035
Reviewed By: vitalybuka, morehouse
Differential Revision: https://reviews.llvm.org/D102772
These checks already exist as asserts when creating the corresponding
instruction. Anybody creating these instructions already need to take
care to not break these checks.
Move the checks for success/failure ordering in cmpxchg from the
verifier to the LLParser and BitcodeReader plus an assert.
Add some tests for cmpxchg ordering. The .bc files are created from the
.ll files with an llvm-as with these checks disabled.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102803
In the WebAssembly target, we would like to allow alloca in two address
spaces. The alloca instruction already has an address space argument,
but the verifier asserts that the address space of an alloca is the
default alloca address space from the datalayout. This patch removes
this restriction. Targets that would like to impose additional
restrictions should do so via target-specific verification passes.
Differential Revision: https://reviews.llvm.org/D101045
FullTy is only necessary when we need to figure out what type an
instruction works with given a pointer's pointee type. However, we just
end up using the value operand's type, so FullTy isn't necessary.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102788
Don't check that types match when the pointer operand is an opaque
pointer.
I would separate the Assembler and Verifier changes, but
verify-uselistorder in the Assembler test ends up running the verifier.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102450
This patch is the Part-1 (FE Clang) implementation of HW Exception handling.
This new feature adds the support of Hardware Exception for Microsoft Windows
SEH (Structured Exception Handling).
This is the first step of this project; only X86_64 target is enabled in this patch.
Compiler options:
For clang-cl.exe, the option is -EHa, the same as MSVC.
For clang.exe, the extra option is -fasync-exceptions,
plus -triple x86_64-windows -fexceptions and -fcxx-exceptions as usual.
NOTE:: Without the -EHa or -fasync-exceptions, this patch is a NO-DIFF change.
The rules for C code:
For C-code, one way (MSVC approach) to achieve SEH -EHa semantic is to follow
three rules:
* First, no exception can move in or out of _try region., i.e., no "potential
faulty instruction can be moved across _try boundary.
* Second, the order of exceptions for instructions 'directly' under a _try
must be preserved (not applied to those in callees).
* Finally, global states (local/global/heap variables) that can be read
outside of _try region must be updated in memory (not just in register)
before the subsequent exception occurs.
The impact to C++ code:
Although SEH is a feature for C code, -EHa does have a profound effect on C++
side. When a C++ function (in the same compilation unit with option -EHa ) is
called by a SEH C function, a hardware exception occurs in C++ code can also
be handled properly by an upstream SEH _try-handler or a C++ catch(...).
As such, when that happens in the middle of an object's life scope, the dtor
must be invoked the same way as C++ Synchronous Exception during unwinding
process.
Design:
A natural way to achieve the rules above in LLVM today is to allow an EH edge
added on memory/computation instruction (previous iload/istore idea) so that
exception path is modeled in Flow graph preciously. However, tracking every
single memory instruction and potential faulty instruction can create many
Invokes, complicate flow graph and possibly result in negative performance
impact for downstream optimization and code generation. Making all
optimizations be aware of the new semantic is also substantial.
This design does not intend to model exception path at instruction level.
Instead, the proposed design tracks and reports EH state at BLOCK-level to
reduce the complexity of flow graph and minimize the performance-impact on CPP
code under -EHa option.
One key element of this design is the ability to compute State number at
block-level. Our algorithm is based on the following rationales:
A _try scope is always a SEME (Single Entry Multiple Exits) region as jumping
into a _try is not allowed. The single entry must start with a seh_try_begin()
invoke with a correct State number that is the initial state of the SEME.
Through control-flow, state number is propagated into all blocks. Side exits
marked by seh_try_end() will unwind to parent state based on existing
SEHUnwindMap[].
Note side exits can ONLY jump into parent scopes (lower state number).
Thus, when a block succeeds various states from its predecessors, the lowest
State triumphs others. If some exits flow to unreachable, propagation on those
paths terminate, not affecting remaining blocks.
For CPP code, object lifetime region is usually a SEME as SEH _try.
However there is one rare exception: jumping into a lifetime that has Dtor but
has no Ctor is warned, but allowed:
Warning: jump bypasses variable with a non-trivial destructor
In that case, the region is actually a MEME (multiple entry multiple exits).
Our solution is to inject a eha_scope_begin() invoke in the side entry block to
ensure a correct State.
Implementation:
Part-1: Clang implementation described below.
Two intrinsic are created to track CPP object scopes; eha_scope_begin() and eha_scope_end().
_scope_begin() is immediately added after ctor() is called and EHStack is pushed.
So it must be an invoke, not a call. With that it's also guaranteed an
EH-cleanup-pad is created regardless whether there exists a call in this scope.
_scope_end is added before dtor(). These two intrinsics make the computation of
Block-State possible in downstream code gen pass, even in the presence of
ctor/dtor inlining.
Two intrinsic, seh_try_begin() and seh_try_end(), are added for C-code to mark
_try boundary and to prevent from exceptions being moved across _try boundary.
All memory instructions inside a _try are considered as 'volatile' to assure
2nd and 3rd rules for C-code above. This is a little sub-optimized. But it's
acceptable as the amount of code directly under _try is very small.
Part-2 (will be in Part-2 patch): LLVM implementation described below.
For both C++ & C-code, the state of each block is computed at the same place in
BE (WinEHPreparing pass) where all other EH tables/maps are calculated.
In addition to _scope_begin & _scope_end, the computation of block state also
rely on the existing State tracking code (UnwindMap and InvokeStateMap).
For both C++ & C-code, the state of each block with potential trap instruction
is marked and reported in DAG Instruction Selection pass, the same place where
the state for -EHsc (synchronous exceptions) is done.
If the first instruction in a reported block scope can trap, a Nop is injected
before this instruction. This nop is needed to accommodate LLVM Windows EH
implementation, in which the address in IPToState table is offset by +1.
(note the purpose of that is to ensure the return address of a call is in the
same scope as the call address.
The handler for catch(...) for -EHa must handle HW exception. So it is
'adjective' flag is reset (it cannot be IsStdDotDot (0x40) that only catches
C++ exceptions).
Suppress push/popTerminate() scope (from noexcept/noTHrow) so that HW
exceptions can be passed through.
Original llvm-dev [RFC] discussions can be found in these two threads below:
https://lists.llvm.org/pipermail/llvm-dev/2020-March/140541.htmlhttps://lists.llvm.org/pipermail/llvm-dev/2020-April/141338.html
Differential Revision: https://reviews.llvm.org/D80344/new/
This extends any frame record created in the function to include that
parameter, passed in X22.
The new record looks like [X22, FP, LR] in memory, and FP is stored with 0b0001
in bits 63:60 (CodeGen assumes they are 0b0000 in normal operation). The effect
of this is that tools walking the stack should expect to see one of three
values there:
* 0b0000 => a normal, non-extended record with just [FP, LR]
* 0b0001 => the extended record [X22, FP, LR]
* 0b1111 => kernel space, and a non-extended record.
All other values are currently reserved.
If compiling for arm64e this context pointer is address-discriminated with the
discriminator 0xc31a and the DB (process-specific) key.
There is also an "i8** @llvm.swift.async.context.addr()" intrinsic providing
front-ends access to this slot (and forcing its creation initialized to nullptr
if necessary).
I've taken the following steps to add unwinding support from inline assembly:
1) Add a new `unwind` "attribute" (like `sideeffect`) to the asm syntax:
```
invoke void asm sideeffect unwind "call thrower", "~{dirflag},~{fpsr},~{flags}"()
to label %exit unwind label %uexit
```
2.) Add Bitcode writing/reading support + LLVM-IR parsing.
3.) Emit EHLabels around inline assembly lowering (SelectionDAGBuilder + GlobalISel) when `InlineAsm::canThrow` is enabled.
4.) Tweak InstCombineCalls/InlineFunction pass to not mark inline assembly "calls" as nounwind.
5.) Add clang support by introducing a new clobber: "unwind", which lower to the `canThrow` being enabled.
6.) Don't allow unwinding callbr.
Reviewed By: Amanieu
Differential Revision: https://reviews.llvm.org/D95745
Follow up on 431e3138a and complete the other possible combinations.
Besides enforcing the new behavior, it also mitigates TSAN false positives when
combining orders that used to be stronger.
verifyFunctionAttrs has a comment that the value V is printed in error messages. The recently added errors for attributes didn't print V. Make them print V.
Change the stringification of AttributeList. Firstly they started with 'PAL[' which stood for ParamAttrsList. Change that to 'AttributeList[' matching its current name AttributeList. Print out semantic meaning of the index instead of the raw index value (i.e. 'return', 'function' or 'arg(n)').
Differential revision: https://reviews.llvm.org/D101484
This patch is related to https://reviews.llvm.org/D100032 which define
some illegal types or operations for x86_amx. There are no arguments,
arrays, pointers, vectors or constants of x86_amx.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D100472
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
Attributes don't know their parent Context, adding this would make Attribute larger. Instead, we add hasParentContext that answers whether this Attribute belongs to a particular LLVMContext by checking for itself inside the context's FoldingSet. Same with AttributeSet and AttributeList. The Verifier checks them with the Module context.
Differential Revision: https://reviews.llvm.org/D99362
When we pass a AArch64 Homogeneous Floating-Point
Aggregate (HFA) argument with increased alignment
requirements, for example
struct S {
__attribute__ ((__aligned__(16))) double v[4];
};
Clang uses `[4 x double]` for the parameter, which is passed
on the stack at alignment 8, whereas it should be at
alignment 16, following Rule C.4 in
AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules)
Currently we don't have a way to express in LLVM IR the
alignment requirements of the function arguments. The align
attribute is applicable to pointers only, and only for some
special ways of passing arguments (e..g byval). When
implementing AAPCS32/AAPCS64, clang resorts to dubious hacks
of coercing to types, which naturally have the needed
alignment. We don't have enough types to cover all the
cases, though.
This patch introduces a new use of the stackalign attribute
to control stack slot alignment, when and if an argument is
passed in memory.
The attribute align is left as an optimizer hint - it still
applies to pointer types only and pertains to the content of
the pointer, whereas the alignment of the pointer itself is
determined by the stackalign attribute.
For byval arguments, the stackalign attribute assumes the
role, previously perfomed by align, falling back to align if
stackalign` is absent.
On the clang side, when passing arguments using the "direct"
style (cf. `ABIArgInfo::Kind`), now we can optionally
specify an alignment, which is emitted as the new
`stackalign` attribute.
Patch by Momchil Velikov and Lucas Prates.
Differential Revision: https://reviews.llvm.org/D98794
This is needed for Fortran assumed shape arrays whose dimensions are
defined as,
- 'count' is taken from array descriptor passed as parameter by
caller, access from descriptor is defined by type DIExpression.
- 'lowerBound' is defined by callee.
The current alternate way represents using upperBound in place of
count, where upperBound is calculated in callee in a temp variable
using lowerBound and count
Representation with count (DIExpression) is not only clearer as
compared to upperBound (DIVariable) but it has another advantage that
variable count is accessed by being parameter has better chance of
survival at higher optimization level than upperBound being local
variable.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D99335
This commit adds debugging support for set types defined in languages
such as Pascal and Modula-2.
Patch by Peter McKinna!
Differential Revision: https://reviews.llvm.org/D76115
I think byval/sret and the others are close to being able to rip out
the code to support the missing type case. A lot of this code is
shared with inalloca, so catch this up to the others so that can
happen.
This patch adds a new llvm.experimental.stepvector intrinsic,
which takes no arguments and returns a linear integer sequence of
values of the form <0, 1, ...>. It is primarily intended for
scalable vectors, although it will work for fixed width vectors
too. It is intended that later patches will make use of this
new intrinsic when vectorising induction variables, currently only
supported for fixed width. I've added a new CreateStepVector
method to the IRBuilder, which will generate a call to this
intrinsic for scalable vectors and fall back on creating a
ConstantVector for fixed width.
For scalable vectors this intrinsic is lowered to a new ISD node
called STEP_VECTOR, which takes a single constant integer argument
as the step. During lowering this argument is set to a value of 1.
The reason for this additional argument at the codegen level is
because in future patches we will introduce various generic DAG
combines such as
mul step_vector(1), 2 -> step_vector(2)
add step_vector(1), step_vector(1) -> step_vector(2)
shl step_vector(1), 1 -> step_vector(2)
etc.
that encourage a canonical format for all targets. This hopefully
means all other targets supporting scalable vectors can benefit
from this too.
I've added cost model tests for both fixed width and scalable
vectors:
llvm/test/Analysis/CostModel/AArch64/neon-stepvector.ll
llvm/test/Analysis/CostModel/AArch64/sve-stepvector.ll
as well as codegen lowering tests for fixed width and scalable
vectors:
llvm/test/CodeGen/AArch64/neon-stepvector.ll
llvm/test/CodeGen/AArch64/sve-stepvector.ll
See this thread for discussion of the intrinsic:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/147943.html
This attribute represents the minimum and maximum values vscale can
take. For now this attribute is not hooked up to anything during
codegen, this will be added in the future when such codegen is
considered stable.
Additionally hook up the -msve-vector-bits=<x> clang option to emit this
attribute.
Differential Revision: https://reviews.llvm.org/D98030
This patch adds support for intrinsic overloading on unnamed types.
This fixes PR38117 and PR48340 and will also be needed for the Full Restrict Patches (D68484).
The main problem is that the intrinsic overloading name mangling is using 's_s' for unnamed types.
This can result in identical intrinsic mangled names for different function prototypes.
This patch changes this by adding a '.XXXXX' to the intrinsic mangled name when at least one of the types is based on an unnamed type, ensuring that we get a unique name.
Implementation details:
- The mapping is created on demand and kept in Module.
- It also checks for existing clashes and recycles potentially existing prototypes and declarations.
- Because of extra data in Module, Intrinsic::getName needs an extra Module* argument and, for speed, an optional FunctionType* argument.
- I still kept the original two-argument 'Intrinsic::getName' around which keeps the original behavior (providing the base name).
-- Main reason is that I did not want to change the LLVMIntrinsicGetName version, as I don't know how acceptable such a change is
-- The current situation already has a limitation. So that should not get worse with this patch.
- Intrinsic::getDeclaration and the verifier are now using the new version.
Other notes:
- As far as I see, this should not suffer from stability issues. The count is only added for prototypes depending on at least one anonymous struct
- The initial count starts from 0 for each intrinsic mangled name.
- In case of name clashes, existing prototypes are remembered and reused when that makes sense.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D91250
This patch updates DbgVariableIntrinsics to support use of a DIArgList for the
location operand, resulting in a significant change to its interface. This patch
does not update all IR passes to support multiple location operands in a
dbg.value; the only change is to update the DbgVariableIntrinsic interface and
its uses. All code outside of the intrinsic classes assumes that an intrinsic
will always have exactly one location operand; they will still support
DIArgLists, but only if they contain exactly one Value.
Among other changes, the setOperand and setArgOperand functions in
DbgVariableIntrinsic have been made private. This is to prevent code from
setting the operands of these intrinsics directly, which could easily result in
incorrect/invalid operands being set. This does not prevent these functions from
being called on a debug intrinsic at all, as they can still be called on any
CallInst pointer; it is assumed that any code directly setting the operands on a
generic call instruction is doing so safely. The intention for making these
functions private is to prevent DIArgLists from being overwritten by code that's
naively trying to replace one of the Values it points to, and also to fail fast
if a DbgVariableIntrinsic is updated to use a DIArgList without a valid
corresponding DIExpression.
This patch adds a new metadata node, DIArgList, which contains a list of SSA
values. This node is in many ways similar in function to the existing
ValueAsMetadata node, with the difference being that it tracks a list instead of
a single value. Internally, it uses ValueAsMetadata to track the individual
values, but there is also a reasonable amount of DIArgList-specific
value-tracking logic on top of that. Similar to ValueAsMetadata, it is a special
case in parsing and printing due to the fact that it requires a function state
(as it may reference function-local values).
This patch should not result in any immediate functional change; it allows for
DIArgLists to be parsed and printed, but debug variable intrinsics do not yet
recognize them as a valid argument (outside of parsing).
Differential Revision: https://reviews.llvm.org/D88175
explicitly emitting retainRV or claimRV calls in the IR
This reapplies ed4718eccb, which was reverted
because it was causing a miscompile. The bug that was causing the miscompile
has been fixed in 75805dce5f.
Original commit message:
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
This caused miscompiles of Chromium tests for iOS due clobbering of live
registers. See discussion on the code review for details.
> Background:
>
> This fixes a longstanding problem where llvm breaks ARC's autorelease
> optimization (see the link below) by separating calls from the marker
> instructions or retainRV/claimRV calls. The backend changes are in
> https://reviews.llvm.org/D92569.
>
> https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
>
> What this patch does to fix the problem:
>
> - The front-end adds operand bundle "clang.arc.attachedcall" to calls,
> which indicates the call is implicitly followed by a marker
> instruction and an implicit retainRV/claimRV call that consumes the
> call result. In addition, it emits a call to
> @llvm.objc.clang.arc.noop.use, which consumes the call result, to
> prevent the middle-end passes from changing the return type of the
> called function. This is currently done only when the target is arm64
> and the optimization level is higher than -O0.
>
> - ARC optimizer temporarily emits retainRV/claimRV calls after the calls
> with the operand bundle in the IR and removes the inserted calls after
> processing the function.
>
> - ARC contract pass emits retainRV/claimRV calls after the call with the
> operand bundle. It doesn't remove the operand bundle on the call since
> the backend needs it to emit the marker instruction. The retainRV and
> claimRV calls are emitted late in the pipeline to prevent optimization
> passes from transforming the IR in a way that makes it harder for the
> ARC middle-end passes to figure out the def-use relationship between
> the call and the retainRV/claimRV calls (which is the cause of
> PR31925).
>
> - The function inliner removes an autoreleaseRV call in the callee if
> nothing in the callee prevents it from being paired up with the
> retainRV/claimRV call in the caller. It then inserts a release call if
> claimRV is attached to the call since autoreleaseRV+claimRV is
> equivalent to a release. If it cannot find an autoreleaseRV call, it
> tries to transfer the operand bundle to a function call in the callee.
> This is important since the ARC optimizer can remove the autoreleaseRV
> returning the callee result, which makes it impossible to pair it up
> with the retainRV/claimRV call in the caller. If that fails, it simply
> emits a retain call in the IR if retainRV is attached to the call and
> does nothing if claimRV is attached to it.
>
> - SCCP refrains from replacing the return value of a call with a
> constant value if the call has the operand bundle. This ensures the
> call always has at least one user (the call to
> @llvm.objc.clang.arc.noop.use).
>
> - This patch also fixes a bug in replaceUsesOfNonProtoConstant where
> multiple operand bundles of the same kind were being added to a call.
>
> Future work:
>
> - Use the operand bundle on x86-64.
>
> - Fix the auto upgrader to convert call+retainRV/claimRV pairs into
> calls with the operand bundles.
>
> rdar://71443534
>
> Differential Revision: https://reviews.llvm.org/D92808
This reverts commit ed4718eccb.
The arguments in all cases should be vectors of exactly one of integer or FP.
All of the tests currently pass the verifier because we check for any vector
type regardless of the type of reduction.
This obviously can't work if we mix up integer and FP, and based on current
LangRef text it was not intended to work for pointers either.
The pointer case from https://llvm.org/PR49215 is what led me here. That
example was avoided with 5b250a27ec.
Differential Revision: https://reviews.llvm.org/D96904
explicitly emitting retainRV or claimRV calls in the IR
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
`clang/lib/CodeGen/CGOpenMPRuntime.cpp` synthesized union
(`distinct !DICompositeType(tag: DW_TAG_union_type, name: "kmp_cmplrdata_t", size: 64, elements: <0x62b690>)`)
does not have meaningful filename/line number.
D94735 dropped the previously arbitrary and untested filename/line from the union and caused a verifier error here.
This fixes `check-libarcher` failures.
Differential Revision: https://reviews.llvm.org/D96212
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
Checking the llvm.experimental.noalias.scope.decl dominance can be worstcase O(N^2).
Limit the dominance check to N=32.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D95335
RISC-V would like to use a struct of scalable vectors to return multiple
values from intrinsics. This woud also be needed for target independent
intrinsics like llvm.sadd.overflow.
This patch removes the existing restriction for this. I've modified
StructType::isSized to consider a struct containing scalable vectors
as unsized so the verifier won't allow loads/stores/allocas of these
structs.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D94142
The ``llvm.experimental.noalias.scope.decl`` intrinsic identifies where a noalias
scope is declared. When the intrinsic is duplicated, a decision must
also be made about the scope: depending on the reason of the duplication,
the scope might need to be duplicated as well.
Reviewed By: nikic, jdoerfert
Differential Revision: https://reviews.llvm.org/D93039
`wasm_rethrow_in_catch` intrinsic and builtin are used in order to
rethrow an exception when the exception is caught but there is no
matching clause within the current `catch`. For example,
```
try {
foo();
} catch (int n) {
...
}
```
If the caught exception does not correspond to C++ `int` type, it should
be rethrown. These intrinsic/builtin were renamed `rethrow_in_catch`
because at the time I thought there would be another intrinsic for C++'s
`throw` keyword, which rethrows an exception. It turned out that `throw`
keyword doesn't require wasm's `rethrow` instruction, so we rename
`rethrow_in_catch` to just `rethrow` here.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94038
Clang FE currently has hot/cold function attribute. But we only have
cold function attribute in LLVM IR.
This patch adds support of hot function attribute to LLVM IR. This
attribute will be used in setting function section prefix/suffix.
Currently .hot and .unlikely suffix only are added in PGO (Sample PGO)
compilation (through isFunctionHotInCallGraph and
isFunctionColdInCallGraph).
This patch changes the behavior. The new behavior is:
(1) If the user annotates a function as hot or isFunctionHotInCallGraph
is true, this function will be marked as hot. Otherwise,
(2) If the user annotates a function as cold or
isFunctionColdInCallGraph is true, this function will be marked as
cold.
The changes are:
(1) user annotated function attribute will used in setting function
section prefix/suffix.
(2) hot attribute overwrites profile count based hotness.
(3) profile count based hotness overwrite user annotated cold attribute.
The intention for these changes is to provide the user a way to mark
certain function as hot in cases where training input is hard to cover
all the hot functions.
Differential Revision: https://reviews.llvm.org/D92493
Currently the backend special cases x86_intrcc and treats the first
parameter as byval. Make the IR require byval for this parameter to
remove this special case, and avoid the dependence on the pointee
element type.
Fixes bug 46672.
I'm not sure the IR is enforcing all the calling convention
constraints. clang seems to ignore the attribute for empty parameter
lists, but the IR tolerates it.
This commit adds two new intrinsics.
- llvm.experimental.vector.insert: used to insert a vector into another
vector starting at a given index.
- llvm.experimental.vector.extract: used to extract a subvector from a
larger vector starting from a given index.
The codegen work for these intrinsics has already been completed; this
commit is simply exposing the existing ISD nodes to LLVM IR.
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D91362
This was suggested in D92247 - I initially committed an alternate
fix ( bfd2c216ea ) to avoid the crash/assert shown in
https://llvm.org/PR48296 ,
but that was reverted because it caused msan failures on other
tests. We can try to revive that patch using the test included
here, but I do not have an immediate plan to isolate that problem.
For example, during RAUW in IRMover, the `Function` ValueAsMetadata in "CG Profile" could become bitcast.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D88433
This patch adds a new !annotation metadata kind which can be used to
attach annotation strings to instructions.
It also adds a new pass that emits summary remarks per function with the
counts for each annotation kind.
The intended uses cases for this new metadata is annotating
'interesting' instructions and the remarks should provide additional
insight into transformations applied to a program.
To motivate this, consider these specific questions we would like to get answered:
* How many stores added for automatic variable initialization remain after optimizations? Where are they?
* How many runtime checks inserted by a frontend could be eliminated? Where are the ones that did not get eliminated?
Discussed on llvm-dev as part of 'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)
Reviewed By: thegameg, jdoerfert
Differential Revision: https://reviews.llvm.org/D91188
This is needed to support fortran assumed rank arrays which
have runtime rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF TAG
DW_TAG_generic_subrange is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89218
It's currently ambiguous in IR whether the source language explicitly
did not want a stack a stack protector (in C, via function attribute
no_stack_protector) or doesn't care for any given function.
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an __attribute__((__no_stack_protector__)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
Typically, when inlining a callee into a caller, the caller will be
upgraded in its level of stack protection (see adjustCallerSSPLevel()).
By adding an explicit attribute in the IR when the function attribute is
used in the source language, we can now identify such cases and prevent
inlining. Block inlining when the callee and caller differ in the case that one
contains `nossp` when the other has `ssp`, `sspstrong`, or `sspreq`.
Fixes pr/47479.
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D87956
This adds the LLVM IR attribute `mustprogress` as defined in LangRef through D86233. This attribute will be applied to functions with in languages like C++ where forward progress is guaranteed. Functions without this attribute are not required to make progress.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D85393
This patch adds support for DWARF attribute DW_AT_rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF attribute
DW_AT_rank is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89141