As discussed in issue #37809, this transform is not safe
if the input is an undefined value.
This is similar to recent changes for urem and sdiv:
d428f09b2c99ef341ce9
There is no difference in codegen on the basic examples,
but this could lead to regressions. We may need to
improve freeze analysis or lowering if that happens.
Presumably, in real cases that are similar to the tests
where a subsequent transform removes the rem, we
will also be able to remove the freeze by seeing that
the parameter has 'noundef'.
As discussed in issue #37809, this transform is not safe
if the input is an undefined value.
This is similar to a recent change for urem:
d428f09b2c
There is no difference in codegen on the basic examples,
but this could lead to regressions. We may need to
improve freeze analysis or lowering if that happens.
Presumably, in real cases that are similar to the tests
where a subsequent transform removes the select, we
will also be able to remove the freeze by seeing that
the parameter has 'noundef'.
As discussed in issue #37809, this transform is not safe
if the input is an undefined value.
There is no difference in codegen on the basic examples,
but this could lead to regressions. We may need to
improve freeze analysis or lowering if that happens.
libcalls." (was 0f8c626). This reverts commit 14d9390.
The patch previously failed to recognize cases where user had defined a
function alias with an identical name as that of the library
function. Module::getFunction() would then return nullptr which is what the
sanitizer discovered.
In this updated version a new function isLibFuncEmittable() has as well been
introduced which is now used instead of TLI->has() anytime a library function
is to be emitted . It additionally also makes sure there is e.g. no function
alias with the same name in the module.
Reviewed By: Eli Friedman
Differential Revision: https://reviews.llvm.org/D123198
By adding a parameter to function FoldOpIntoSelect, we can fold more Ops to Select.
For this example, we tend to fold the division instruction,
so we no longer care whether SelectInst is one use.
This patch slove TODO left in InstCombine/div.ll.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D122967
Rather than queuing up actions, have one function that does the
log2() fold in the obvious way, but with a flag that allows us
to check whether the fold will succeed without actually performing
it.
What we're really doing here is converting Op0 udiv Op1 into
Op0 lshr log2(Op1), so phrase it in that way. Actually pushing
the lshr into the log2(Op1) expression should be seen as a separate
transform.
This is an alternate version of D115914 that handles/tests all binary opcodes.
I suspect that we don't see these patterns too often because -simplifycfg
would convert the minimal cases into selects rather than leave them in phi form
(note: instcombine has logic holes for combining the select patterns too though,
so that's another potential patch).
We only create a new binop in a predecessor that unconditionally branches to
the final block.
https://alive2.llvm.org/ce/z/C57M2Fhttps://alive2.llvm.org/ce/z/WHwAoU (not safe to speculate an sdiv for example)
https://alive2.llvm.org/ce/z/rdVUvW (but it is ok on this path)
Differential Revision: https://reviews.llvm.org/D117110
We already have the related folds for zext-of-bool, so it
should make things more consistent to have this transform
to select for sext-of-bool too:
https://alive2.llvm.org/ce/z/YikdfAFixes#53319
We avoid this fold in the more general cases where we use FoldOpIntoSelect.
That's because -- unlike most binary opcodes -- 'div' can't usually be
speculated with a variable divisor since it can have immediate UB. But in
the case where both arms of the select are constants, we can safely evaluate
both sides and eliminate 'div' completely.
This is a follow-up to the equivalent fold for 'rem' opcodes:
D115173 / f65be726ab
We avoid this fold in the more general cases where we use `FoldOpIntoSelect`.
That's because -- unlike most binary opcodes -- 'rem' can't usually be
speculated with a variable divisor since it can have immediate UB. But in
the case where both arms of the select are constants, we can safely evaluate
both sides and eliminate 'rem' completely.
This should fix:
https://llvm.org/PR52102
The same optimization for 'div' is planned as a follow-up patch.
Differential Revision: https://reviews.llvm.org/D115173
This may not be obvious, but Alive2 agrees:
https://alive2.llvm.org/ce/z/Ld9qNT
If the mul has "nsw", then -1 * INT_MIN is poison, so the
negate can also have "nsw" because 0 - INT_MIN is poison.
If the mul has "nuw", then that means the "OtherOp" can only
be 0 or 1 (anything else multiplied by 0xfff... would wrap).
So the replacement negate must be "nsw" because it is either
"0-0" or "0-1".
This is another regression noticed with a planned follow-up
to D111410.
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.
Differential Revision: https://reviews.llvm.org/D110807
InstCombine's worklist can be re-used by other passes like
VectorCombine. Move it to llvm/Transform/Utils and rename it to
InstructionWorklist.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D110181
We already have pow(x, y) * pow(x, z) -> pow(x, y + z) transformation, but we are missing same transformation for powi (power is integer).
Requires reassoc.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D109954
InstCombine didn't perform (sext bool X) * (sext bool X) --> zext (and X, X) which can result in just (zext X). The patch adds regression tests to check this transformation and adds a check for equality of mul's operands for that case.
Differential Revision: https://reviews.llvm.org/D104193
InstCombine didn't perform (sext bool X) * (sext bool X) --> zext (and X, X) which can result in just (zext X). The patch adds regression tests to check this transformation and adds a check for equality of mul's operands for that case.
Differential Revision: https://reviews.llvm.org/D104193
This can be seen as a follow up to commit 0ee439b705,
that changed the second argument of __powidf2, __powisf2 and
__powitf2 in compiler-rt from si_int to int. That was to align with
how those runtimes are defined in libgcc.
One thing that seem to have been missing in that patch was to make
sure that the rest of LLVM also handle that the argument now depends
on the size of int (not using the si_int machine mode for 32-bit).
When using __builtin_powi for a target with 16-bit int clang crashed.
And when emitting libcalls to those rtlib functions, typically when
lowering @llvm.powi), the backend would always prepare the exponent
argument as an i32 which caused miscompiles when the rtlib was
compiled with 16-bit int.
The solution used here is to use an overloaded type for the second
argument in @llvm.powi. This way clang can use the "correct" type
when lowering __builtin_powi, and then later when emitting the libcall
it is assumed that the type used in @llvm.powi matches the rtlib
function.
One thing that needed some extra attention was that when vectorizing
calls several passes did not support that several arguments could
be overloaded in the intrinsics. This patch allows overload of a
scalar operand by adding hasVectorInstrinsicOverloadedScalarOpd, with
an entry for powi.
Differential Revision: https://reviews.llvm.org/D99439
InstCombine didn't perform the transformations when fmul's operands were
the same instruction because it required to have one use for each of them
which is false in the case. This patch fixes this + adds tests for them
and introduces a new function isOnlyUserOfAnyOperand to check these cases
in a single place.
This patch is a result of discussion in D102574.
Differential Revision: https://reviews.llvm.org/D102698
This extends b40fde062c for the especially non-standard
powi pattern. We want to avoid being completely wrong
on the negation-of-int-min corner case, so I'm adding
an extra FMF check for 'ninf' assuming that gives us
the flexibility to handle that possibility.
https://llvm.org/PR49147
Follow-up to:
D96648 / b40fde062
...for the special-case base calls.
From the earlier commit:
This is unusual in the general (non-reciprocal) case because we need
an extra instruction, but that should be better for general FP
reassociation and codegen. We conservatively check for "arcp" FMF
here as we do with existing fdiv folds, but it is not strictly
necessary to have that.
This is unusual in the general (non-reciprocal) case because we need
an extra instruction, but that should be better for general FP
reassociation and codegen. We conservatively check for "arcp" FMF
here as we do with existing fdiv folds, but it is not strictly
necessary to have that.
This is part of solving:
https://llvm.org/PR49147
(The powi variant potentially has a different constraint.)
Differential Revision: https://reviews.llvm.org/D96648
This exposes the helper for other power-of-2 instcombine folds that I'm intending to add vector support to.
The helper only operated on power-of-2 constants so getExactLogBase2 is a more accurate name.
These transforms will now be performed irrespective of the number of uses for the expression "1.0/sqrt(X)":
1.0/sqrt(X) * X => X/sqrt(X)
X * 1.0/sqrt(X) => X/sqrt(X)
We already handle more general cases, and we are intentionally not creating extra (and likely expensive)
fdiv ops in IR. This pattern is the exception to the rule because we always expect the Backend to reduce
X/sqrt(X) to sqrt(X), if it has the necessary (reassoc) fast-math-flags.
Ref: DagCombiner optimizes the X/sqrt(X) to sqrt(X).
Differential Revision: https://reviews.llvm.org/D86726
These are not correctness issues.
In visitUDivOperand(), if the (potential) divisor is undef, then udiv is
already UB, so it is not incorrect to keep undef as shift amount.
But, that is suboptimal.
We could instead simply drop that select, picking the other operand.
Afterwards, getLogBase2() could assert that there is no undef in divisor.
While x*undef is undef, shift-by-undef is poison,
which we must avoid introducing.
Also log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N.
See https://bugs.llvm.org/show_bug.cgi?id=47133
Negator knows how to do this, but the one-use reasoning is getting
a bit muddy here, we don't really want to increase instruction count,
so we need to both lie that "IsNegation" and have an one-use check
on the outermost LHS value.
Multiplication is commutative, and either of operands can be negative,
so if the RHS is a negated power-of-two, we should try to make it
true power-of-two (which will allow us to turn it into a left-shift),
by trying to sink the negation down into LHS op.
But, we shouldn't re-invent the logic for sinking negation,
let's just use Negator for that.
Tests and original patch by: Simon Pilgrim @RKSimon!
Differential Revision: https://reviews.llvm.org/D85446
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.
D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).
This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic
A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.
This allows to move about 3000 lines out from InstCombine to the targets.
Differential Revision: https://reviews.llvm.org/D81728
This is the one i'm seeing as missed optimization,
although there are likely other possibilities, as usual.
There are 4 variants of a general sdiv->udiv fold:
https://rise4fun.com/Alive/VS6
Name: v0
Pre: C0 >= 0 && C1 >= 0
%r = sdiv i8 C0, C1
=>
%r = udiv i8 C0, C1
Name: v1
Pre: C0 <= 0 && C1 >= 0
%r = sdiv i8 C0, C1
=>
%t0 = udiv i8 -C0, C1
%r = sub i8 0, %t0
Name: v2
Pre: C0 >= 0 && C1 <= 0
%r = sdiv i8 C0, C1
=>
%t0 = udiv i8 C0, -C1
%r = sub i8 0, %t0
Name: v3
Pre: C0 <= 0 && C1 <= 0
%r = sdiv i8 C0, C1
=>
%r = udiv i8 -C0, -C1
If we really don't like sdiv (more than udiv that is),
and are okay with increasing instruction count (2 new negations),
and we ensure that we don't undo the fold,
then we could just implement these..
Similar to rG40fcc42:
The base case only worked because we were relying on a
poison-unsafe select transform; if that is fixed, we
would regress on patterns like this.
The extra use tests show that the select transform can't
be applied consistently. So it may be a regression to have
an extra instruction on 1 test, but that result was not
created safely and does not happen reliably.