Motivated by pr43326 (https://bugs.llvm.org/show_bug.cgi?id=43326), where a slightly
modified case is as follows.
void f(int e[10][10][10], int f[10][10][10]) {
for (int a = 0; a < 10; a++)
for (int b = 0; b < 10; b++)
for (int c = 0; c < 10; c++)
f[c][b][a] = e[c][b][a];
}
The ideal optimal access pattern after running interchange is supposed to be the following
void f(int e[10][10][10], int f[10][10][10]) {
for (int c = 0; c < 10; c++)
for (int b = 0; b < 10; b++)
for (int a = 0; a < 10; a++)
f[c][b][a] = e[c][b][a];
}
Currently loop interchange is limited to picking up the innermost loop and finding an order
that is locally optimal for it. However, the pass failed to produce the globally optimal
loop access order. For more complex examples what we get could be quite far from the
globally optimal ordering.
What is proposed in this patch is to do a "bubble-sort" fashion when doing interchange.
By comparing neighbors in `LoopList` in each iteration, we would be able to move each loop
onto a most appropriate place, hence this is an approach that tries to achieve the
globally optimal ordering.
The motivating example above is added as a test case.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D120386
This patch is motivated by pr48057 where an output dependency is not detected
since loop interchange did not check a store instruction with itself.
Fixed that deficiency.
Reviewed By: bmahjour, Meinersbur, #loopoptwg
Differential Revision: https://reviews.llvm.org/D118102
Enabled loop interchange support for floating point reductions
if it is allowed to reorder floating point operations.
Previously when we encouter a floating point PHI node in the
outer loop exit block, we bailed out since we could not detect
floating point reductions in the early days. Now we remove this
limiation since we are able to detect floating point reductions.
Reviewed By: #loopoptwg, Meinersbur
Differential Revision: https://reviews.llvm.org/D117450
Currently loop interchange only supports loops with one inner loop
induction variable. This patch adds support for transformation with
more than one inner loop induction variables. The induction PHIs and
induction increment instructions are moved/duplicated properly to the
new outer header and the new outer latch, respectively.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D114917
This patch enables loop interchange with multiple outer loop
induction variables, and hence removes the limitation that only
a single outer loop induction variable is supported. In fact, it
turns out that the current pass already trivially supports multiple
outer indvars, which is the result of a previous patch
`https://reviews.llvm.org/D102743`. Therefore, this patch removed that
limitation and provides test cases for multiple outer indvars.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D114916
There was a limitation in legality that in the original inner loop latch,
no instruction was allowed between the induction variable increment
and the branch instruction. This is because we used to split the
inner latch at the induction variable increment instruction. Since
now we have split at the inner latch branch instruction and have
properly duplicated instructions over to the split block, we remove
this limitation.
Please refer to the test case updates to see how we now interchange
loops where instructions exist between the induction variable
increment and the branch instruction.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D115238
There was a limitation in legality that in the original inner loop latch,
no instruction was allowed between the induction variable increment
and the branch instruction. This is because we used to split the
inner latch at the induction variable increment instruction. Since
now we have split at the inner latch branch instruction and have
properly duplicated instructions over to the split block, we remove
this limitation.
Please refer to the test case updates to see how we now interchange
loops where instructions exist between the induction variable increment
and the branch instruction.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D115238
The naming has come up as a source of confusion in several recent reviews. onlyWritesMemory is consist with onlyReadsMemory which we use for the corresponding readonly case as well.
We already know that we need to check whether lcssa
phis are supported in inner loop exit block or in
outer loop exit block, and we have logic to check
them already. Presumably the inner loop latch does
not have lcssa phis and there is no code that deals
with lcssa phis in the inner loop latch. However,
that assumption is not true, when we have loops
with more than two-level nesting. This patch adds
checks for lcssa phis in the inner latch.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D102300
This patch fixes pr43326 and pr48212.
Currently when we move reduction phis to the right place,
loop interchange assumes the first phi in loop headers is
an induction phi, skips the first phi and assumes the rest
of phis are candidate reduction phis to move. However, it
may not always be the case.
This patch loops over all phis in loop headers and considers
a phi node as a candidate reduction phi to move only when it
is indeed a reduction phi across outer and inner loop.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D102743
This is a bugfix in the transformation phase.
If the original outer loop header branches to both the inner loop
(header) and the outer loop latch, and if there is an lcssa PHI
node outside the loop nest, then after interchange the new outer latch
will have an lcssa PHI node inserted which has two predecessors, i.e.,
the original outer header and the original outer latch. Currently
the transformation assumes it has only one predecessor (the original
outer latch) and crashes, since the inserted lcssa PHI node does
not take both predecessors as incoming BBs.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D100792
This is a bug fix in legality check.
When we encounter triangular loops such as the following form:
for (int i = 0; i < m; i++)
for (int j = 0; j < i; j++), or
for (int i = 0; i < m; i++)
for (int j = 0; j*i < n; j++),
we should not perform interchange since the number of executions
of the loop body will be different before and after interchange,
resulting in incorrect results.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D101305
This is a bug fix in legality check.
When we encounter triangular loops such as the following form:
for (int i = 0; i < m; i++)
for (int j = 0; j < i; j++), or
for (int i = 0; i < m; i++)
for (int j = 0; j*i < n; j++),
we should not perform interchange since the number of executions of the loop body
will be different before and after interchange, resulting in incorrect results.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D101305
After loop interchange, the (old) outer loop header should not jump to
the `LoopExit`. Note that the old outer loop becomes the new inner loop
after interchange. If we branched to `LoopExit` then after interchange
we would jump directly from the (new) inner loop header to `LoopExit`
without executing the rest of outer loop.
This patch modifies adjustLoopBranches() such that the old outer
loop header (which becomes the new inner loop header) jumps to the
old inner loop latch which becomes the new outer loop latch after
interchange.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D98475
After loop interchange, the (old) outer loop header should not jump to
`LoopExit`. Note that the old outer loop becomes the new inner loop
after interchange. If we branched to `LoopExit` then after interchange
we would jump directly from the (new) inner loop header to `LoopExit`
without executing the rest of (new) outer loop.
This patch modifies adjustLoopBranches() such that the old outer
loop header (which becomes the new inner loop header) jumps to the
old inner loop latch which becomes the new outer loop latch after
interchange.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D98475
This is yet another attempt to fix tightlyNested().
Add checks in tightlyNested() for the inner loop exit block,
such that 1) if there is control-flow divergence in between the inner
loop exit block and the outer loop latch, or 2) if the inner loop exit
block contains unsafe instructions, tightlyNested() returns false.
The reasoning behind is that after interchange, the original inner loop
exit block, which was part of the outer loop, would be put into the new
inner loop, and will be executed different number of times before and
after interchange. Thus it should be dealt with appropriately.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D98263
The check `tightlyNested()` in `LoopInterchange` is similar to the one in `LoopNest`.
In fact, the former misses some cases where loop-interchange is not feasible and results in incorrect behaviour.
Replacing it with the much robust version provided by `LoopNest` reduces code duplications and fixes https://bugs.llvm.org/show_bug.cgi?id=48113.
`LoopInterchange` has a weaker definition of tightly or perfectly nesting-ness than the one implemented in `LoopNest::arePerfectlyNested()`.
Therefore, `tightlyNested()` is instead implemented with `LoopNest::checkLoopsStructure` and additional checks for unsafe instructions.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D97290
This is the preliminary patch of converting `LoopInterchange` pass to a loop-nest pass and has no intended functional change.
Changes that are not loop-nest related are split to D96650.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D96644
This is a split patch of D96644.
Explicitly pass both `InnerLoop` and `OuterLoop` to function `processLoop` to remove the need to swap elements in loop list and allow making loop list an `ArrayRef`.
Also, fix inconsistent spellings of `OuterLoopId` and `Inner Loop Id` in debug log.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96650
In LoopInterchange, `findInnerReductionPhi()` looks for reduction
variables, which cannot be constants. Update it to return early in that
case.
This also addresses a blocker for removing use-lists from ConstantData,
whose users could be spread across arbitrary modules in the same
LLVMContext.
Differential Revision: https://reviews.llvm.org/D94712
Some older code - and code copied from older code - still directly tested against the singelton result of SE::getCouldNotCompute. Using the isa<SCEVCouldNotCompute> form is both shorter, and more readable.
Instructions defined in the original inner loop preheader may depend on
values defined in the outer loop header, but the inner loop header will
become the entry block in the loop nest. Move the instructions from the
preheader to the outer loop header, so we do not break dominance. We
also have to check for unsafe instructions in the preheader. If there
are no unsafe instructions, all instructions should be movable.
Currently we move all instructions except the terminator and rely on
LICM to hoist out invariant instructions later.
Fixes PR45743
Values defined in the outer loop header could be used in the inner loop
latch. In that case, we need to create LCSSA phis for them, because after
interchanging they will be defined in the new inner loop and used in the
new outer loop.
The PHI node checks for inner loop exits are too permissive currently.
As indicated by an existing comment, we should only allow LCSSA PHI
nodes that are part of reductions or are only used outside of the loop
nest. We ensure this by checking the users of the LCSSA PHIs.
Specifically, it is not safe to use an exiting value from the inner loop in the latch of the outer
loop.
It also moves the inner loop exit check before the outer loop exit
check.
Fixes PR43473.
Reviewers: efriedma, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D68144
Currently the assertion in updateSuccessor is overly strict in some
cases and overly relaxed in other cases. For branches to the inner and
outer loop preheader it is too strict, because they can either be
unconditional branches or conditional branches with duplicate targets.
Both cases are fine and we can allow updating multiple successors.
On the other hand, we have to at least update one successor. This patch
adds such an assertion.
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Currently we have limited support for outer loops with multiple basic
blocks after the inner loop exit. But the current checks for creating
PHIs for loop exit values only assumes the header and latches of the
outer loop. It is better to just skip incoming values defined in the
original inner loops. Those are handled earlier.
Reviewers: efriedma, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D70059
Currently we only rely on the induction increment to come before the
condition to ensure the required instructions get moved to the new
latch.
This patch duplicates and moves the required instructions to the
newly created latch. We move the condition to the end of the new block,
then process its operands. We stop at operands that are defined
outside the loop, or are the induction PHI.
We duplicate the instructions and update the uses in the moved
instructions, to ensure other users remain intact. See the added
test2 for such an example.
Reviewers: efriedma, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D67367
llvm-svn: 371595
The code to preserve LCSSA PHIs currently only properly supports
reduction PHIs and PHIs for values defined outside the latches.
This patch improves the LCSSA PHI handling to cover PHIs for values
defined in the latches.
Fixes PR41725.
Reviewers: efriedma, mcrosier, davide, jdoerfert
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D61576
llvm-svn: 361743