Adds ability to vectorize loops containing a store to a loop-invariant
address as part of a reduction that isn't converted to SSA form due to
lack of aliasing info. Runtime checks are generated to ensure the store
does not alias any other accesses in the loop.
Ordered fadd reductions are not yet supported.
Differential Revision: https://reviews.llvm.org/D110235
This patch extends the scope of VPlan to also include the exit (aka
middle) block.
For now, the exit block remains empty, but handling of exit values will
subsequently be moved to VPlan, by adding recipes to model exit values
in the exit block.
As a first step, this will allow fixing #51366.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123457
This patch moves SCEV expansion of steps used by
VPWidenIntOrFpInductionRecipes to the pre-header using
VPExpandSCEVRecipe. This ensures that those steps are expanded while the
CFG is in a valid state. Previously, SCEV expansion may happen during
vector body code-generation, during which the CFG may be invalid,
causing issues with SCEV expansion.
Depends on D122095.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D122096
This addresses an existing TODO by keeping a mapping of external IR
Value * definitions wrapped in VPValues for use in a VPlan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D123700
After D121624 models the pre-header in VPlan, VPExpandSCEVRecipes can be
placed there. This ensures SCEV expansion happens before modifying the
CFG during VPlan execution, when CFG is incomplete.
Depends on D121624.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D122095
This patch extends the scope of VPlan to also model the pre-header.
The pre-header can be used to place recipes that should be code-gen'd
outside the loop, like SCEV expansion.
Depends on D121623.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121624
When creating induction resume values, SCEV queries may rely on
LoopInfo. Make sure vector.body gets added to the loop of the pre-header
during skeleton construction.
%vector.body will be moved to the vector preheader during VPlan
execution.
Fixes#54745.
Update VPInterleavedAccessInfo to use the generic getVectorLoopRegion
helper instead of relying on the entry block being the top-most vector
loop region.
This reverts the revert commit 2760cdc9c6.
This version pulls in the code to create the vector loop object in VPlan
from D121624.
This is needed because otherwise existing LoopInfo verification will
fail, as a loop block doesn't have in-loop successors now that we
do not replace the branch.
Now that we do not add new loops during skeleton construction, there's
also no need to verify LI there.
The only remaining use was to get the exit block of the loop. Instead of
relying on the loop, use the successor of VectorHeaderBB
(LoopMiddleBlock) directly to set VPTransformState::CFG::ExitB
Depends on D121621.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121623
Instead of looking up the vector loop using the header, keep track of
the current vector loop in VPTransformState. This removes the
requirement for the vector header block being part of the loop up front.
A follow-up patch will move the code to generate the Loop object for the
vector loop to VPRegionBlock.
Depends on D121619.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121621
Now that all dependencies on creating the latch block up-front have been
removed, there is no need to create it early.
Depends on D121618.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121619
This patch moves the code to set the correct incoming block for the
backedge value to VPlan::execute.
When generating the phi node, the backedge value is temporarily added
using the pre-header as incoming block. The invalid phi node will be
fixed up during VPlan::execute after main VPlan code generation.
At the same time, the backedge value is also moved to the latch.
This change removes the requirement to create the latch block up-front
for VPWidenInductionPHIRecipe::execute, which in turn will enable
modeling the pre-header in VPlan.
Depends on D121617.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121618
This patch moves the code to set the correct incoming block for the
backedge value to VPlan::execute.
When generating the phi node, the backedge value is temporarily added
using the pre-header as incoming block. The invalid phi node will be
fixed up during VPlan::execute after main VPlan code generation.
At the same time, the backedge value is also moved to the latch.
This change removes the requirement to create the latch block up-front
for VPWidenIntOrFpInductionRecipe::execute, which in turn will enable
modeling the pre-header in VPlan.
As an alternative, the increment could be modeled as separate recipe,
but that would require more work and a bit of redundant code, as we need
to create the step-vector during VPWidenIntOrFpInductionRecipe::execute
anyways, to create the values for different parts.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121617
Update all places that currently assume the entry block to the plan is
also the vector loop header to use getVectorLoopRegion instead.
getVectorLoopRegion will keep doing the right thing when the pre-header
is modeled explicitly (and becomes the new entry block in the plan).
This patch moves pointer induction handling from VPWidenPHIRecipe to its
own recipe. In the process, it adds all information required to generate
code for pointer inductions without relying on Legal to access the list
of induction phis.
Alternatively VPWidenPHIRecipe could also take an optional pointer to InductionDescriptor.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D121615
This reverts the revert commit ff93260bf6.
The underlying issue causing the PPC bot failures has been fixed in
cbaac14734 and a corresponding test case has been added in
ad2cad1c52.
Original message:
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.
In the first patch, it only handles the case where there is no vector
induction variable needed.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115953
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.
In the first patch, it only handles the case where there is no vector
induction variable needed.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D115953
This can be used to explicitly model VPValues that depend on SCEV
expansion, like the step for inductions.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116288
This removes the remaining dependence on LoopVectorizationCostModel from
buildScalarSteps and is required so it can be moved out of ILV.
It also improves allows us to remove a few unneeded instructions.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116554
This patch adds VPWidenIntOrFpInductionRecipe::isCanonical to check if
an induction recipe is canonical. The code is also updated to use it
instead of isCanonicalID.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D117551
After resetting the start value of the canonical IV, it might not be
canonical any more. Add an assertion to make sure it is only used by its
increment, to avoid potential mis-use. Suggested in D117140.
When SVE is enabled for AArch64 targets it makes more sense to use the
get.active.lane.mask intrinsic, because SVE has an exact 1-1 mapping
from the intrinsic to the 'whilelo' instruction for legal vector types.
This instruction neatly takes overflow into account as well. This patch
fixes an issue in VPInstruction::generateInstruction that assumed we are
only dealing with fixed-width vectors.
Differential Revision: https://reviews.llvm.org/D117109
This patch adds a new BranchOnCount VPInstruction opcode with 2
operands. It first compares its 2 operands (increment of canonical
induction and vector trip count), followed by a branch to either the
exit block or back to the vector header.
It must be the last recipe in the exit block of the topmost vector loop
region.
This extracts parts from D113224 and was discussed in D113223.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116479
The code in VPWidenCanonicalIVRecipe::execute only worked for fixed-width
vectors due to the way we generate the values per lane. This patch changes
the code to use a combination of vector splats and step vectors to get
the same result. This then works for both fixed-width and scalable vectors.
Tests that exercise this code path for scalable vectors have been added here:
Transforms/LoopVectorize/AArch64/sve-tail-folding.ll
Differential Revision: https://reviews.llvm.org/D113180
At the moment, the primary induction variable for the vector loop is
created as part of the skeleton creation. This is tied to creating the
vector loop latch outside of VPlan. This prevents from modeling the
*whole* vector loop in VPlan, which in turn is required to model
preheader and exit blocks in VPlan as well.
This patch introduces a new recipe VPCanonicalIVPHIRecipe to represent the
primary IV in VPlan and CanonicalIVIncrement{NUW} opcodes for
VPInstruction to model the increment.
This allows us to partly retire createInductionVariable. At the moment,
a bit of patching up is done after executing all blocks in the plan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D113223
This patch adds a new prepareToExecute helper to set up live-ins, so
VPTransformState doesn't need to hold values like TripCount.
This also requires making the trip count operand for ActiveLaneMask
explicit in VPlan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116320
Not all header phis widen the phi, e.g. like the new
VPCanonicalIVPHIRecipe in D113223. To let those recipes also inherit
from a phi-like base class, add a more generic VPHeaderPHIRecipe
abstract base class.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D116304
In-loop vector reductions which use the llvm.fmuladd intrinsic involve
the creation of two recipes; a VPReductionRecipe for the fadd and a
VPInstruction for the fmul. If the call to llvm.fmuladd has fast-math flags
these should be propagated through to the fmul instruction, so an
interface setFastMathFlags has been added to the VPInstruction class to
enable this.
Differential Revision: https://reviews.llvm.org/D113125
The recipe produces exactly one VPValue and can inherit directly from
it. This is in line with other recipes and avoids having to use
getVPSingleValue.
At the moment, a VPValue is created for the backedge-taken count, which
is used by some recipes. To make it easier to identify the operands of
recipes using the backedge-taken count, print it at the beginning of the
VPlan if it is used.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D111298
This patch adds further support for vectorisation of loops that involve
selecting an integer value based on a previous comparison. Consider the
following C++ loop:
int r = a;
for (int i = 0; i < n; i++) {
if (src[i] > 3) {
r = b;
}
src[i] += 2;
}
We should be able to vectorise this loop because all we are doing is
selecting between two states - 'a' and 'b' - both of which are loop
invariant. This just involves building a vector of values that contain
either 'a' or 'b', where the final reduced value will be 'b' if any lane
contains 'b'.
The IR generated by clang typically looks like this:
%phi = phi i32 [ %a, %entry ], [ %phi.update, %for.body ]
...
%pred = icmp ugt i32 %val, i32 3
%phi.update = select i1 %pred, i32 %b, i32 %phi
We already detect min/max patterns, which also involve a select + cmp.
However, with the min/max patterns we are selecting loaded values (and
hence loop variant) in the loop. In addition we only support certain
cmp predicates. This patch adds a new pattern matching function
(isSelectCmpPattern) and new RecurKind enums - SelectICmp & SelectFCmp.
We only support selecting values that are integer and loop invariant,
however we can support any kind of compare - integer or float.
Tests have been added here:
Transforms/LoopVectorize/AArch64/sve-select-cmp.ll
Transforms/LoopVectorize/select-cmp-predicated.ll
Transforms/LoopVectorize/select-cmp.ll
Differential Revision: https://reviews.llvm.org/D108136