- 'register' storage class
- dynamic exception specifications
Only the former check is enabled by default for now (the latter might be quite noisy).
llvm-svn: 183881
This is a slight tweak of r180708; It avoids incrementing depth when non-template local classes nested within member templates of local classes are encountered.
This patch was LGTM'd by Doug http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20130506/079656.html and passed the regression tests that normally pass (i.e. excluding many Module and Index tests on Windows that fail regardless)
llvm-svn: 183620
I ran clang-format on my patch but it seemed to have wreaked havoc with new lines - might have to do with using it on windows :( will resubmit once i've cleaned this issue up. sorry.
llvm-svn: 183619
- factor the name construction part out from constructSetterName
- rename constructSetterName to the more appropriate constructSetterSelector
no functionality change intended.
rdar://problem/14035789
llvm-svn: 183582
places which weren't setting it up properly. This allows us to get the right
cv-qualifiers for 'this' when it appears outside a method body in a class
template.
llvm-svn: 183483
*that* easy...
Try a bit harder to disambiguate. This is mostly straightforward, but for
=-style initializers, we actually need to know where an expression ends:
[foo = bar baz]
is a message send, whereas
[foo = bar + baz]
is a lambda-introducer. Handle this by parsing the expression eagerly, and
replacing it with an annotation token. By chance, we use the *exact same*
parsing rules in both cases (except that we need to assume we're inside a
message send for the parse, to turn off various forms of inapplicable
error recovery).
llvm-svn: 182432
a FieldDecl from it, and propagate both into the closure type and the
LambdaExpr.
You can't do much useful with them yet -- you can't use them within the body
of the lambda, because we don't have a representation for "the this of the
lambda, not the this of the enclosing context". We also don't have support or a
representation for a nested capture of an init-capture yet, which was intended
to work despite not being allowed by the current standard wording.
llvm-svn: 181985
The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.
DiagnosticBuilder kept its implicit conversion operator owing to the
prevalent use of it in return statements.
One bug was found in ExprConstant.cpp involving a comparison of two
PointerUnions (PointerUnion did not previously have an operator==, so
instead both operands were converted to bool & then compared). A test
is included in test/SemaCXX/constant-expression-cxx1y.cpp for the fix
(adding operator== to PointerUnion in LLVM).
llvm-svn: 181869
Summary:
Most of this change is wiring the pragma all the way through from the
lexer, parser, and sema to codegen. I considered adding a Decl AST node
for this, but it seemed too heavyweight.
Mach-O already uses a metadata flag called "Linker Options" to do this
kind of auto-linking. This change follows that pattern.
LLVM knows how to forward the "Linker Options" metadata into the COFF
.drectve section where these flags belong. ELF support is not
implemented, but possible.
This is related to auto-linking, which is http://llvm.org/PR13016.
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D723
llvm-svn: 181426
Summary:
No functionality change. The existing tests for this pragma only verify
that we can preprocess it.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D751
llvm-svn: 181246
Move the creation of CapturedStmt parameters out of CodeGen and into
Sema, making it easier to customize the outlined function. The
ImplicitParamDecls are stored in the CapturedDecl using an
ASTContext-allocated array.
Differential Revision: http://llvm-reviews.chandlerc.com/D722
llvm-svn: 181043
the actual parser and support arbitrary id-expressions.
We're actually basically set up to do arbitrary expressions here
if we wanted to.
Assembly operands permit things like A::x to be written regardless
of language mode, which forces us to embellish the evaluation
context logic somewhat. The logic here under template instantiation
is incorrect; we need to preserve the fact that an expression was
unevaluated. Of course, template instantiation in general is fishy
here because we have no way of delaying semantic analysis in the
MC parser. It's all just fishy.
I've also fixed the serialization of MS asm statements.
This commit depends on an LLVM commit.
llvm-svn: 180976
This change partly addresses a heinous problem we have with the
parsing of attribute arguments that are a lone identifier. Previously,
we would end up parsing the 'align' attribute of this as an expression
"(Align)":
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align((Align)))) char storage[Size];
};
while this would parse as a "parameter name" 'Align':
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align(Align))) char storage[Size];
};
The code that handles the alignment attribute would completely ignore
the parameter name, so the while the first of these would do what's
expected, the second would silently be equivalent to
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align)) char storage[Size];
};
i.e., use the maximal alignment rather than the specified alignment.
Address this by sniffing the "Args" provided in the TableGen
description of attributes. If the first argument is "obviously"
something that should be treated as an expression (rather than an
identifier to be matched later), parse it as an expression.
Fixes <rdar://problem/13700933>.
llvm-svn: 180973
This change partly addresses a heinous problem we have with the
parsing of attribute arguments that are a lone identifier. Previously,
we would end up parsing the 'align' attribute of this as an expression
"(Align)":
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align((Align)))) char storage[Size];
};
while this would parse as a "parameter name" 'Align':
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align(Align))) char storage[Size];
};
The code that handles the alignment attribute would completely ignore
the parameter name, so the while the first of these would do what's
expected, the second would silently be equivalent to
template<unsigned Size, unsigned Align>
class my_aligned_storage
{
__attribute__((align)) char storage[Size];
};
i.e., use the maximal alignment rather than the specified alignment.
Address this by sniffing the "Args" provided in the TableGen
description of attributes. If the first argument is "obviously"
something that should be treated as an expression (rather than an
identifier to be matched later), parse it as an expression.
Fixes <rdar://problem/13700933>.
llvm-svn: 180970
are now two distinct canonical 'AutoType's: one is the undeduced 'auto'
placeholder type, and the other is a deduced-but-dependent type. All
deduced-to-a-non-dependent-type cases are still non-canonical.
llvm-svn: 180789
Add a CapturedStmt.h similar to Lambda.h to reduce the typing required to get
to the CapturedRegionKind enum. This also allows codegen to access this enum
without including Sema/ScopeInfo.h.
Also removes some duplicated code for capturing 'this' between CapturedStmt and
Lambda.
Differential Revision: http://llvm-reviews.chandlerc.com/D712
llvm-svn: 180710
C++1y, so stop adding the 'const' there. Provide a compatibility warning for
code relying on this in C++11, with a fix-it hint. Update our lazily-written
tests to add the const, except for those ones which were testing our
implementation of this rule.
llvm-svn: 179969