Reverting to investigate layering effects of MCJIT not linking
libCodeGen but using TargetMachine::getNameWithPrefix() breaking the
lldb bots.
This reverts commit r315633.
llvm-svn: 315637
Merge LLVMTargetMachine into TargetMachine.
- There is no in-tree target anymore that just implements TargetMachine
but not LLVMTargetMachine.
- It should still be possible to stub out all the various functions in
case a target does not want to use lib/CodeGen
- This simplifies the code and avoids methods ending up in the wrong
interface.
Differential Revision: https://reviews.llvm.org/D38489
llvm-svn: 315633
With this change, the GlobalISel library gets always built. In
particular, this is not possible to opt GlobalISel out of the build
using the LLVM_BUILD_GLOBAL_ISEL variable any more.
llvm-svn: 309990
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
LLVM compiler recognizes opportunities to transform a branch into IR select instruction(s) - later it will be lowered into X86::CMOV instruction, assuming no other optimization eliminated the SelectInst.
However, it is not always profitable to emit X86::CMOV instruction. For example, branch is preferable over an X86::CMOV instruction when:
1. Branch is well predicted
2. Condition operand is expensive, compared to True-value and the False-value operands
In CodeGenPrepare pass there is a shallow optimization that tries to convert SelectInst into branch, but it is not enough.
This commit, implements machine optimization pass that converts X86::CMOV instruction(s) into branch, based on a conservative heuristic.
Differential Revision: https://reviews.llvm.org/D34769
llvm-svn: 308142
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.
Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb
Reviewed By: MatzeB, andreadb
Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32563
llvm-svn: 304371
TargetPassConfig is not useful for targets that do not use the CodeGen
library, so we may just as well store a pointer to an
LLVMTargetMachine instead of just to a TargetMachine.
While at it, also change the constructor to take a reference instead of a
pointer as the TM must not be nullptr.
llvm-svn: 304247
Summary:
This causes them to be re-computed more often than necessary but resolves
objections that were raised post-commit on r301750.
Reviewers: qcolombet, ab, t.p.northover, rovka, kristof.beyls
Reviewed By: qcolombet
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32861
llvm-svn: 303418
This also reverts follow-ups r303292 and r303298.
It broke some Chromium tests under MSan, and apparently also internal
tests at Google.
llvm-svn: 303369
This provides a new way to access the TargetMachine through
TargetPassConfig, as a dependency.
The patterns replaced here are:
* Passes handling a null TargetMachine call
`getAnalysisIfAvailable<TargetPassConfig>`.
* Passes not handling a null TargetMachine
`addRequired<TargetPassConfig>` and call
`getAnalysis<TargetPassConfig>`.
* MachineFunctionPasses now use MF.getTarget().
* Remove all the TargetMachine constructors.
* Remove INITIALIZE_TM_PASS.
This fixes a crash when running `llc -start-before prologepilog`.
PEI needs StackProtector, which gets constructed without a TargetMachine
by the pass manager. The StackProtector pass doesn't handle the case
where there is no TargetMachine, so it segfaults.
Related to PR30324.
Differential Revision: https://reviews.llvm.org/D33222
llvm-svn: 303360
According to Intel's Optimization Reference Manual for SNB+:
" For LEA instructions with three source operands and some specific situations, instruction latency has increased to 3 cycles, and must
dispatch via port 1:
- LEA that has all three source operands: base, index, and offset
- LEA that uses base and index registers where the base is EBP, RBP,or R13
- LEA that uses RIP relative addressing mode
- LEA that uses 16-bit addressing mode "
This patch currently handles the first 2 cases only.
Differential Revision: https://reviews.llvm.org/D32277
llvm-svn: 303333
Summary: Moving LiveRangeShrink to x86 as this pass is mostly useful for archtectures with great register pressure.
Reviewers: MatzeB, qcolombet
Reviewed By: qcolombet
Subscribers: jholewinski, jyknight, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33294
llvm-svn: 303292
According to Intel's Optimization Reference Manual for SNB+:
" For LEA instructions with three source operands and some specific situations, instruction latency has increased to 3 cycles, and must
dispatch via port 1:
- LEA that has all three source operands: base, index, and offset
- LEA that uses base and index registers where the base is EBP, RBP,or R13
- LEA that uses RIP relative addressing mode
- LEA that uses 16-bit addressing mode "
This patch currently handles the first 2 cases only.
Differential Revision: https://reviews.llvm.org/D32277
llvm-svn: 303183
Summary:
Predicate<> now has a field to indicate how often it must be recomputed.
Currently, there are two frequencies, per-module (RecomputePerFunction==0)
and per-function (RecomputePerFunction==1). Per-function predicates are
currently recomputed more frequently than necessary since the only predicate
in this category is cheap to test. Per-module predicates are now computed in
getSubtargetImpl() while per-function predicates are computed in selectImpl().
Tablegen now manages the PredicateBitset internally. It should only be
necessary to add the required includes.
Also fixed a problem revealed by the test case where
constrainSelectedInstRegOperands() would attempt to tie operands that
BuildMI had already tied.
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: rovka
Subscribers: kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32491
llvm-svn: 301750
Summary:
The SelectionDAG importer now imports rules with Predicate's attached via
Requires, PredicateControl, etc. These predicates are implemented as
bitset's to allow multiple predicates to be tested together. However,
unlike the MC layer subtarget features, each target only pays for it's own
predicates (e.g. AArch64 doesn't have 192 feature bits just because X86
needs a lot).
Both AArch64 and X86 derive at least one predicate from the MachineFunction
or Function so they must re-initialize AvailableFeatures before each
function. They also declare locals in <Target>InstructionSelector so that
computeAvailableFeatures() can use the code from SelectionDAG without
modification.
Reviewers: rovka, qcolombet, aditya_nandakumar, t.p.northover, ab
Reviewed By: rovka
Subscribers: aemerson, rengolin, dberris, kristof.beyls, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D31418
llvm-svn: 300993
It's causing llvm-clang-x86_64-expensive-checks-win to fail to compile and I
haven't worked out why. Reverting to make it green while I figure it out.
llvm-svn: 300978
Summary:
The SelectionDAG importer now imports rules with Predicate's attached via
Requires, PredicateControl, etc. These predicates are implemented as
bitset's to allow multiple predicates to be tested together. However,
unlike the MC layer subtarget features, each target only pays for it's own
predicates (e.g. AArch64 doesn't have 192 feature bits just because X86
needs a lot).
Both AArch64 and X86 derive at least one predicate from the MachineFunction
or Function so they must re-initialize AvailableFeatures before each
function. They also declare locals in <Target>InstructionSelector so that
computeAvailableFeatures() can use the code from SelectionDAG without
modification.
Reviewers: rovka, qcolombet, aditya_nandakumar, t.p.northover, ab
Reviewed By: rovka
Subscribers: aemerson, rengolin, dberris, kristof.beyls, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D31418
llvm-svn: 300964
Summary: This resolves the issue of tablegen-erated includes in the headers for non-GlobalISel builds in a simpler way than before.
Reviewers: qcolombet, ab
Reviewed By: ab
Subscribers: igorb, ab, mgorny, dberris, rovka, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30998
llvm-svn: 299637
Let targets specialize the pass with the register class so we can get a
parameterless default constructor and can put the pass into the pass
registry to enable testing with -run-pass=.
llvm-svn: 298184
until we can get better TargetMachine::isCompatibleDataLayout to compare - otherwise
we can't code generate existing bitcode without a string equality data layout.
This reverts commit r294702.
llvm-svn: 294709
For other platforms we should find out what they need and likely
make the same change, however, a smaller additional change is easier
for platforms we know have it specified in the ABI. As part of this
rewrite some of the handling in the backends for data layout and update
a bunch of testcases.
Based on a patch by Simonas Kazlauskas!
llvm-svn: 294702
This patch moves the class for scheduling adjacent instructions,
MacroFusion, to the target.
In AArch64, it also expands the fusion to all instructions pairs in a
scheduling block, beyond just among the predecessors of the branch at the
end.
Differential revision: https://reviews.llvm.org/D28489
llvm-svn: 293737
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
MachineLegalizer used to be the name of both the class and the member,
causing GCC errors. r276522 fixed that by renaming the member to just
'Legalizer'. The 'class' workaround isn't necessary anymore; drop it.
llvm-svn: 289848
This makes the createGenericSchedLive() function that constructs the
default scheduler available for the public API. This should help when
you want to get a scheduler and the default list of DAG mutations.
This also shrinks the list of default DAG mutations:
{Load|Store}ClusterDAGMutation and MacroFusionDAGMutation are no longer
added by default. Targets can easily add them if they need them. It also
makes it easier for targets to add alternative/custom macrofusion or
clustering mutations while staying with the default
createGenericSchedLive(). It also saves the callback back and forth in
TargetInstrInfo::enableClusterLoads()/enableClusterStores().
Differential Revision: https://reviews.llvm.org/D26986
llvm-svn: 288057
Summary:
Add basic functionality to support call lowering for X86.
Currently only supports functions which return void and take zero arguments.
Inspired by commit 286573.
Reviewers: ab, qcolombet, t.p.northover
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26593
llvm-svn: 286935
X86. The pass optimizes as a unit the entire wide load + shuffles pattern
produced by interleaved vectorization. This initial patch optimizes one pattern
(64-bit elements interleaved by a factor of 4). Future patches will generalize
to additional patterns.
Patch by Farhana Aleen
Differential revision: http://reviews.llvm.org/D24681
llvm-svn: 284260
The motivation for the change is that we can't have pseudo-global settings for
codegen living in TargetOptions because that doesn't work with LTO.
Ideally, these reciprocal attributes will be moved to the instruction-level via
FMF, metadata, or something else. But making them function attributes is at least
an improvement over the current state.
The ingredients of this patch are:
Remove the reciprocal estimate command-line debug option.
Add TargetRecip to TargetLowering.
Remove TargetRecip from TargetOptions.
Clean up the TargetRecip implementation to work with this new scheme.
Set the default reciprocal settings in TargetLoweringBase (everything is off).
Update the PowerPC defaults, users, and tests.
Update the x86 defaults, users, and tests.
Note that if this patch needs to be reverted, the related clang patch checked in
at r283251 should be reverted too.
Differential Revision: https://reviews.llvm.org/D24816
llvm-svn: 283252
It is an optimization pass, and should not run at -O0. Especially since Fast RA
will not do the required register coalescing anyway, so it's a loss even from
the optimization standpoint.
This also works around (but doesn't quite fix) PR28489.
llvm-svn: 275099
xorl + setcc is generally the preferred sequence due to the partial register
stall setcc + movzbl suffers from. As a bonus, it also encodes one byte smaller.
This fixes PR28146.
The original commit tried inserting an 8bit-subreg into a GR32 (not GR32_ABCD)
which was not appreciated by fast regalloc on 32-bit.
llvm-svn: 274802
xorl + setcc is generally the preferred sequence due to the partial register
stall setcc + movzbl suffers from. As a bonus, it also encodes one byte smaller.
This fixes PR28146.
Differential Revision: http://reviews.llvm.org/D21774
llvm-svn: 274692
We performed a number of memory allocations each time getTTI was called,
remove them by using SmallString.
No functionality change intended.
llvm-svn: 270246
Having an enum member named Default is quite confusing: Is it distinct
from the others?
This patch removes that member and instead uses Optional<Reloc> in
places where we have a user input that still hasn't been maped to the
default value, which is now clear has no be one of the remaining 3
options.
llvm-svn: 269988
with an additional fix to make RegAllocFast ignore undef physreg uses. It would
previously get confused about the "push %eax" instruction's use of eax. That
method for adjusting the stack pointer is used in X86FrameLowering::emitSPUpdate
as well, but since that runs after register-allocation, we didn't run into the
RegAllocFast issue before.
llvm-svn: 269949
This patch moves the expansion of WIN_ALLOCA pseudo-instructions
into a separate pass that walks the CFG and lowers the instructions
based on a conservative estimate of the offset between the stack
pointer and the lowest accessed stack address.
The goal is to reduce binary size and run-time costs by removing
calls to _chkstk. While it doesn't fix all the code quality problems
with inalloca calls, it's an incremental improvement for PR27076.
Differential Revision: http://reviews.llvm.org/D20263
llvm-svn: 269828
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
llvm-svn: 269011
These checks are redundant and can be removed
Reviewers: hans
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D18564
llvm-svn: 264872
We need the "return address" of a noreturn call to be within the
bounds of the calling function; TrapUnreachable turns 'unreachable'
into a 'ud2' instruction, which has that desired effect.
Differential Revision: http://reviews.llvm.org/D18414
llvm-svn: 264224
Add new x86 pass which replaces address calculations in load or store instructions with def register of existing LEA (must be in the same basic block), if the LEA calculates address that differs only by a displacement. Works only with -Os or -Oz.
Differential Revision: http://reviews.llvm.org/D13294
llvm-svn: 254712
The Win64 unwinder disassembles forwards from each PC to try to
determine if this PC is in an epilogue. If so, it skips calling the EH
personality function for that frame. Typically, this means you cannot
catch an exception in the same frame that you threw it, because 'throw'
calls a noreturn runtime function.
Previously we avoided this problem with the TrapUnreachable
TargetOption, but that's a much bigger hammer than we need. All we need
is a 1 byte non-epilogue instruction right after the call. Instead,
what we got was an unconditional branch to a shared block containing the
ud2, potentially 7 bytes instead of 1. So, this reverts r206684, which
added TrapUnreachable, and replaces it with something better.
The new code pattern matches for invoke/call followed by unreachable and
inserts an int3 into the DAG. To be 100% watertight, we would need to
insert SEH_Epilogue instructions into all basic blocks ending in a call
with no terminators or successors, but in practice this is unlikely to
come up.
llvm-svn: 248959
State numbers are calculated by performing a walk from the innermost
funclet to the outermost funclet. Rudimentary support for the new EH
constructs has been added to the assembly printer, just enough to test
the new machinery.
Differential Revision: http://reviews.llvm.org/D12098
llvm-svn: 245331
Although targeting CoreCLR is similar to targeting MSVC, there are
certain important differences that the backend must be aware of
(e.g. differences in stack probes, EH, and library calls).
Differential Revision: http://reviews.llvm.org/D11012
llvm-svn: 245115
D8982 ( checked in at http://reviews.llvm.org/rL239001 ) added command-line
options to allow reciprocal estimate instructions to be used in place of
divisions and square roots.
This patch changes the default settings for x86 targets to allow that recip
codegen (except for scalar division because that breaks too much code) when
using -ffast-math or its equivalent.
This matches GCC behavior for this kind of codegen.
Differential Revision: http://reviews.llvm.org/D10396
llvm-svn: 240310
Summary:
For the moment, TargetMachine::getTargetTriple() still returns a StringRef.
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: ted, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10362
llvm-svn: 239554
This is a reimplementation of D9780 at the machine instruction level rather than the DAG.
Use the MachineCombiner pass to reassociate scalar single-precision AVX additions (just a
starting point; see the TODO comments) to increase ILP when it's safe to do so.
The code is closely based on the existing MachineCombiner optimization that is implemented
for AArch64.
This patch should not cause the kind of spilling tragedy that led to the reversion of r236031.
Differential Revision: http://reviews.llvm.org/D10321
llvm-svn: 239486
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rafael
Reviewed By: rafael
Subscribers: rafael, ted, jfb, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10311
llvm-svn: 239467
The first try (r238051) to land this was reverted due to ExecutionEngine build failure;
that was hopefully addressed by r238788.
The second try (r238842) to land this was reverted due to BUILD_SHARED_LIBS failure;
that was hopefully addressed by r238953.
This patch adds a TargetRecip class for processing many recip codegen possibilities.
The class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other x86 CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
llvm-svn: 239001
The first try (r238051) to land this was reverted due to bot failures
that were hopefully addressed by r238788.
This patch adds a TargetRecip class for processing many recip codegen possibilities.
The class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other x86 CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
llvm-svn: 238842
This patch adds a class for processing many recip codegen possibilities.
The TargetRecip class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
llvm-svn: 238051
The problem was that I slipped a change required for shrink-wrapping, namely I
used getFirstTerminator instead of the getLastNonDebugInstr that was here before
the refactoring, whereas the surrounding code is not yet patched for that.
Original message:
[X86] Refactor the prologue emission to prepare for shrink-wrapping.
- Add a late pass to expand pseudo instructions (tail call and EH returns).
Instead of doing it in the prologue emission.
- Factor some static methods in X86FrameLowering to ease code sharing.
NFC.
Related to <rdar://problem/20821487>
llvm-svn: 238035
Revert "[X86] Refactor the prologue emission to prepare for shrink-wrapping."
This reverts commit 6b3b93fc8b68a2c806aa992ee4bd3d7f61898d4b.
This reverts commit ab0b15dff8539826283a59c2dd700a18a9680e0f.
llvm-svn: 238011
- Add a late pass to expand pseudo instructions (tail call and EH returns).
Instead of doing it in the prologue emission.
- Factor some static methods in X86FrameLowering to ease code sharing.
NFC.
Related to <rdar://problem/20821487>
llvm-svn: 237977
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
llvm-svn: 237079
This reverts commit r236360.
This change exposed a bug in WinEHPrepare by opting win32 code into EH
preparation. We already knew that WinEHPrepare has bugs, and is the
status quo for x64, so I don't think that's a reason to hold off on this
change. I disabled exceptions in the sanitizer tests in r236505 and an
earlier revision.
llvm-svn: 236508
This pass is responsible for constructing the EH registration object
that gets linked into fs:00, which is all it does in this change. In the
future, it will also insert stores to update the EH state number.
I considered keeping this functionality in WinEHPrepare, but it's pretty
separable and X86 specific. It has conceptually very little to do with
the task of WinEHPrepare, which is currently outlining. WinEHPrepare is
also in theory useful on ARM, but this logic is pretty x86 specific.
Reviewers: andrew.w.kaylor, majnemer
Differential Revision: http://reviews.llvm.org/D9422
llvm-svn: 236339
This helps reduce the frequency of stack realignment prologues in 32-bit
X86 Windows code. Before this change and the corresponding clang change,
we would take the max of the type preferred alignment and the explicit
alignment on the alloca.
If you don't override aggregate alignment in datalayout, you get a
default of 8. This dates back to 2007 / r34356, and changing it seems
prohibitively difficult at this point.
llvm-svn: 236270
Summary:
I don't know why every singled backend had to redeclare its own DataLayout.
There was a virtual getDataLayout() on the common base TargetMachine, the
default implementation returned nullptr. It was not clear from this that
we could assume at call site that a DataLayout will be available with
each Target.
Now getDataLayout() is no longer virtual and return a pointer to the
DataLayout member of the common base TargetMachine. I plan to turn it into
a reference in a future patch.
The only backend that didn't have a DataLayout previsouly was the CPPBackend.
It now initializes the default DataLayout. This commit is NFC for all the
other backends.
Test Plan: clang+llvm ninja check-all
Reviewers: echristo
Subscribers: jfb, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8243
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231987