Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
Proofs for this transform: https://rise4fun.com/Alive/mgu
This transform is surprisingly frustrating.
This does not deal with non-splat shift amounts, or with undef shift amounts.
I've outlined what i think the solution should be:
```
// Potential handling of non-splats: for each element:
// * if both are undef, replace with constant 0.
// Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
// * if both are not undef, and are different, bailout.
// * else, only one is undef, then pick the non-undef one.
```
The DAGCombine will reverse this transform, see
https://reviews.llvm.org/D49266
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: JDevlieghere, rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D49320
llvm-svn: 337190
All predicates are handled.
There does not seem to be any other possible folds here.
There are some more folds possible with inverted mask though.
llvm-svn: 337112
Summary:
https://bugs.llvm.org/show_bug.cgi?id=38123
This pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in unsigned case, therefore it is probably a good idea to improve it.
https://rise4fun.com/Alive/Rny
^ there are more opportunities for folds, i will follow up with them afterwards.
Caveat: this somehow exposes a missing opportunities
in `test/Transforms/InstCombine/icmp-logical.ll`
It seems, the problem is in `foldLogOpOfMaskedICmps()` in `InstCombineAndOrXor.cpp`.
But i'm not quite sure what is wrong, because it calls `getMaskedTypeForICmpPair()`,
which calls `decomposeBitTestICmp()` which should already work for these cases...
As @spatel notes in https://reviews.llvm.org/D49179#1158760,
that code is a rather complex mess, so we'll let it slide.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: yamauchi, majnemer, t.p.northover, llvm-commits
Differential Revision: https://reviews.llvm.org/D49179
llvm-svn: 336834
This patch changes order of transform in InstCombineCompares to avoid
performing transforms based on ranges which produce complex bit arithmetics
before more simple things (like folding with constants) are done. See PR37636
for the motivating example.
Differential Revision: https://reviews.llvm.org/D48584
Reviewed By: spatel, lebedev.ri
llvm-svn: 336172
Summary:
When iterating users of a multiply in processUMulZExtIdiom, the
call to setOperand in the truncation case may replace the use
being visited; make sure the iterator has been advanced before
doing that replacement.
Reviewers: majnemer, davide
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48192
llvm-svn: 334844
Inspired by r331508, I did a grep and found these.
Mostly just change from dyn_cast to cast. Some cases also showed a dyn_cast result being converted to bool, so those I changed to isa.
llvm-svn: 331577
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Summary:
Folding patterns like:
%vec = shufflevector <4 x i8> %insvec, <4 x i8> undef, <4 x i32> zeroinitializer
%cast = bitcast <4 x i8> %vec to i32
%cond = icmp eq i32 %cast, 0
into:
%ext = extractelement <4 x i8> %insvec, i32 0
%cond = icmp eq i32 %ext, 0
Combined with existing rules, this allows us to fold patterns like:
%insvec = insertelement <4 x i8> undef, i8 %val, i32 0
%vec = shufflevector <4 x i8> %insvec, <4 x i8> undef, <4 x i32> zeroinitializer
%cast = bitcast <4 x i8> %vec to i32
%cond = icmp eq i32 %cast, 0
into:
%cond = icmp eq i8 %val, 0
When we construct a splat vector via a shuffle, and bitcast the vector into an integer type for comparison against an integer constant. Then we can simplify the the comparison to compare the splatted value against the integer constant.
Reviewers: spatel, anna, mkazantsev
Reviewed By: spatel
Subscribers: efriedma, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D44997
llvm-svn: 329087
Summary:
Presently, InstCombiner::foldICmpWithCastAndCast() implicitly assumes that it is
only invoked with icmp instructions of integer type. If that assumption is broken,
and it is called with an icmp of vector type, then it fails (asserts/crashes).
This patch addresses the deficiency. It allows it to simplify
icmp (ptrtoint x), (ptrtoint/c) of vector type into a compare of the inputs,
much as is done when the type is integer.
Reviewers: apilipenko, fedor.sergeev, mkazantsev, anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44063
llvm-svn: 326730
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
Because of potential UB (known bits conflicts with an llvm.assume),
we have to check rather than assert here because InstSimplify doesn't
kill the compare:
https://bugs.llvm.org/show_bug.cgi?id=35846
llvm-svn: 322104
Summary:
This patch adds an early out to visitICmpInst if we are looking at a compare as part of an integer absolute value idiom. Similar is already done for min/max.
In the particular case I observed in a benchmark we had an absolute value of a load from an indexed global. We simplified the compare using foldCmpLoadFromIndexedGlobal into a magic bit vector, a shift, and an and. But the load result was still used for the select and the negate part of the absolute valute idiom. So we overcomplicated the code and lost the ability to recognize it as an absolute value.
I've chosen a simpler case for the test here.
Reviewers: spatel, davide, majnemer
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39766
llvm-svn: 317994
Summary:
The following transformation for cmp instruction:
icmp smin(x, PositiveValue), 0 -> icmp x, 0
should only be done after checking for min/max to prevent infinite
looping caused by a reverse canonicalization. That is why this
transformation was moved to place after the mentioned check.
Reviewers: spatel, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38934
Patch by: Artur Gainullin <artur.gainullin@intel.com>
llvm-svn: 315895
We can support ashr similar to lshr, if we know that none of the shifted in bits are used. In that case SimplifyDemandedBits would normally convert it to lshr. But that conversion doesn't happen if the shift has additional users.
Differential Revision: https://reviews.llvm.org/D38521
llvm-svn: 314945
Apparently this works by virtue of the fact that the pointers are pointers to the APInts stored inside of the ConstantInt objects. But I really don't think we should be relying on that.
llvm-svn: 314761
Summary: This currently uses ConstantExpr to do its math, but as noted in a TODO it can all be done directly on APInt.
Reviewers: spatel, majnemer
Reviewed By: majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38440
llvm-svn: 314640
This reverts r314017 and similar code added in later commits. It seems to not work for pointer compares and is causing a bot failure for the last several days.
llvm-svn: 314360
If this transformation succeeds, we're going to remove our dependency on the shift by rewriting the and. So it doesn't matter how many uses the shift has.
This distributes the one use check to other transforms in foldICmpAndConstConst that do need it.
Differential Revision: https://reviews.llvm.org/D38206
llvm-svn: 314233
All this optimization cares about is knowing how many low bits of LHS is known to be zero and whether that means that the result is 0 or greater than the RHS constant. It doesn't matter where the zeros in the low bits came from. So we don't need to specifically look for an AND. Instead we can use known bits.
Differential Revision: https://reviews.llvm.org/D38195
llvm-svn: 314153
The result of the isSignBitCheck isn't used anywhere else and this allows us to share the m_APInt call in the likely case that it isn't a sign bit check.
llvm-svn: 314018
We already did (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a result greater than C1. But there is an equivalent inverse condition with <= C1 (which will be canonicalized to < C1+1)
Differential Revision: https://reviews.llvm.org/D38065
llvm-svn: 313819
This is a preliminary step towards solving the remaining part of PR27145 - IR for isfinite():
https://bugs.llvm.org/show_bug.cgi?id=27145
In order to solve that one more generally, we need to add matching for and/or of fcmp ord/uno
with a constant operand.
But while looking at those patterns, I realized we were missing a canonicalization for nonzero
constants. Rather than limiting to just folds for constants, we're adding a general value
tracking method for this based on an existing DAG helper.
By transforming everything to 0.0, we can simplify the existing code in foldLogicOfFCmps()
and pick up missing vector folds.
Differential Revision: https://reviews.llvm.org/D37427
llvm-svn: 312591
Previously the InstCombiner class contained a pointer to an IR builder that had been passed to the constructor. Sometimes this would be passed to helper functions as either a pointer or the pointer would be dereferenced to be passed by reference.
This patch makes it a reference everywhere including the InstCombiner class itself so there is more inconsistency. This a large, but mechanical patch. I've done very minimal formatting changes on it despite what clang-format wanted to do.
llvm-svn: 307451
We assumed the constant was a scalar when creating the replacement operand.
Also, improve tests for this fold and move the tests for this fold to their own file.
I'll move the related and missing tests to this file as a follow-up.
llvm-svn: 306985
I noticed this missed bswap optimization in the CGP memcmp() expansion,
and then I saw that we don't have the fold in InstCombine.
Differential Revision: https://reviews.llvm.org/D34763
llvm-svn: 306980
Summary:
Many languages have a three way comparison idiom where comparing two values
produces not a boolean, but a tri-state value. Typical values (e.g. as used in
the lcmp/fcmp bytecodes from Java) are -1 for less than, 0 for equality, and +1
for greater than.
We actually do a great job already of converting three way comparisons into
binary comparisons when the result produced has one a single use. Unfortunately,
such values can have more than one use, and in that case, our existing
optimizations break down.
The patch adds a peephole which converts a three-way compare + test idiom into a
binary comparison on the original inputs. It focused on replacing the test on
the result of the three way compare and does nothing about removing the three
way compare itself. That's left to other optimizations (which do actually kick
in commonly.)
We currently recognize one idiom on signed integer compare. In the future, we
plan to recognize and simplify other comparison idioms on
other signed/unsigned datatypes such as floats, vectors etc.
This is a resurrection of Philip Reames' original patch:
https://reviews.llvm.org/D19452
Reviewers: majnemer, apilipenko, reames, sanjoy, mkazantsev
Reviewed by: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34278
llvm-svn: 306100
I believe this code used to use APInt references which would have worked. But then they were changed to pointers to allow m_APInt to be used.
llvm-svn: 304875
Every other place in InstCombine that uses these methods in ValueTracking already pass this information. This makes the remaining sites consistent.
Differential Revision: https://reviews.llvm.org/D33567
llvm-svn: 304018
We have wrappers for several other ValueTracking methods that take care of passing all of the analysis and assumption cache parameters. This extends it to isKnownToBeAPowerOfTwo.
llvm-svn: 303924
There's probably a lot more like this (see also comments in D33338 about responsibility),
but I suspect we don't usually get a visible manifestation.
Given the recent interest in improving InstCombine efficiency, another potential micro-opt
that could be repeated several times in this function: morph the existing icmp pred/operands
instead of creating a new instruction.
llvm-svn: 303860
The swapped operands in the first test is a manifestation of an
inefficiency for vectors that doesn't exist for scalars because
the IRBuilder checks for an all-ones mask for scalars, but not
vectors.
llvm-svn: 303818
This continues the changes started when computeSignBit was replaced with this new version of computeKnowBits.
Differential Revision: https://reviews.llvm.org/D33431
llvm-svn: 303773
Summary:
Fix naming conventions and const correctness.
This completes the changes made in rL303029.
Patch by Yoav Ben-Shalom.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33377
llvm-svn: 303529
The missing optimization for xor-of-icmps still needs to be added, but by
being more efficient (not generating unnecessary logic ops with constants)
we avoid the bug.
See discussion in post-commit comments:
https://reviews.llvm.org/D32143
llvm-svn: 303312
As noted in the post-commit comments in D32143, we should be
catching the constant operand cases sooner to be more efficient
and less likely to expose a missing fold.
llvm-svn: 303309
This adds routines for reseting KnownBits to unknown, making the value all zeros or all ones. It also adds methods for querying if the value is zero, all ones or unknown.
Differential Revision: https://reviews.llvm.org/D32637
llvm-svn: 302262
This patch introduces a new KnownBits struct that wraps the two APInt used by computeKnownBits. This allows us to treat them as more of a unit.
Initially I've just altered the signatures of computeKnownBits and InstCombine's simplifyDemandedBits to pass a KnownBits reference instead of two separate APInt references. I'll do similar to the SelectionDAG version of computeKnownBits/simplifyDemandedBits as a separate patch.
I've added a constructor that allows initializing both APInts to the same bit width with a starting value of 0. This reduces the repeated pattern of initializing both APInts. Once place default constructed the APInts so I added a default constructor for those cases.
Going forward I would like to add more methods that will work on the pairs. For example trunc, zext, and sext occur on both APInts together in several places. We should probably add a clear method that can be used to clear both pieces. Maybe a method to check for conflicting information. A method to return (Zero|One) so we don't write it out everywhere. Maybe a method for (Zero|One).isAllOnesValue() to determine if all bits are known. I'm sure there are many other methods we can come up with.
Differential Revision: https://reviews.llvm.org/D32376
llvm-svn: 301432
getSignBit is a static function that creates an APInt with only the sign bit set. getSignMask seems like a better name to convey its functionality. In fact several places use it and then store in an APInt named SignMask.
Differential Revision: https://reviews.llvm.org/D32108
llvm-svn: 300856
We currently only support folding a subtract into a select but not a PHI. This fixes that.
I had to fix an assumption in FoldOpIntoPhi that assumed the PHI node was always in operand 0. Now we pass it in like we do for FoldOpIntoSelect. But we still require some dancing to find the Constant when we create the BinOp or ConstantExpr. This is based code is similar to what we do for selects.
Since I touched all call sites, this also renames FoldOpIntoPhi to foldOpIntoPhi to match coding standards.
Differential Revision: https://reviews.llvm.org/D31686
llvm-svn: 300363
Switch from Euclid's algorithm to Stein's algorithm for computing GCD. This
avoids the (expensive) APInt division operation in favour of bit operations.
Remove all memory allocation from within the GCD loop by tweaking our `lshr`
implementation so it can operate in-place.
Differential Revision: https://reviews.llvm.org/D31968
llvm-svn: 300252