This helper method is useful even outside of Gnu toolchains, so move
it to ToolChain so it can be reused in other toolchains such as Fuchsia.
Differential Revision: https://reviews.llvm.org/D88452
Currenlty assume x18 is used as pointer to shadow call stack. User shall pass
flags:
"-fsanitize=shadow-call-stack -ffixed-x18"
Runtime supported is needed to setup x18.
If SCS is desired, all parts of the program should be built with -ffixed-x18 to
maintain inter-operatability.
There's no particuluar reason that we must use x18 as SCS pointer. Any register
may be used, as long as it does not have designated purpose already, like RA or
passing call arguments.
Differential Revision: https://reviews.llvm.org/D84414
It's not undefined behavior for an unsigned left shift to overflow (i.e. to
shift bits out), but it has been the source of bugs and exploits in certain
codebases in the past. As we do in other parts of UBSan, this patch adds a
dynamic checker which acts beyond UBSan and checks other sources of errors. The
option is enabled as part of -fsanitize=integer.
The flag is named: -fsanitize=unsigned-shift-base
This matches shift-base and shift-exponent flags.
<rdar://problem/46129047>
Differential Revision: https://reviews.llvm.org/D86000
`clang` currently requires the native linker on Solaris:
- It passes `-C` to `ld` which GNU `ld` doesn't understand.
- To use `gld`, one needs to pass the correct `-m EMU` option to select
the right emulation. Solaris `ld` cannot handle that option.
So far I've worked around this by passing `-DCLANG_DEFAULT_LINKER=/usr/bin/ld`
to `cmake`. However, if someone forgets this, it depends on the user's
`PATH` whether or not `clang` finds the correct linker, which doesn't make
for a good user experience.
While it would be nice to detect the linker flavor at runtime, this is more
involved. Instead, this patch defaults to `/usr/bin/ld` on Solaris. This
doesn't work on its own, however: a link fails with
clang-12: error: unable to execute command: Executable "x86_64-pc-solaris2.11-/usr/bin/ld" doesn't exist!
I avoid this by leaving absolute paths alone in `ToolChain::GetLinkerPath`.
Tested on `amd64-pc-solaris2.11`, `sparcv9-sun-solaris2.11`, and
`x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D84029
Supersedes D80225. Add --ld-path= to avoid strange target specific
prefixes and make -fuse-ld= focus on its intended job: "linker flavor".
(-f* affects generated code or language features. --ld-path does not
affect codegen, so it is not named -f*)
The way --ld-path= works is similar to "Command Search and Execution" in POSIX.1-2017 2.9.1 Simple Commands.
If --ld-path= specifies
* an absolute path, the value specifies the linker.
* a relative path without a path component separator (/), the value is searched using the -B, COMPILER_PATH, then PATH.
* a relative path with a path component separator, the linker is found relative to the current working directory.
-fuse-ld= and --ld-path= can be composed, e.g. `-fuse-ld=lld --ld-path=/usr/bin/ld.lld`
The driver can base its linker option decision on the flavor -fuse-ld=, but it should not do fragile
flavor checking with --ld-path=.
Reviewed By: whitequark, keith
Differential Revision: https://reviews.llvm.org/D83015
Add GNU Static Lib Tool, which supports the --emit-static-lib
flag. For HIP, a static library archive will be created and
consist of HIP Fat Binary host object with the device images embedded.
Using llvm-ar to create the static archive. Also, delete existing
output file to ensure a new archive is created each time.
Reviewers: yaxunl, tra, rjmccall, echristo
Subscribers: echristo, JonChesterfield, scchan, msearles
Differential Revision: https://reviews.llvm.org/D78759
Summary:
The Android NDK's clang driver is used with an Android -target setting,
and the driver automatically finds the Android sysroot at a path
relative to the driver. The sysroot has the libc++ headers in it.
Remove Hurd::computeSysRoot as it is equivalent to the new
ToolChain::computeSysRoot method.
Fixes PR46213.
Reviewers: srhines, danalbert, #libc, kristina
Reviewed By: srhines, danalbert
Subscribers: ldionne, sthibaul, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81622
To support std::complex and some other standard C/C++ functions in HIP device code,
they need to be forced to be __host__ __device__ functions by pragmas. This is done
by some clang standard C++ wrapper headers which are shared between cuda-clang and hip-Clang.
For these standard C++ wapper headers to work properly, specific include path order
has to be enforced:
clang C++ wrapper include path
standard C++ include path
clang include path
Also, these C++ wrapper headers require device version of some standard C/C++ functions
must be declared before including them. This needs to be done by including a default
header which declares or defines these device functions. The default header is always
included before any other headers are included by users.
This patch adds the the default header and include path for HIP.
Differential Revision: https://reviews.llvm.org/D81176
These are mapped in MachO::getMachOArchName already, but were missing
in ToolChain::getDefaultUniversalArchName.
Having these reverse mapped here fixes weird inconsistencies like
-dumpmachine showing a target triple like "aarch64-apple-darwin",
while "clang -target aarch64-apple-darwin" didn't use to work (ended
up mapped as unknown-apple-ios).
Differential Revision: https://reviews.llvm.org/D79117
Prior to this change, for a few compiler-rt libraries such as ubsan and
the profile library, Clang would embed "-defaultlib:path/to/rt-arch.lib"
into the .drective section of every object compiled with
-finstr-profile-generate or -fsanitize=ubsan as appropriate.
These paths assume that the link step will run from the same working
directory as the compile step. There is also evidence that sometimes the
paths become absolute, such as when clang is run from a different drive
letter from the current working directory. This is fragile, and I'd like
to get away from having paths embedded in the object if possible. Long
ago it was suggested that we use this for ASan, and apparently I felt
the same way back then:
https://reviews.llvm.org/D4428#56536
This is also consistent with how all other autolinking usage works for
PS4, Mac, and Windows: they all use basenames, not paths.
To keep things working for people using the standard GCC driver
workflow, the driver now adds the resource directory to the linker
library search path when it calls the linker. This is enough to make
check-ubsan pass, and seems like a generally good thing.
Users that invoke the linker directly (most clang-cl users) will have to
add clang's resource library directory to their linker search path in
their build system. I'm not sure where I can document this. Ideally I'd
also do it in the MSBuild files, but I can't figure out where they go.
I'd like to start with this for now.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D65543
The argument after -Xarch_device will be added to the arguments for CUDA/HIP
device compilation and will be removed for host compilation.
The argument after -Xarch_host will be added to the arguments for CUDA/HIP
host compilation and will be removed for device compilation.
Differential Revision: https://reviews.llvm.org/D76520
Extract common code to a function. To prepare for
adding an option for CUDA/HIP host and device only
option.
Differential Revision: https://reviews.llvm.org/D76455
This is to avoid performance regressions when the default attribute
behavior is fixed to assume ieee.
I tested the default on x86_64 ubuntu, which seems to default to
FTZ/DAZ, but am guessing for x86 and PS4.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
This patch adds a new Flang mode. When in Flang mode, the driver will
invoke flang for fortran inputs instead of falling back to the GCC
toolchain as it would otherwise do.
The behaviour of other driver modes are left unmodified to preserve
backwards compatibility.
It is intended that a soon to be implemented binary in the flang project
will import libclangDriver and run the clang driver in the new flang
mode.
Please note that since the binary invoked by the driver is under
development, there will no doubt be further tweaks necessary in future
commits.
* Initial support is added for basic driver phases
* -E, -fsyntax-only, -emit-llvm -S, -emit-llvm, -S, (none specified)
* -### tests are added for all of the above
* This is more than is supported by f18 so far, which will emit errors
for those options which are unimplemented.
* A test is added that ensures that clang gives a reasonable error
message if flang is not available in the path (without -###).
* Test that the driver accepts multiple inputs in --driver-mode=flang.
* Test that a combination of C and Fortran inputs run both clang and
flang in --driver-mode=flang.
* clang/test/Driver/fortran.f95 is fixed to use the correct fortran
comment character.
Differential revision: https://reviews.llvm.org/D63607
This patch removes the remaining part of the OpenMP offload linker scripts which was used for inserting device binaries into the output linked binary. Device binaries are now inserted into the host binary with a help of the wrapper bit-code file which contains device binaries as data. Wrapper bit-code file is dynamically created by the clang driver with a help of new tool clang-offload-wrapper which takes device binaries as input and produces bit-code file with required contents. Wrapper bit-code is then compiled to an object and resulting object is appended to the host linking by the clang driver.
This is the second part of the patch for eliminating OpenMP linker script (please see https://reviews.llvm.org/D64943).
Differential Revision: https://reviews.llvm.org/D68166
llvm-svn: 374219
Second Landing Attempt:
This patch enables end to end support for generating ELF interface stubs
directly from clang. Now the following:
clang -emit-interface-stubs -o libfoo.so a.cpp b.cpp c.cpp
will product an ELF binary with visible symbols populated. Visibility attributes
and -fvisibility can be used to control what gets populated.
* Adding ToolChain support for clang Driver IFS Merge Phase
* Implementing a default InterfaceStubs Merge clang Tool, used by ToolChain
* Adds support for the clang Driver to involve llvm-ifs on ifs files.
* Adds -emit-merged-ifs flag, to tell llvm-ifs to emit a merged ifs text file
instead of the final object format (normally ELF)
Differential Revision: https://reviews.llvm.org/D63978
llvm-svn: 374061
This patch enables end to end support for generating ELF interface stubs
directly from clang. Now the following:
clang -emit-interface-stubs -o libfoo.so a.cpp b.cpp c.cpp
will product an ELF binary with visible symbols populated. Visibility attributes
and -fvisibility can be used to control what gets populated.
* Adding ToolChain support for clang Driver IFS Merge Phase
* Implementing a default InterfaceStubs Merge clang Tool, used by ToolChain
* Adds support for the clang Driver to involve llvm-ifs on ifs files.
* Adds -emit-merged-ifs flag, to tell llvm-ifs to emit a merged ifs text file
instead of the final object format (normally ELF)
Differential Revision: https://reviews.llvm.org/D63978
llvm-svn: 373538
There are times when we wish to explicitly control the C++ standard
library search paths used by the driver. For example, when we're
building against the Android NDK, we might want to use the NDK's C++
headers (which have a custom inline namespace) even if we have C++
headers installed next to the driver. We might also be building against
a non-standard directory layout and wanting to specify the C++ standard
library include directories explicitly.
We could accomplish this by passing -nostdinc++ and adding an explicit
-isystem for our custom search directories. However, users of our
toolchain may themselves want to use -nostdinc++ and a custom C++ search
path (libc++'s build does this, for example), and our added -isystem
won't respect the -nostdinc++, leading to multiple C++ header
directories on the search path, which causes build failures.
Add a new driver option -stdlib++-isystem to support this use case.
Passing this option suppresses adding the default C++ library include
paths in the driver, and it also respects -nostdinc++ to allow users to
still override the C++ library paths themselves.
It's a bit unfortunate that we end up with both -stdlib++-isystem and
-cxx-isystem, but their semantics differ significantly. -cxx-isystem is
unaffected by -nostdinc++ and is added to the end of the search path
(which is not appropriate for C++ standard library headers, since they
often #include_next into other system headers), while -stdlib++-isystem
respects -nostdinc++, is added to the beginning of the search path, and
suppresses the default C++ library include paths.
Differential Revision: https://reviews.llvm.org/D64089
llvm-svn: 367982
This flag is analoguous to other flags like -nostdlib or -nolibc
and could be used to disable linking of profile runtime library.
This is useful in certain environments like kernel, where profile
instrumentation is still desirable, but we cannot use the standard
runtime library.
llvm-svn: 365808
D63793 removed float-divide-by-zero from the "undefined" set but it
failed to add it to getSupportedSanitizers(), thus the sanitizer is
rejected by the driver:
clang-9: error: unsupported option '-fsanitize=float-divide-by-zero' for target 'x86_64-unknown-linux-gnu'
Also, add SanitizerMask::FloatDivideByZero to a few other masks to make -fsanitize-trap, -fsanitize-recover, -fsanitize-minimal-runtime and -fsanitize-coverage work.
Reviewed By: rsmith, vitalybuka
Differential Revision: https://reviews.llvm.org/D64317
llvm-svn: 365587
This is a follow up to r361432, changing the layout of per-target
runtimes to more closely resemble multiarch. While before, we used
the following layout:
[RESOURCE_DIR]/<target>/lib/libclang_rt.<runtime>.<ext>
Now we use the following layout:
[RESOURCE_DIR]/lib/<target>/libclang_rt.<runtime>.<ext>
This also more closely resembles the existing "non-per-target" layout:
[RESOURCE_DIR]/lib/<os>/libclang_rt.<runtime>-<arch>.<ext>
This change will enable further simplification of the driver logic
in follow up changes.
Differential Revision: https://reviews.llvm.org/D62469
llvm-svn: 361784
This is a follow up to r361432 and r361504 which addresses issues
introduced by those changes. Specifically, it avoids duplicating
file and runtime paths in case when the effective triple is the
same as the cannonical one. Furthermore, it fixes the broken multilib
setup in the Fuchsia driver and deduplicates some of the code.
Differential Revision: https://reviews.llvm.org/D62442
llvm-svn: 361709
This addresses the issue introduced in r361432 where we would only
try effective triple but not the normalized one as we do for other
runtimes.
Differential Revision: https://reviews.llvm.org/D62286
llvm-svn: 361504
This change is a consequence of the discussion in "RFC: Place libs in
Clang-dedicated directories", specifically the suggestion that
libunwind, libc++abi and libc++ shouldn't be using Clang resource
directory. Tools like clangd make this assumption, but this is
currently not true for the LLVM_ENABLE_PER_TARGET_RUNTIME_DIR build.
This change addresses that by moving the output of these libraries to
lib/$target/c++ and include/c++ directories, leaving resource directory
only for compiler-rt runtimes and Clang builtin headers.
Differential Revision: https://reviews.llvm.org/D59168
llvm-svn: 361432
Summary:
In this patch we propose a temporary solution to resolving math functions for the NVPTX toolchain, temporary until OpenMP variant is supported by Clang.
We intercept the inclusion of math.h and cmath headers and if we are in the OpenMP-NVPTX case, we re-use CUDA's math function resolution mechanism.
Authors:
@gtbercea
@jdoerfert
Reviewers: hfinkel, caomhin, ABataev, tra
Reviewed By: hfinkel, ABataev, tra
Subscribers: JDevlieghere, mgorny, guansong, cfe-commits, jdoerfert
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61399
llvm-svn: 360265
"clang++ hello.cc --rtlib=compiler-rt"
now can works without specifying additional unwind or exception
handling libraries.
This reworked version of the feature no longer modifies today's default
unwind library for compiler-rt: which is nothing. Rather, a user
can specify -DCLANG_DEFAULT_UNWINDLIB=libunwind when configuring
the compiler.
This should address the issues from the previous version.
Update tests for new --unwindlib semantics.
Differential Revision: https://reviews.llvm.org/D59109
llvm-svn: 356508
This change introduces support for object files in addition to static
and shared libraries which were already supported which requires
changing the type of the argument from boolean to an enum.
Differential Revision: https://reviews.llvm.org/D56044
llvm-svn: 355891
This change is a consequence of the discussion in "RFC: Place libs in
Clang-dedicated directories", specifically the suggestion that
libunwind, libc++abi and libc++ shouldn't be using Clang resource
directory. Tools like clangd make this assumption, but this is
currently not true for the LLVM_ENABLE_PER_TARGET_RUNTIME_DIR build.
This change addresses that by moving the output of these libraries to
lib/<target> and include/ directories, leaving resource directory only
for compiler-rt runtimes and Clang builtin headers.
Differential Revision: https://reviews.llvm.org/D59013
llvm-svn: 355665
When -forder-file-instrumentation is on, we pass llvm flag to enable the order file instrumentation pass.
https://reviews.llvm.org/D58751
llvm-svn: 355333
Part 1 of CSPGO change in Clang. This includes changes in clang options
and calls to llvm PassManager. Tests will be committed in part2.
This change needs the PassManager change in llvm.
Differential Revision: https://reviews.llvm.org/D54176
llvm-svn: 355331
enum SanitizerOrdinal has reached maximum capacity, this change extends the capacity to 128 sanitizer checks.
This can eventually allow us to add gcc 8's options "-fsanitize=pointer-substract" and "-fsanitize=pointer-compare".
This is a recommit of r354873 but with a fix for unqualified lookup error in lldb cmake build bot.
Fixes: https://llvm.org/PR39425
Differential Revision: https://reviews.llvm.org/D57914
llvm-svn: 355190
enum SanitizerOrdinal has reached maximum capacity, this change extends the capacity to 128 sanitizer checks.
This can eventually allow us to add gcc 8's options "-fsanitize=pointer-substract" and "-fsanitize=pointer-compare".
Fixes: https://llvm.org/PR39425
Differential Revision: https://reviews.llvm.org/D57914
llvm-svn: 354873
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Make sure that symbols needed to implement runtime support for gcov are
exported when using an export list on Darwin.
Without the clang driver exporting these symbols, the linker hides them,
resulting in tapi verification failures.
rdar://45944768
Differential Revision: https://reviews.llvm.org/D55151
llvm-svn: 348187
This reverts commit r345370, as it uncovered even more issues in
tests with partial/inconsistent path normalization:
http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-win/builds/13562http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/886http://lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast/builds/20994
In particular, these tests seem to have failed:
Clang :: CodeGen/thinlto-diagnostic-handler-remarks-with-hotness.ll
Clang :: CodeGen/thinlto-multi-module.ll
Clang :: Driver/cuda-external-tools.cu
Clang :: Driver/cuda-options.cu
Clang :: Driver/hip-toolchain-no-rdc.hip
Clang :: Driver/hip-toolchain-rdc.hip
Clang :: Driver/openmp-offload-gpu.c
At least the Driver tests could potentially be fixed by extending
the path normalization to even more places, but the issues with the
CodeGen tests are still unknown.
In addition, a number of other tests seem to have been broken in
other clang dependent tools such as clang-tidy and clangd.
llvm-svn: 345372
libtool inspects the output of $CC -v to detect what object files and
libraries are linked in by default. When clang is built as a native
windows executable, all paths are formatted with backslashes, and
the backslashes cause each argument to be enclosed in quotes. The
backslashes and quotes break further processing within libtool (which
is implemented in shell script, running in e.g. msys) pretty badly.
Between unix style pathes (that only work in tools that are linked
to the msys runtime, essentially the same as cygwin) and proper windows
style paths (with backslashes, that can easily break shell scripts
and msys environments), the best compromise is to use windows style
paths (starting with e.g. c:) but with forward slashes, which both
msys based tools, shell scripts and native windows executables can
cope with. This incidentally turns out to be the form of paths that
GCC prints out when run with -v on windows as well.
This change potentially makes the output from clang -v a bit more
inconsistent, but it is isn't necessarily very consistent to begin with.
Compared to the previous attempt in SVN r345004, this now does
the same transformation on more paths, hopefully on the right set
of paths so that all tests pass (previously some tests failed, where
path fragments that were required to be identical turned out to
use different path separators in different places). This now also
is done only for non-windows, or cygwin/mingw targets, to preserve
all backslashes for MSVC cases (where the paths can end up e.g. embedded
into PDB files. (The transformation function itself,
llvm::sys::path::convert_to_slash only has an effect when run on windows.)
Differential Revision: https://reviews.llvm.org/D53066
llvm-svn: 345370
This reverts commit r345004, as it broke tests when actually run
on windows; see e.g.
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/763.
This broke tests that had captured a variable containing a path
with backslashes, which failed to match cases in the output
where the path separators had been changed into forward slashes.
llvm-svn: 345005
libtool inspects the output of $CC -v to detect what object files and
libraries are linked in by default. When clang is built as a native
windows executable, all paths are formatted with backslashes, and
the backslashes cause each argument to be enclosed in quotes. The
backslashes and quotes break further processing within libtool (which
is implemented in shell script, running in e.g. msys) pretty badly.
Between unix style pathes (that only work in tools that are linked
to the msys runtime, essentially the same as cygwin) and proper windows
style paths (with backslashes, that can easily break shell scripts
and msys environments), the best compromise is to use windows style
paths (starting with e.g. c:) but with forward slashes, which both
msys based tools, shell scripts and native windows executables can
cope with. This incidentally turns out to be the form of paths that
GCC prints out when run with -v on windows as well.
This change potentially makes the output from clang -v a bit more
inconsistent, but it is isn't necessarily very consistent to begin with.
Differential Revision: https://reviews.llvm.org/D53066
llvm-svn: 345004
This patch moves the virtual file system form clang to llvm so it can be
used by more projects.
Concretely the patch:
- Moves VirtualFileSystem.{h|cpp} from clang/Basic to llvm/Support.
- Moves the corresponding unit test from clang to llvm.
- Moves the vfs namespace from clang::vfs to llvm::vfs.
- Formats the lines affected by this change, mostly this is the result of
the added llvm namespace.
RFC on the mailing list:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/126657.html
Differential revision: https://reviews.llvm.org/D52783
llvm-svn: 344140
Linking to ASan for MinGW is similar to MSVC, but MinGW always links
the MSVCRT dynamically, so there is only one of the MSVC cases to
consider.
When linking to a shared compiler runtime library on MinGW, the suffix
of the import library is .dll.a.
The existing case of .dll as suffix for windows in general doesn't
seem correct (since this is used for linking). As long as callers never
actually set the Shared flag, the default static suffix of .lib also
worked fine for import libraries as well.
Differential Revision: https://reviews.llvm.org/D52538
llvm-svn: 343537
Previously we only used target triple as provided which matches the
GCC behavior, but it also means that all clients have to be consistent
in their spelling of target triples since e.g. x86_64-linux-gnu and
x86_64-unknown-linux-gnu will result in Clang driver looking at two
different paths when searching for runtime libraries.
Unfortunatelly, as it turned out many clients aren't consistent in
their spelling of target triples, e.g. many Linux distributions use
the shorter spelling but config.guess and rustc insist on using the
normalized variant which is causing issues. To avoid having to ship
multiple copies of runtimes for different triple spelling or rely on
symlinks which are not portable, we should also check the normalized
triple when constructing paths for multiarch runtimes.
Differential Revision: https://reviews.llvm.org/D50547
llvm-svn: 340471
Summary:
C and C++ are interesting languages. They are statically typed, but weakly.
The implicit conversions are allowed. This is nice, allows to write code
while balancing between getting drowned in everything being convertible,
and nothing being convertible. As usual, this comes with a price:
```
unsigned char store = 0;
bool consume(unsigned int val);
void test(unsigned long val) {
if (consume(val)) {
// the 'val' is `unsigned long`, but `consume()` takes `unsigned int`.
// If their bit widths are different on this platform, the implicit
// truncation happens. And if that `unsigned long` had a value bigger
// than UINT_MAX, then you may or may not have a bug.
// Similarly, integer addition happens on `int`s, so `store` will
// be promoted to an `int`, the sum calculated (0+768=768),
// and the result demoted to `unsigned char`, and stored to `store`.
// In this case, the `store` will still be 0. Again, not always intended.
store = store + 768; // before addition, 'store' was promoted to int.
}
// But yes, sometimes this is intentional.
// You can either make the conversion explicit
(void)consume((unsigned int)val);
// or mask the value so no bits will be *implicitly* lost.
(void)consume((~((unsigned int)0)) & val);
}
```
Yes, there is a `-Wconversion`` diagnostic group, but first, it is kinda
noisy, since it warns on everything (unlike sanitizers, warning on an
actual issues), and second, there are cases where it does **not** warn.
So a Sanitizer is needed. I don't have any motivational numbers, but i know
i had this kind of problem 10-20 times, and it was never easy to track down.
The logic to detect whether an truncation has happened is pretty simple
if you think about it - https://godbolt.org/g/NEzXbb - basically, just
extend (using the new, not original!, signedness) the 'truncated' value
back to it's original width, and equality-compare it with the original value.
The most non-trivial thing here is the logic to detect whether this
`ImplicitCastExpr` AST node is **actually** an implicit conversion, //or//
part of an explicit cast. Because the explicit casts are modeled as an outer
`ExplicitCastExpr` with some `ImplicitCastExpr`'s as **direct** children.
https://godbolt.org/g/eE1GkJ
Nowadays, we can just use the new `part_of_explicit_cast` flag, which is set
on all the implicitly-added `ImplicitCastExpr`'s of an `ExplicitCastExpr`.
So if that flag is **not** set, then it is an actual implicit conversion.
As you may have noted, this isn't just named `-fsanitize=implicit-integer-truncation`.
There are potentially some more implicit conversions to be warned about.
Namely, implicit conversions that result in sign change; implicit conversion
between different floating point types, or between fp and an integer,
when again, that conversion is lossy.
One thing i know isn't handled is bitfields.
This is a clang part.
The compiler-rt part is D48959.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=21530 | PR21530 ]], [[ https://bugs.llvm.org/show_bug.cgi?id=37552 | PR37552 ]], [[ https://bugs.llvm.org/show_bug.cgi?id=35409 | PR35409 ]].
Partially fixes [[ https://bugs.llvm.org/show_bug.cgi?id=9821 | PR9821 ]].
Fixes https://github.com/google/sanitizers/issues/940. (other than sign-changing implicit conversions)
Reviewers: rjmccall, rsmith, samsonov, pcc, vsk, eugenis, efriedma, kcc, erichkeane
Reviewed By: rsmith, vsk, erichkeane
Subscribers: erichkeane, klimek, #sanitizers, aaron.ballman, RKSimon, dtzWill, filcab, danielaustin, ygribov, dvyukov, milianw, mclow.lists, cfe-commits, regehr
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D48958
llvm-svn: 338288
This change adds a support for multiarch style runtimes layout, so in
addition to the existing layout where runtimes get installed to:
lib/clang/$version/lib/$os
Clang now allows runtimes to be installed to:
lib/clang/$version/$target/lib
This also includes libc++, libc++abi and libunwind; today those are
assumed to be in Clang library directory built for host, with the
new layout it is possible to install libc++, libc++abi and libunwind
into the runtime directory built for different targets.
The use of new layout is enabled by setting the
LLVM_ENABLE_RUNTIME_TARGET_DIR CMake variable and is supported by both
projects and runtimes layouts. The runtimes CMake build has been further
modified to use the new layout when building runtimes for multiple
targets.
Differential Revision: https://reviews.llvm.org/D45604
llvm-svn: 335809
Summary:
This kind of functionality is useful to other project apart from clang.
LLDB works with version numbers a lot, but it does not have a convenient
abstraction for this. Moving this class to a lower level library allows
it to be freely used within LLDB.
Since this class is used in a lot of places in clang, and it used to be
in the clang namespace, it seemed appropriate to add it to the list of
adopted classes in LLVM.h to avoid prefixing all uses with "llvm::".
Also, I didn't find any tests specific for this class, so I wrote a
couple of quick ones for the more interesting bits of functionality.
Reviewers: zturner, erik.pilkington
Subscribers: mgorny, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D47887
llvm-svn: 334399
-fseh-exceptions is only meaningful for MinGW targets, and that driver
already has logic to pass either -fdwarf-exceptions or -fseh-exceptions
as appropriate. -fseh-exceptions is just a no-op for MSVC triples, and
passing it to cc1 causes unnecessary confusion.
Differential Revision: https://reviews.llvm.org/D47850
llvm-svn: 334145
NFC for targets other than PS4.
This patch is a change in behavior for PS4, in that PS4 will no longer enable
RTTI when -fexceptions is specified (RTTI and Exceptions are disabled by default
on PS4). RTTI will remain disabled except for types being thrown or caught.
Also, '-fexceptions -fno-rtti' (previously prohibited on PS4) is now accepted,
as it is for other targets.
This patch removes some PS4 specific code, making the code cleaner.
Also, in the test file rtti-options.cpp, PS4 tests where the behavior is the
same as the generic x86_64-linux are removed, making the test cleaner.
Differential Revision: https://reviews.llvm.org/D46982
llvm-svn: 332784
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
LLVM_ON_WIN32 is set exactly with MSVC and MinGW (but not Cygwin) in
HandleLLVMOptions.cmake, which is where _WIN32 defined too. Just use the
default macro instead of a reinvented one.
See thread "Replacing LLVM_ON_WIN32 with just _WIN32" on llvm-dev and cfe-dev.
No intended behavior change.
llvm-svn: 331069
The implementation of shadow call stack on aarch64 is quite different to
the implementation on x86_64. Instead of reserving a segment register for
the shadow call stack, we reserve the platform register, x18. Any function
that spills lr to sp also spills it to the shadow call stack, a pointer to
which is stored in x18.
Differential Revision: https://reviews.llvm.org/D45239
llvm-svn: 329236
Summary:
Add support for the -fsanitize=shadow-call-stack flag which causes clang
to add ShadowCallStack attribute to functions compiled with that flag
enabled.
Reviewers: pcc, kcc
Reviewed By: pcc, kcc
Subscribers: cryptoad, cfe-commits, kcc
Differential Revision: https://reviews.llvm.org/D44801
llvm-svn: 329122
Return a new CompilerRT Path on NetBSD: "netbsd", instead of
getOS(), which returns a string like "netbsd8.9.12".
Sponsored by <The NetBSD Foundation>
llvm-svn: 326219
clang used to require adding an ".exe" suffix when targeting ELF systems on Windows.
Differential Revision: https://reviews.llvm.org/D43621
llvm-svn: 326164
Summary:
This patch (on top of https://reviews.llvm.org/D35755) provides the clang side necessary
to enable the Solaris port of the sanitizers implemented by https://reviews.llvm.org/D40898,
https://reviews.llvm.org/D40899, and https://reviews.llvm.org/D40900).
A few features of note:
* While compiler-rt cmake/base-config-ix.cmake (COMPILER_RT_OS_DIR) places
the runtime libs in a tolower(CMAKE_SYSTEM_NAME) directory, clang defaults to
the OS part of the target triplet (solaris2.11 in the case at hand). The patch makes
them agree on compiler-rt's idea.
* While Solaris ld accepts a considerable number of GNU ld options for compatibility,
it only does so for the double-dash forms. clang unfortunately is inconsistent here
and sometimes uses the double-dash form, sometimes the single-dash one that
confuses the hell out of Solaris ld. I've changed the affected places to use the double-dash
form that should always work.
* As described in https://reviews.llvm.org/D40899, Solaris ld doesn't create the
__start___sancov_guards/__stop___sancov_guards labels gld/gold/lld do, so I'm
including additional runtime libs into the link that provide them.
* One test uses -fstack-protector, but unlike other systems libssp hasn't been folded
into Solaris libc, but needs to be linked with separately.
* For now, only 32-bit x86 asan is enabled on Solaris. 64-bit x86 should follow, but
sparc (which requires additional compiler-rt changes not yet submitted) fails miserably
due to a llvmsparc backend limitation:
fatal error: error in backend: Function "_ZN7testing8internal16BoolFromGTestEnvEPKcb": over-aligned dynamic alloca not supported.
However, inside the gcc tree, Solaris/sparc asan works almost as well as x86.
Reviewers: rsmith, alekseyshl
Reviewed By: alekseyshl
Subscribers: jyknight, fedor.sergeev, cfe-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D40903
llvm-svn: 324296
This is a re-apply of r319294.
adds -fseh-exceptions and -fdwarf-exceptions flags
clang will check if the user has specified an exception model flag,
in the absense of specifying the exception model clang will then check
the driver default and append the model flag for that target to cc1
-fno-exceptions has a higher priority then specifying the model
move __SEH__ macro definitions out of Targets into InitPreprocessor
behind the -fseh-exceptions flag
move __ARM_DWARF_EH__ macrodefinitions out of verious targets and into
InitPreprocessor behind the -fdwarf-exceptions flag and arm|thumb check
remove unused USESEHExceptions from the MinGW Driver
fold USESjLjExceptions into a new GetExceptionModel function that
gives the toolchain classes more flexibility with eh models
Reviewers: rnk, mstorsjo
Differential Revision: https://reviews.llvm.org/D39673
llvm-svn: 319297
adds -fseh-exceptions and -fdwarf-exceptions flags
clang will check if the user has specified an exception model flag,
in the absense of specifying the exception model clang will then check
the driver default and append the model flag for that target to cc1
clang cc1 assumes dwarf is the default if none is passed
and -fno-exceptions has a higher priority then specifying the model
move __SEH__ macro definitions out of Targets into InitPreprocessor
behind the -fseh-exceptions flag
move __ARM_DWARF_EH__ macrodefinitions out of verious targets and into
InitPreprocessor behind the -fdwarf-exceptions flag and arm|thumb check
remove unused USESEHExceptions from the MinGW Driver
fold USESjLjExceptions into a new GetExceptionModel function that
gives the toolchain classes more flexibility with eh models
Reviewers: rnk, mstorsjo
Differential Revision: https://reviews.llvm.org/D39673
llvm-svn: 319294
The support for relax relocations is dependent on the linker and
different toolchains within the same compiler can be using different
linkers some of which may or may not support relax relocations.
Give toolchains the option to control whether they want to use relax
relocations in addition to the existing (global) build system option.
Differential Revision: https://reviews.llvm.org/D39831
llvm-svn: 318816
This was previously done in some places, but for example not for
bundling so that single object compilation with -c failed. In
addition cubin was used for all file types during unbundling which
is incorrect for assembly files that are passed to ptxas.
Tighten up the tests so that we can't regress in that area.
Differential Revision: https://reviews.llvm.org/D40250
llvm-svn: 318763
The Unified Arm Assembler Language is designed so that the majority of
assembler files can be assembled for both Arm and Thumb with the choice
made as a compilation option.
The way this is done in gcc is to pass -mthumb to the assembler with either
-Wa,-mthumb or -Xassembler -mthumb. This change adds support for these
options to clang. There is no assembler equivalent of -mno-thumb, -marm or
-mno-arm so we don't need to recognize these.
Ideally we would do all of the processing in
CollectArgsForIntegratedAssembler(). Unfortunately we need to change the
triple and at that point it is too late. Instead we look for the option
earlier in ComputeLLVMTriple().
Fixes PR34519
Differential Revision: https://reviews.llvm.org/D40127
llvm-svn: 318647
Also, for OS unknown targets like wasm, don't include
'unknown' in the library path. This is a fix for rL316719.
Differential Revision: https://reviews.llvm.org/D39354
llvm-svn: 316777
When using lld on macOS the current level of detection between ld and
ld64 forces us to rename lld to ld.
For ELF targets we have the ld.lld alias so for MACHO we should have
ld64.lld so we can use lld without replacing the system compiler.
This also solves the additional issue of cross compiling for MACHO
where renaming lld to ld with only target ELF.
This is the clang driver component change to use this new alias.
Reviewers: ruiu, rnk
Differential Revision: https://reviews.llvm.org/D38290
llvm-svn: 315867
The recent fix in D38258 was wrong: getAuxTriple() only returns
non-null values for the CUDA toolchain. That is why the now added
test for PPC and X86 failed.
Differential Revision: https://reviews.llvm.org/D38372
llvm-svn: 314902
AuxTriple is not set if host and device share a toolchain. Also,
removing an argument modifies the DAL which needs to be returned
for future use.
(Move tests back to offload-openmp.c as they are not related to GPUs.)
Differential Revision: https://reviews.llvm.org/D38258
llvm-svn: 314329
Parsing the argument after -Xopenmp-target allocates memory that needs
to be freed. Associate it with the final DerivedArgList after we know
which one will be used.
Differential Revision: https://reviews.llvm.org/D38257
llvm-svn: 314328
The ToolChain class validates the -mthread-model flag in the constructor which
doesn't work correctly since the thread model methods are virtual methods. The
check is moved into Clang::ConstructJob() when constructing the internal
command line.
https://reviews.llvm.org/D37496
Patch by: Ian Tessier!
llvm-svn: 312748
Summary:
Recent changes canonicalized clang_rt library names to refer to
"i386" on all x86 targets. Android historically uses i686.
This change adds a special case to keep i686 in all clang_rt
libraries when targeting Android.
Reviewers: hans, mgorny, beanz
Subscribers: srhines, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D37278
llvm-svn: 312048
Information about clang executable name components, such as target and
driver mode, was passes in std::pair. With this change it is passed in
a special structure. It improves readability and makes access to this
information more convenient.
NFC.
Differential Revision: https://reviews.llvm.org/D36057
llvm-svn: 311981
Use llvm::Triple::getArchTypeName() when looking for compiler-rt
libraries, rather than the exact arch string from the triple. This is
more correct as it matches the values used when building compiler-rt
(builtin-config-ix.cmake) which are the subset of the values allowed
in triples.
For example, this fixes an issue when the compiler set for
i686-pc-linux-gnu triple would not find an i386 compiler-rt library,
while this is the exact arch that is detected by compiler-rt. The same
applies to any other i?86 variant allowed by LLVM.
This also makes the special case for MSVC unnecessary, since now i386
will be used reliably for all 32-bit x86 variants.
Differential Revision: https://reviews.llvm.org/D26796
llvm-svn: 311923
Use llvm::Triple::getArchTypeName() when looking for compiler-rt
libraries, rather than the exact arch string from the triple. This is
more correct as it matches the values used when building compiler-rt
(builtin-config-ix.cmake) which are the subset of the values allowed
in triples.
For example, this fixes an issue when the compiler set for
i686-pc-linux-gnu triple would not find an i386 compiler-rt library,
while this is the exact arch that is detected by compiler-rt. The same
applies to any other i?86 variant allowed by LLVM.
This also makes the special case for MSVC unnecessary, since now i386
will be used reliably for all 32-bit x86 variants.
Differential Revision: https://reviews.llvm.org/D26796
llvm-svn: 311836