This patch adds the last of the changes required to enable
DBG_VALUE_LIST handling in InstrRefLDV, handling variadic debug values
during the transfer tracking step. Most of the changes are fairly
straightforward, and based around tracking multiple locations per
variable in TransferTracker::VLocTracker.
Differential Revision: https://reviews.llvm.org/D128211
In preparation for supporting DBG_VALUE_LIST in InstrRefLDV, this patch
adds the logic for emitting DBG_VALUE_LIST instructions from
InstrRefLDV. The logical changes here are fairly simple, with the main
change being that instead of directly prepending offsets to the DIExpr,
we use appendOpsToArg to modify the expression for individual debug
operands in the expression. The function emitLoc is also changed to take
a list of debug ops, with an empty list meaning an undef value.
Differential Revision: https://reviews.llvm.org/D128209
CodeGenPrepare pass can sink pointer comparison across statepoint
to the point of use (see comment in IR/SafepointIRVerifier.cpp)
Due to specifics of statepoints, it is still legal to have tied
def and use rewritten to the same register in TwoAddress pass.
However, properly updating LiveIntervals and LiveVariables becomes
complicated. For simplicity, let's fall back to generic handling of
tied registers when we detect such case.
TODO: This fixes functional (assertion) failure. Ideally we should
try to recompute new live range/liveness in place.
Reviewed By: skatkov
Differential Revision: https://reviews.llvm.org/D132255
In preparation for adding support for DBG_VALUE_LIST instructions in
InstrRefLDV, this patch updates the logic for joining variables at block
joins to support joining variables that use multiple debug operands.
This is one of the more meaty "logical" changes, although the line count
isn't too high - this changes pickVPHILoc to find a valid joined
location for every operand, with part of the function being split off
into pickValuePHILoc which finds a location for a single operand.
Differential Revision: https://reviews.llvm.org/D128180
This interface allows a target to reject a proposed
SMS schedule. For Hexagon/PowerPC, all schedules
are accepted, leaving behavior unchanged. For ARM,
schedules which exceed register pressure limits are
rejected.
Also, two RegisterPressureTracker methods now need to be public so
that register pressure can be computed by more callers.
Reapplication of D128941/(reversion:D132037) with small fix.
Differential Revision: https://reviews.llvm.org/D132170
This completes the client side transition to the OperandValueInfo version of this routine. Backend TTI implementations still use the prior versions for now.
This patch fixes:
llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h:330:5: error:
anonymous types declared in an anonymous union are an extension
[-Werror,-Wnested-anon-types]
In preparation for allowing InstrRefBasedLDV to handle DBG_VALUE_LIST,
this patch updates the internal representation that it uses to represent
debug values to store a list of values. This is one of the more
significant changes in terms of line count, but is fairly simple and
should not affect the output of this pass.
Differential Revision: https://reviews.llvm.org/D128177
`RegisterClassInfo` caches information like allocation orders and reuses
it for multiple machine functions where possible. However the `MCPhysReg
*CalleeSavedRegs` field used to test whether the set of callee saved
registers changed did not work: After D28566
`MachineRegisterInfo::getCalleeSavedRegs()` can return dynamically
computed CSR sets that are only valid while the `MachineRegisterInfo`
object of the current function exists.
This changes the code to make a copy of the CSR list instead of keeping
a possibly invalid pointer around.
Differential Revision: https://reviews.llvm.org/D132080
Currently, InstrRefLDV only handles DBG_VALUE instructions, not
DBG_VALUE_LIST, and as a result of this it handles these instructions
using functions that only work for that type of debug value, i.e. using
getOperand(0) to get the debug operand. This patch changes this to use
the generic debug value functions, such as getDebugOperand and
isDebugOffsetImm, as well as adding an IsVariadic field to the
DbgValueProperties class and a few other minor changes to acknowledge
DBG_VALUE_LISTs. Note that this patch does not add support for
DBG_VALUE_LIST here, but is a precursor to other patches that do add
that support.
Differential Revision: https://reviews.llvm.org/D128174
In the InstrRefBasedImpl for LiveDebugValues, we attempt to propagate
debug values through basic blocks in part by checking to see whether all
a variable's incoming debug values to a BB "agree", i.e. whether their
properties match and they refer to the same underlying value.
Prior to this patch, the check for agreement between incoming values
relied on exact equality, which meant that a VPHI and a Def DbgValue
that referred to the same underlying value would be seen as disagreeing.
This patch changes this behaviour to treat them as referring to the same
value, allowing the shared value to propagate into the BB.
Differential Revision: https://reviews.llvm.org/D125953
Following the comment's thread of D117235, I added checks for the widening + splitting case, which also causes a split with one of the resulting vectors to be empty. Due to the same issues described in that same thread, the `fixed-vectors-strided-store.ll` test is missing the widening + splitting case, while the same case in the `strided-vpload.ll` test requires to manually split the loaded vector.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D121784
Test for a case we observed after the initial implementation of D129997
landed, in which case we observed a crash while building the ppc64le
Linux kernel. In that case, we had one block with two exits, both to the
same successor. Removing one of the exits corrupted the
successor/predecessor lists.
So when we have an INLINEASM_BR, check a few things for each indirect
target:
1. that it exists.
2. that it is listed in our successors.
3. that its predecessor list contains the parent MBB of INLINEASM_BR.
This would have caught the regression discovered after D129997 landed,
after the pass that was problematic (early-tailduplication) rather than
getting a stack trace in a later pass (regalloc) that doesn't understand
the anomaly and crashes.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D130290
Registers used for arguments are listed as "live-ins" into the starting
basic block. This means we don't have to go through a potentially
expensive search through all possible argument registers when we only
care about used argument registers.
Differential Revision: https://reviews.llvm.org/D132181
This patch introduces the priority analysis and the priority advisor,
the default implementation, and the scaffolding for introducing the
other implementations of the advisor.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D131220
Extends findMoreOptimalIndexType to allow ISD::BUILD_VECTOR based
indices to be truncated when such truncation is lossless. This can
enable the use of 32bit gather/scatter indices thus making it less
likely to have to split a gather/scatter in two.
Depends on D125194
Differential Revision: https://reviews.llvm.org/D130533
* Replace getUserCost with getInstructionCost, covering all cost kinds.
* Remove getInstructionLatency, it's not implemented by any backends, and we should fold the functionality into getUserCost (now getInstructionCost) to make it easier for targets to handle the cost kinds with their existing cost callbacks.
Original Patch by @samparker (Sam Parker)
Differential Revision: https://reviews.llvm.org/D79483
TragetLowering had two last InstructionCost related `getTypeLegalizationCost()`
and `getScalingFactorCost()` members, but all other costs are processed in TTI.
E.g. it is not comfortable to use other TTI members in these two functions
overrided in a target.
Minor refactoring: `getTypeLegalizationCost()` now doesn't need DataLayout
parameter - it was always passed from TTI.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D117723
This is a potentially better alternative to D131452 that also
should avoid the infinite loop bug from:
issue #56403
This is again a minimal fix to reduce merging pain for the
release. But if this makes sense, then we might want to guard
all of the RTLIB generation (and other libcalls?) with a
similar name check.
Differential Revision: https://reviews.llvm.org/D131521
Improve copy statistics:
- Count copies from or to physical registers: They are used to model function parameters and calling conventions and the register allocator optimizes for them.
- Check physical registers assigned to virtual registers and stop counting "identity" `COPY`s where source and destination is the same physical registers; they will be removed in the `virtregmap` pass anyway.
Differential Revision: https://reviews.llvm.org/D131932
The current machine function splitter is reliant on profile data to do profile summary analysis to split blocks into cold section. This may sometimes limit the usage of machine function splitter especially in cases where we could do some form of static analysis to split out cold blocks if profile data is absent or profile data which may be faulty (Consider Sample PGO).
Of all code that could statically be marked cold Exception handling blocks are one of them (In fact BFI framework also tends to mark them as cold), and the most in size contribution. In my experiments I found out Exception handling pads and all code reachable from there account for up to 6-8% of the .text section on modern production binaries. This patch introduces a flag to split out all Exception handling blocks and blocks only reachable from Exceptional Handling pad to cold section. This flag has shown to give a performance win of up to 0.1% in terms of average cycles and instructions executed on internal facebook search service.
Reviewed By: snehasish
Differential Revision: https://reviews.llvm.org/D131824
This reverts commit 8c4aea438c.
Needed because buildbot failures (warnings) gave a clue that there was
a functional bug in the ARM rejection logic.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D132037
This interface allows a target to reject a proposed
SMS schedule. For Hexagon/PowerPC, all schedules
are accepted, leaving behavior unchanged. For ARM,
schedules which exceed register pressure limits are
rejected.
Also, two RegisterPressureTracker methods now need to be public so
that register pressure can be computed by more callers.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D128941
There are two different senses in which a block can be "address-taken".
There can be a BlockAddress involved, which means we need to map the
IR-level value to some specific block of machine code. Or there can be
constructs inside a function which involve using the address of a basic
block to implement certain kinds of control flow.
Mixing these together causes a problem: if target-specific passes are
marking random blocks "address-taken", if we have a BlockAddress, we
can't actually tell which MachineBasicBlock corresponds to the
BlockAddress.
So split this into two separate bits: one for BlockAddress, and one for
the machine-specific bits.
Discovered while trying to sort out related stuff on D102817.
Differential Revision: https://reviews.llvm.org/D124697
This patch fixes an issue where an instruction reading a whole register would be moved during register allocation into a spot where one of the subregisters was dead.
The code to check whether an instruction can be rematerialized at a given point or not was already checking for subranges to ensure that subregisters are live, but only when the instruction being moved was using a subregister, this patch changes that so the subranges are checked even when the moved instruction uses the full register.
This patch also adds a case to the original test for the subrange checking that trigger the issue described above.
The original subrange checking code was introduced in this revision: https://reviews.llvm.org/D115278
And I've encountered this issue on AMDGPUs while working with DPC++: https://github.com/intel/llvm/issues/6209
Essentially the greedy register allocator attempts to move the following instruction:
```
%3961:vreg_64 = V_LSHLREV_B64_e64 3, %3078:vreg_64, implicit $exec
```
From `@3440` into the body of a loop `@16312`, but `%3078` has the following live ranges:
```
%3078 [2224r,2240r:0)[2240r,3488B:1)[16192B,38336B:1) 0@2224r 1@2240r L0000000000000003 [2224r,3440r:0) 0@2224r L000000000000000C [2240r,3488B:0)[16192B,38336B:0) 0@2240r
```
So `@16312e` `%3078.sub1` is alive but `%3078.sub0` is dead, so this instruction being moved there leads to invalid memory accesses as `3078.sub0` ends up being trashed and the result of this instruction is used as part of an address calculation for a load.
On the original ticket this issue showed up on gfx906 and gfx90a but not on gfx908, this turned out to be because on gfx908 instead of moving the shift instruction into the loop, its value is spilled into an ACC register, gfx906 doesn't have ACC registers and for gfx90a ACC registers are used like regular vector registers and so aren't used for spilling.
With this patch the original application from the DPC++ ticket works properly on gfx906, and the result of the shift instruction is correctly spilled instead of moving the instruction in the loop.
Original Author: npmiller
Reviewed by: rampitec
Submitted by: rampitec
Differential Revision: https://reviews.llvm.org/D131884
Currently we treat initializers with init_seg(compiler/lib) as similar
to any other init_seg, they simply have a global variable in the proper
section (".CRT$XCC" for compiler/".CRT$XCL" for lib) and are added to
llvm.used. However, this doesn't match with how LLVM sees normal (or
init_seg(user)) initializers via llvm.global_ctors. This
causes issues like incorrect init_seg(compiler) vs init_seg(user)
ordering due to GlobalOpt evaluating constructors, and the
ability to remove init_seg(compiler/lib) initializers at all.
Currently we use 'A' for priorities less than 200. Use 200 for
init_seg(compiler) (".CRT$XCC") and 400 for init_seg(lib) (".CRT$XCL"),
which do not append the priority to the section name. Priorities
between 200 and 400 use ".CRT$XCC${Priority}". This allows for
some wiggle room for people/future extensions that want to add
initializers between compiler and lib.
Fixes#56922
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D131910
Static variables declared within a routine or lexical block should
be emitted with a non-qualified name. This allows the variables to
be visible to the Visual Studio watch window.
Differential Revision: https://reviews.llvm.org/D131400
When no landing pads exist for a function, `@LPStart` is undefined and must be omitted.
EH table is generally not emitted for functions without landing pads, except when the personality function is uknown (`!isNoOpWithoutInvoke(classifyEHPersonality(Per))`). In that case, we must omit `@LPStart` even when machine function splitting is enabled.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D131626
Currently there is no way to add in development features to the ML
regalloc evict advisor which is useful to have when working on feature
engineering/improving the current model. This patch adds in the ability
to add in development features to the ML regalloc evict advisor which
are gated by a runtime flag and not added in at all if not compiled in
LLVM development mode. This sets the stage for future work where we are
planning on upstreaming some of the newer features that we are currently
experimenting with.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D131209
This is a followup to D131350, which caused another problem for i64
types being split into i32 on i32 targets. This patch tries to make sure
that either Illegal types are OK, or that the element types of a
buildvector are legal and bigger than or equal to the size of the
original elements.
Differential Revision: https://reviews.llvm.org/D131883
This patch really just extends D39946 towards stores as well as loads.
While the patch is in SelectionDAGBuilder, it only applies to AVR (the
only target that supports unaligned atomic operations).
Differential Revision: https://reviews.llvm.org/D128483
The outer signext_inreg is redundant in the following:
Fold (signext_inreg (extract_subvector (zext|anyext|sext iN_value to _) _) from iN)
-> (extract_subvector (signext iN_value to iM))
Tests are precommitted and clone those by analogy from the AND case in
the same file. Add a negative test to check extension width is handled
correctly.
This patch supersedes D130700.
Differential Revision: https://reviews.llvm.org/D131503
These are guaranteed not to create undef/poison (although they may pass through) - the associated ISD::VALUETYPE node is also guaranteed never to generate poison
Reland commit 719658d078
The base RA support infrastructure that only allow a specific register
class be allocated in RA pss. Since greedy RA, basic RA derived from
base RA, they all allow allocating specific register class. Fast RA
doesn't support allocating register for specific register class. This
patch is to enable ShouldAllocateClass in fast RA, so that it can
support allocating register for specific register class.
Differential Revision: https://reviews.llvm.org/D131825
SimplifyMultipleUseDemandedBits shouldn't be creating general nodes like this - although we allow bitcasts, even general constant folding is avoided.
Removing it causes a number of regressions that need addressing first, but I've added a TODO for now.
TLS debug on AIX is not ready for now.
The location generated in no-integrated-as mode is wrong and
in integrated-as mode causes AIX linker error.
Reviewed By: Esme
Differential Revision: https://reviews.llvm.org/D130245
Expand TypePromotion pass to try to promote PHI-nodes in loops that are the
operand of a ZExt, using the ZExt's result type to determine the Promote Width.
Differential Revision: https://reviews.llvm.org/D111237
This patch makes the variants of `mm*_cast*` intel intrinsics that use `shufflevector(freeze(poison), ..)` emit efficient assembly.
(These intrinsics are planned to use `shufflevector(freeze(poison), ..)` after shufflevector's semantics update; relevant thread: D103874)
To do so, this patch
1. Updates `LowerAVXCONCAT_VECTORS` in X86ISelLowering.cpp to recognize `FREEZE(UNDEF)` operand of `CONCAT_VECTOR` in addition to `UNDEF`
2. Updates X86InstrVecCompiler.td to recognize `insert_subvector` of `FREEZE(UNDEF)` vector as its first operand.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D130339
canCreateUndefOrPoison currently only handles unary ops, but we intend to change that soon - this more closely matches the pushFreezeToPreventPoisonFromPropagating behaviour where the freeze is pushed up to a single operand value, as long as all others are guaranteed not to be poison/undef.
However, pushFreezeToPreventPoisonFromPropagating would freeze all uses of the value - whilst this variant requires the frozen value to be only used in the op - we can look at generalize multiple uses later if the need arises.
Currently fcopysign for VLS vectors lowers through NEON even when the
vector width is wider than a NEON vector, causing bad codegen as the
vectors are split. This patch causes SVE to be used for these vectors
instead, giving much better codegen on wide VLS vectors.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D128642
This is a follow-up patch to D130999. In the test, the MIR contains an
unreachable MBB but the code attempts to look it up in MLocs. This
patch fixes this issue by checking for the default-constructed value.
rdar://97226240
Differential Revision: https://reviews.llvm.org/D131453
The register operand of DBG_VALUE is not selected to a proper register
bank in both AArch64 and X86. This would cause getRegClass crash after
global ISel. After discussion, we think the MIR should assume all
vritual register should be set proper register class after global ISel,
so this patch is to fix the gap of DBG_VALUE for AArch64 and X86.
Differential Revision: https://reviews.llvm.org/D129037
The previous code overwrites VRMap for prologue stages during Phi
generation if a register spans many stages.
As a result, the wrong register is used as the one coming from
the prologue in Phis at later stages. (A process exists to correct
this, but it does not work in all cases.)
In addition, VRMap for prologue must be preserved until addBranches().
This patch fixes them by separating the map for Phis into a different
variable (VRMapPhi).
Reviewed By: bcahoon
Differential Revision: https://reviews.llvm.org/D127840
The build breakages should be addressed by d4abdd2e3d:
[CMake] Check CMAKE_CXX_STANDARD and error if it's to old
Thanks to Tobias and Roy for addressing these issues.
This patch adds basic support for a DAG variant of the canCreateUndefOrPoison call and updates DAGCombiner::visitFREEZE to use it, further Opcodes (including target specific Opcodes) can be handled when we have test coverage.
So far, I've left visitFREEZE to just use this for unary nodes (which currently means the existing BITCAST/FREEZE cases) - later patches will add other unary opcodes (with test coverage) and we can also refactor visitFREEZE to support a general number of operands like we do in InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating.
I'm not aware of any vector test freeze coverage so the DemandedElts (and the Depth) args are not being used yet - but they are in place. Similarly we will be able to handle poison generating SDNodeFlags as and when it becomes an issue.
Part of the work for D106675 / PR50468
Differential Revision: https://reviews.llvm.org/D130646
This patch emits table lookup in expandCTTZ.
Context -
https://reviews.llvm.org/D113291 transforms set of IR instructions to
cttz intrinsic but there are some targets which does not support CTTZ or
CTLZ. Hence, I generate a table lookup in TargetLowering::expandCTTZ().
Differential Revision: https://reviews.llvm.org/D128911
FoldConstantArithmetic can fold constant vectors hidden behind bitcasts (e.g. vXi64 -> v2Xi32 on 32-bit platforms), but currently bails if either vector contains undef elements. These undefs can often occur due to SimplifyDemandedBits/VectorElts calls recognising that the upper bits are often unnecessary (e.g. funnel-shift/rotate implicit-modulo and AND masks).
This patch adds a basic 'FoldValueWithUndef' handler that will attempt to constant fold if one or both of the ops are undef - so far this just handles the AND and MUL cases where we always fold to zero.
The RISCV codegen increase is interesting - it looks like the BUILD_VECTOR lowering was loading a constant pool entry but now (with all elements defined constant) it can materialize the constant instead?
Differential Revision: https://reviews.llvm.org/D130839
D129150 added a combine from shuffles to And that creates a BUILD_VECTOR
of constant elements. We need to ensure that the elements are of a legal
type, to prevent asserts during lowering.
Fixes#56970.
Differential Revision: https://reviews.llvm.org/D131350
A const reference is preferred over a non-null const pointer.
`Type *` is kept as is to match the other overload.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D131197
1) Overloaded (instruction-based) method is a wrapper around the current (opcode-based) method.
2) This patch also changes a few callsites (VectorCombine.cpp,
SLPVectorizer.cpp, CodeGenPrepare.cpp) to call the overloaded method.
3) This is a split of D128302.
Differential Revision: https://reviews.llvm.org/D131114
This just shuffles implementations and declarations around. Now the
logger and the TF C API-based model evaluator are separate.
Differential Revision: https://reviews.llvm.org/D131116
The testcase was delta-reduced from an LTO build with sanitizer
coverage and the MIR tail duplication pass caused a machine basic
block to become unreachable in MIR. This caused the MBB to be invisible
to the reverse post-order traversal used to initialize the MBB <->
RPONumber lookup tables.
rdar://97226240
Differential Revision: https://reviews.llvm.org/D130999
The function `handleDebugValue` has custom logic to handle certain kinds
constants, namely integers, floats and null pointers. However, it does
not handle constant pointers created from IntToPtr ConstantExpressions.
This patch addresses the issue by replacing the Constant with its
integer operand.
A similar bug was addressed for GlobalISel in D130642.
Reviewed By: aprantl, #debug-info
Differential Revision: https://reviews.llvm.org/D130908
This patch ensures consistency in the construction of FP_ROUND nodes
such that they always use ISD::TargetConstant instead of ISD::Constant.
This additionally fixes a bug in the AArch64 SVE backend where patterns
were matching against TargetConstant nodes and sometimes failing when
passed a Constant node.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D130370
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
The LegalizerHelper misses the code to lower G_MUL to a library call,
which this change adds.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D130987
matchRotateSub is given shift amounts that will already have stripped any/zero-extend nodes from - so make sure those values are wide enough to take a mask.
Follow-up to D130434.
Move doSystemDiff to PrintPasses.cpp and call it in MachineFunctionPass.cpp.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D130833
Eliminate an AND by redefining an anyext|sext|zext.
(and (extract_subvector (anyext|sext|zext v) _) iN_mask)
=> (extract_subvector (zeroext_iN v))
Differential Revision: https://reviews.llvm.org/D130782
Salvage debug info of instruction that is about to be deleted as dead in
Combiner pass. Currently supported instructions are COPY and G_TRUNC.
It allows to salvage debug info of some dead arguments of functions, by putting
DWARF expression corresponding to the instruction being deleted into related
DBG_VALUE instruction.
Here is an example of missing variables location https://godbolt.org/z/K48osb9dK.
We see that arguments x, y of function foo are not available in debugger, and
corresponding DBG_VALUE instructions have undefined register operand instead of
variables locaton after Aarch64PreLegalizerCombiner pass. The reason is that
registers where variables are located are removed as dead (with instruction
G_TRUNC). We can use salvageDebugInfo analogue for gMIR to preserve debug
locations of dead variables.
Statistics of llvm object files built with vs without this commit on -O2
optimization level (CMAKE_BUILD_TYPE=RelWithDebInfo, -fglobal-isel) on Aarch64 (macOS):
Number of variables with 100% of parent scope covered by DW_AT_location has been increased by 7,9%.
Number of variables with 0% coverage of parent scope has been decreased by 1,2%.
Number of variables processed by location statistics has been increased by 2,9%.
Average PC ranges coverage has been increased by 1,8 percentage points.
Coverage can be improved by supporting more instructions, or by calling
salvageDebugInfo for instructions that are deleted during Combiner rules exection.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D129909
This belongs to a series of patches which try to solve the thread
identification problem in coroutines. See
https://discourse.llvm.org/t/address-thread-identification-problems-with-coroutine/62015
for a full background.
The problem consists of two concrete problems: TLS variable and readnone
functions. This patch tries to convert the TLS problem to readnone
problem by converting the access of TLS variable to an intrinsic which
is marked as readnone.
The readnone problem would be addressed in following patches.
Reviewed By: nikic, jyknight, nhaehnle, ychen
Differential Revision: https://reviews.llvm.org/D125291
Expand load address pseudo-instructions earlier (pre-ra) to allow follow-up
patches to fold the addi of PseudoLLA instructions into the immediate
operand of load/store instructions.
Differential Revision: https://reviews.llvm.org/D123264
This patch fixes the error llvm/lib/CodeGen/MachineScheduler.cpp(755): error C2065: 'MISchedCutoff': undeclared identifier in case of NDEBUG and LLVM_ENABLE_ABI_BREAKING_CHECKS.
Note MISchedCutoff is declared under #ifndef NDEBUG.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130425
If the subregister uses were dead, this would leave the main range
segment pointing to a deleted instruction.
Not sure if this should try to avoid shrinking if we know we don't
have dead components.
Add a method for the various cases where we need to concatenate 2 KnownBits together (BUILD_PAIR and SHIFT_PARTS in particular) - uses the existing APInt::concat 'HiBits.concat(LoBits)' convention
Differential Revision: https://reviews.llvm.org/D130557
Currently, the LLVM IR -> MIR translator fails to translate dbg.values
whose first argument is a null pointer. However, in other portions of
the code, such pointers are always lowered to the constant zero, for
example see IRTranslator::Translate(Constant, Register).
This patch addresses the limitation by following the same approach of
lowering null pointers to zero.
A prior test was checking that null pointers were always lowered to
$noreg; this test is changed to check for zero, and the previous
behavior is now checked by introducing a dbg.value whose first argument
is the address of a global variable.
Differential Revision: https://reviews.llvm.org/D130721
The getOperand method already returns a Constant when it is called on
a ConstantExpression, as such the cast is not needed. To prevent a type
mismatch between the different return statements of the lambda, the
lambda return type is explicitly provided.
Differential Revision: https://reviews.llvm.org/D130719
GetDemandedBits is mainly a wrapper around SimplifyMultipleUseDemandedBits now, and is only used by DAGCombiner::visitSTORE so I've moved all remaining functionality there.
visitSTORE was making use of this to 'simplify' constants for a trunc-store. Just removing this code left to a mixture of regressions and gains - it came down to whether a target preferred a sign or zero extended constant for materialization/truncation. I've just moved the code over for now, but a next step would be to move this to targetShrinkDemandedConstant, but some targets that override the method expect a basic binop, and might react badly to a store node.....
I'm actually trying to get rid of GetDemandedBits - but while dismantling it I noticed that we were altering opaque constants. Fixing that causes a FP_TO_INT_SAT regression that should be addressed separately - I'll raise a bug.
This patch allows SimplifyDemandedBits to call SimplifyMultipleUseDemandedBits in cases where the ISD::SRL source operand has other uses, enabling us to peek through the shifted value if we don't demand all the bits/elts.
This is another step towards removing SelectionDAG::GetDemandedBits and just using TargetLowering::SimplifyMultipleUseDemandedBits.
There a few cases where we end up with extra register moves which I think we can accept in exchange for the increased ILP.
Differential Revision: https://reviews.llvm.org/D77804
It simplifies the code overall and removes the need for manual bookkeeping.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130447
It simplifies the code overall and removes the need for manual bookkeeping.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130444
DebugLocEntry assumes that it either contains 1 item that has no fragment
or many items that all have fragments (see the assert in addValues).
When EXPENSIVE_CHECKS is enabled, _GLIBCXX_DEBUG is defined. On a few machines
I've checked, this causes std::sort to call the comparator even
if there is only 1 item to sort. Perhaps to check that it is implemented
properly ordering wise, I didn't find out exactly why.
operator< for a DbgValueLoc will crash if this happens because the
optional Fragment is empty.
Compiler/linker/optimisation level seems to make this happen
or not. So I've seen this happen on x86 Ubuntu but the buildbot
for release EXPENSIVE_CHECKS did not have this issue.
Add an explicit check whether we have 1 item.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D130156
tryLastChanceRecoloring iterates over the set of LiveInterval pointers
and used that to seed the recoloring stack, which was
nondeterministic. Fixes a future test failing about 20% of the time.
This just takes the order the interfering vreg was encountered. Not
sure if we should try to order this more intelligently.
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
Currently, the IR to MIR translator can only handle two kinds of constant
inputs to dbg.values intrinsics: constant integers and constant floats. In
particular, it cannot handle pointers created from IntToPtr ConstantExpression
objects.
This patch addresses the limitation above by replacing the IntToPtr with
its input integer prior to converting the dbg.value input.
Patch by Felipe Piovezan!
Differential Revision: https://reviews.llvm.org/D130642
This adds similar heuristics to G_GLOBAL_VALUE, querying the cost of
materializing a specific constant in code size. Doing so prevents us from
sinking constants which require multiple instructions to generate into
use blocks.
Code size savings on CTMark -Os:
Program size.__text
before after diff
ClamAV/clamscan 381940.00 382052.00 0.0%
lencod/lencod 428408.00 428428.00 0.0%
SPASS/SPASS 411868.00 411876.00 0.0%
kimwitu++/kc 449944.00 449944.00 0.0%
Bullet/bullet 463588.00 463556.00 -0.0%
sqlite3/sqlite3 284696.00 284668.00 -0.0%
consumer-typeset/consumer-typeset 414492.00 414424.00 -0.0%
7zip/7zip-benchmark 595244.00 594972.00 -0.0%
mafft/pairlocalalign 247512.00 247368.00 -0.1%
tramp3d-v4/tramp3d-v4 372884.00 372044.00 -0.2%
Geomean difference -0.0%
Differential Revision: https://reviews.llvm.org/D130554
SimplifyDemandedBits currently early-outs for multi-use values beyond the root node (just returning the knownbits), which is missing a number of optimizations as there are plenty of cases where we can still simplify when initially demanding all elements/bits.
@lenary has confirmed that the test cases in aea-erratum-fix.ll need refactoring and the current increase codegen is not a major concern.
Differential Revision: https://reviews.llvm.org/D129765
This patch fixes the following error with MSVC 16.9.2 in case of NDEBUG and LLVM_ENABLE_DUMP:
llvm/lib/CodeGen/CodeGenPrepare.cpp(2581): error C2872: 'ExtAddrMode': ambiguous symbol
llvm/include/llvm/CodeGen/TargetInstrInfo.h(86): note: could be 'llvm::ExtAddrMode'
llvm/lib/CodeGen/CodeGenPrepare.cpp(2447): note: or '`anonymous-namespace'::ExtAddrMode'
llvm/lib/CodeGen/CodeGenPrepare.cpp(2581): error C2039: 'print': is not a member of 'llvm::ExtAddrMode'
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D130426
-print-changed for new pass manager is handy beside -print-after-all.
Port it to MachineFunctionPass.
Note: lib/Passes/StandardInstrumentations.cpp implements a number of
misc features. If we want to use them for codegen, we may need to lift
some functionality to LLVMIR.
Reviewed By: aeubanks, jamieschmeiser
Differential Revision: https://reviews.llvm.org/D130434
WinEHPrepare marks any function call from EH funclets as unreachable, if it's not a nounwind intrinsic or has no proper funclet bundle operand. This
affects ARC intrinsics on Windows, because they are lowered to regular function calls in the PreISelIntrinsicLowering pass. It caused silent binary truncations and crashes during unwinding with the GNUstep ObjC runtime: https://github.com/gnustep/libobjc2/issues/222
This patch adds a new function `llvm::IntrinsicInst::mayLowerToFunctionCall()` that aims to collect all affected intrinsic IDs.
* Clang CodeGen uses it to determine whether or not it must emit a funclet bundle operand.
* PreISelIntrinsicLowering asserts that the function returns true for all ObjC runtime calls it lowers.
* LLVM uses it to determine whether or not a funclet bundle operand must be propagated to inlined call sites.
Reviewed By: theraven
Differential Revision: https://reviews.llvm.org/D128190
This patch starts small, only detecting sequences of the form
<a, a+n, a+2n, a+3n, ...> where a and n are ConstantSDNodes.
Differential Revision: https://reviews.llvm.org/D125194
I think what we need is the least Log2(EltSize) significant bits are known to be ones.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130251
Optimizing (a * 0 + b) to (b) requires assuming that a is finite and not
NaN. DAGCombiner will do this optimization when the reassoc fast math
flag is set, which is not correct. Change DAGCombiner to only consider
UnsafeMath for this optimization.
Differential Revision: https://reviews.llvm.org/D130232
Co-authored-by: Andrea Faulds <andrea.faulds@arm.com>