If the reused scalars are clustered, i.e. each part of the reused mask
contains all elements of the original scalars exactly once, we can
reorder those clusters to improve the whole ordering of of the clustered
vectors.
Differential Revision: https://reviews.llvm.org/D133524
This patch adds a utility class that will be used in subsequent patches
for parsing the function/callsite attributes and determining whether
changes to PSTATE.SM are needed, or whether a lazy-save mechanism is
required.
It also implements some of the restrictions on the SME attributes
in the IR Verifier pass.
More details about the SME attributes and design can be found
in D131562.
Reviewed By: david-arm, aemerson
Differential Revision: https://reviews.llvm.org/D131570
The previous implementation of time tracing in NewPassManager is direct but messive.
The key codes are like the demo below:
```
/// Runs the function pass across every function in the module.
PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
/// ...
PreservedAnalyses PassPA;
{
TimeTraceScope TimeScope(Pass.name());
PassPA = Pass.run(F, FAM);
}
/// ...
}
```
It can be bothered to judge where should we add the tracing codes by hands.
With the PassInstrumentation framework, we can easily add `Before/After` callback
functions to add time tracing codes.
Differential Revision: https://reviews.llvm.org/D131960
The LLVM performance tips suggest that allocas should be placed at the
beginning of the entry block. So far, llvm doesn’t provide any helper to
find that position.
Add BasicBlock::getFirstNonPHIOrDbgOrAlloca and IRBuilder::SetInsertPointPastAllocas(Function*)
that get an insert position after the (static) allocas at the start of a
function and use it in ShadowStackGCLowering.
Differential Revision: https://reviews.llvm.org/D132554
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead.
Differential Revision: https://reviews.llvm.org/D133429
NewPM -filter-passes (D86360) uses ClassName instead of pass-name as used in
`-passes`, `-print-after`, etc. D87216 has added a mechanism to map
ClassName to pass-name. Adopt it for -filter-passes.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D133263
Add a visibility check for dllimport and dllexport. Note: dllimport with a
non-default visibility (implicit dso_local) is already rejected, but with a less
clear dso_local error.
The MC level visibility `MCSA_Exported` (D123951) is mapped from IR level
default visibility when dllexport is specified. The D123951 error is now very
difficult to trigger (needs to disable the IR verifier).
Reviewed By: mstorsjo
Differential Revision: https://reviews.llvm.org/D133267
If a callee function is not interposable, skip debug location check for its callsites. Doing this is instrumentation-friendly otherwise under some conditions this check triggers for some un-inlinable call sites.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D133060
We currently instrument CallBrInst but do not annotate it with
the branch weight. This patch enables PGO annotation of CallBrInst.
Differential Revision: https://reviews.llvm.org/D133040
[MachineFunctionPass] Support -filter-passes for -print-changed
-filter-passes specifies a `PassID` (a lower-case dashed-separated pass name,
also used by -print-after, -stop-after, etc) instead of a CamelCasePass.
`-filter-passes=CamelCaseNewPMPass` seems like a workaround for new PM passes before
we can use lower-case dashed-separated pass names (as used by `-passes=`).
Example:
```
# getPassName() is "IRTranslator". PassID is "irtranslator"
llc -mtriple=aarch64 -print-changed -filter-passes=irtranslator < print-changed-machine.ll
```
Close https://github.com/llvm/llvm-project/issues/57453
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D133055
Transforms occasionally want to insert an instruction directly
after the definition point of a value. This involves quite a few
different edge cases, e.g. for phi nodes the next insertion point
is not the next instruction, and for invokes and callbrs its not
even in the same block. Additionally, the insertion point may not
exist at all if catchswitch is involved.
This adds a general Instruction::getInsertionPointAfterDef() API to
implement the necessary logic. For now it is used in two places
where this should be mostly NFC. I will follow up with additional
uses where this fixes specific bugs in the existing implementations.
Differential Revision: https://reviews.llvm.org/D129660
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c9549 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
Enables fixed sized vectors to detect SK_Splice shuffle patterns and provides basic X86 cost support
Differential Revision: https://reviews.llvm.org/D132374
Callsites could be marked as `builtin` while calling `nobuiltin`
functions. This can lead to problems, if local optimizations apply
transformations based on the semantics of the builtin, but then IPO
treats the function as `nobuiltin` and applies a transform that breaks
builtin semantics (assumed earlier).
To avoid this, mark such functions as maybey-derefined, to avoid IPO
transforms on them that may break assumptions of earlier calls.
Fixes#57075Fixes#48366
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D97735
The absolute value of 0x8000000000000000 does not fit into an int64_t
and UBSan tells us that by crashing.
rdar://98799670
Differential Revision: https://reviews.llvm.org/D132194
The current llvm.prefetch intrinsic docs state "The rw, locality and
cache type arguments must be constant integers."
This change:
- Makes arg 3 (cache type) an ImmArg
- Improves the verifier error messages to reference the incorrect
argument.
- Fixes two tests which contradict the docs.
This is needed as the lowering to GlobalISel is different for ImmArgs
compared to other constants. The non-ImmArgs create a G_CONSTANT MIR
instruction, the for ImmArgs the constant is put directly on the
intrinsic's MIR instruction as an immediate.
Differential Revision: https://reviews.llvm.org/D132042
Using Max for both "PIC Level" and "PIE Level" is inconsistent. PIC imposes less
restriction while PIE imposes more restriction. The result generally
picks the more restrictive behavior: Min for PIC.
This choice matches `ld -r`: a non-pic object and a pic object merge into a
result which should be treated as non-pic.
To allow linking "PIC Level" using Error/Max from old bitcode files, upgrade
Error/Max to Min.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D130531
In D131869 we noticed that we jump through some hoops because we parse the
tolerance option used in MisExpect.cpp into a 64-bit integer. This is
unnecessary, since the value can only be in the range [0, 100).
This patch changes the underlying type to be 32-bit from where it is
parsed in Clang through to it's use in LLVM.
Reviewed By: jloser
Differential Revision: https://reviews.llvm.org/D131935
This works with the automatic export of all symbols; in MinGW mode,
when a DLL has no explicit dllexports, it exports all symbols (except
for some that are hardcoded to be excluded, including some toolchain
libraries).
By hooking up the hidden visibility to the -exclude-symbols: directive,
the automatic export of all symbols can be controlled in an easier
way (with a mechanism that doesn't require strict annotation of every
single symbol, but which allows gradually marking more unnecessary
symbols as hidden).
The primary use case is dylib builds of LLVM/Clang. These can be done
in MinGW mode but not in MSVC mode, as MinGW builds can export all
symbols (and the calling code can use APIs without corresponding
dllimport directives). However, as all symbols are exported, it can
easily overflow the max number of exported symbols in a DLL (65536).
In the llvm-mingw distribution, only the X86, ARM and AArch64 backends
are enabled; for the LLVM 13.0.0 release, libLLVM-13.dll ended up with
58112 exported symbols. For LLVM 14.0.0, it was 62015 symbols. Current
builds of the 15.x branch end up at around 64650 symbols - i.e. extremely
close to the limit.
The msys2 packages of LLVM have had to progressively disable more
of their backends in their builds, to be able to keep building with a
dylib.
This allows improving the current mingw dylib situation significantly,
by using the same hidden visibility options and attributes as on Unix.
With those in place, a current build of LLVM git main ends up at 35142
symbols instead of 64650.
For code using hidden visibility, this now requires linking with either
a current git lld or ld.bfd. (Older lld error out on the unknown
directives, older ld.bfd will successfully link, but will print huge
amounts of warnings.)
Differential Revision: https://reviews.llvm.org/D130121
This allows the construct to be shared between different backends. However, it
still remains illegal to use TypedPointerType in LLVM IR--the type is intended
to remain an auxiliary type, not a real LLVM type. So no support is provided for
LLVM-C, nor bitcode, nor LLVM assembly (besides the bare minimum needed to make
Type->dump() work properly).
Reviewed By: beanz, nikic, aeubanks
Differential Revision: https://reviews.llvm.org/D130592
In case that opaque pointers not enabled, there may be some constexpr
bitcast uses for thread local variables and the design of llvm allow
people to sink constant arbitrarily. This breaks the assumption of
IRBuilder::CreateThreadLocalAddress. This patch tries to handle the
case.
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
Add a new IRBuilderBase::CreateIntrinsic which takes the return type and
argument values for the intrinsic call but does not take an explicit
list of types to mangle. Instead the builder works this out from the
intrinsic declaration and the types of the supplied arguments.
This means that the mangling is hidden from the client, which in turn
means that intrinsic definitions can change which arguments are mangled
without requiring any changes to the client code.
Differential Revision: https://reviews.llvm.org/D130776
Follow-up to D130434.
Move doSystemDiff to PrintPasses.cpp and call it in MachineFunctionPass.cpp.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D130833
This belongs to a series of patches which try to solve the thread
identification problem in coroutines. See
https://discourse.llvm.org/t/address-thread-identification-problems-with-coroutine/62015
for a full background.
The problem consists of two concrete problems: TLS variable and readnone
functions. This patch tries to convert the TLS problem to readnone
problem by converting the access of TLS variable to an intrinsic which
is marked as readnone.
The readnone problem would be addressed in following patches.
Reviewed By: nikic, jyknight, nhaehnle, ychen
Differential Revision: https://reviews.llvm.org/D125291