Revert "[Attributor] Teach AAPointerInfo to look into aggregates"
This reverts commit 844f6c5d03 and
4ed0a88cd8 as they broke the buildbots
that run openmp/libomptarget/test/offloading/bug49021.cpp.
If we have a constant aggregate, e.g., as an initializer, we usually
failed to extract the proper value/type from it. This patch provides the
size and offset information necessary to extract the right part of the
constant.
In situations when a submodule is extracted from big module (i.e. using
CloneModule) a lot of debug info is copied via metadata nodes. Despite of
the fact that part of that info is not linked to any instruction in extracted
IR file, StripDeadDebugInfo pass doesn't drop them.
Strengthen criteria for debug info that should be kept in a module:
- Only those compile units are left that referenced by a subprogram debug info
node that is attached to a function definition in the module or to an instruction
in the module that belongs to an inlined function.
Signed-off-by: Mikhail Lychkov <mikhail.lychkov@intel.com>
Differential Revision: https://reviews.llvm.org/D122163
Remove ctx redeclaration.
Format code.
Remove parallel check. Modify tests. Clean-up code.
Fix another test.
Move code to helper functions.
Format file.
Minor fixes.
hasOnlyColdCalls skipped over calls to intrinsics, but it did so after
checking the linkage of the called function. This meant that the presence
of a call to a debug intrinsic could affect the outcome of the
optimization.
In my original reproducer (for an out of tree target) it was particularly
interesting, because the actual IR after GlobalOpt was not different with
debug instrinsics present, so -print-after-all printouts didn't show
anything there.
However, without debuginfo, GlobalOpt went further and ran
BlockFrequencyAnalysis and (more importanly) LoopAnalysis, and later on in
the pipeline, instcombine behaved in different ways when LoopInfo was
present.
So a call to a dbg.declare prevented running LoopAnalysis in
GlobalOpt, which later prevented InstCombine from doing an optimization.
The dbg-intrinsic-loopanalysis.ll testcase tries to expose this.
Then I also noted that adding a dbg.declare actually made the existing
testcase colccc_coldsites.ll generate different code, so I modified that
to now test it behaves the same way with and without the dbg.declare.
Reviewed By: nikic, fhahn
Differential Revision: https://reviews.llvm.org/D133193
This patch replaces calls to greatestCommonDivisor with std::gcd where
both arguments are known to be of unsigned. This means that
std::common_type_t of the two argument types should just be the wider
one of the two.
MisExpect was occasionally crashing under SampleProfiling, due to a division by zero.
We worked around that in D124302 by changing the assert to an early return.
This patch is intended to add a test case for the crashing scenario and
re-enable MisExpect for SampleProfiling.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D124481
The SROA algorithm won't work for Scalable Vectors, since we don't
know how many bytes are loaded/stored. Bail out if a Scalable
Vector is seen.
Differential Revision: https://reviews.llvm.org/D132417
* Replace getUserCost with getInstructionCost, covering all cost kinds.
* Remove getInstructionLatency, it's not implemented by any backends, and we should fold the functionality into getUserCost (now getInstructionCost) to make it easier for targets to handle the cost kinds with their existing cost callbacks.
Original Patch by @samparker (Sam Parker)
Differential Revision: https://reviews.llvm.org/D79483
Using the legacy PM for the optimization pipeline is deprecated and in
the process of being removed. This is a small step in that direction.
For an example of migrating to the new PM:
853b57fe80
We're seeing non-determinism with loading sample profiles. It seems to
be related to the order in which we merge FunctionSamples in
promoteMergeNotInlinedContextSamples(). Use a MapVector to iterate over
NonInlinedCallSites in the order entries were inserted.
Reviewed By: wenlei, davidxl
Differential Revision: https://reviews.llvm.org/D131592
The relevant property of allocation functions of interest here is
their uniqueness (in the sense of disjoint provenance), which is
encoded by the noalias return attribute.
Differential Revision: https://reviews.llvm.org/D130225
This fixes 69 llvm tests that failed when EXPENSIVE_CHECKS was enabled.
llvm/test/Transforms/IROutliner/outlining-commutative-operands-opposite-order.ll
is one example.
When we have EXPENSIVE_CHECKS, _GLIBCXX_DEBUG is defined. This means
that libstdc++ will call the compare function to check if it is
implemented correctly (that !(a < a) is true).
This happens even if there is only one item and here, we expect
to see one return void or multiple return constant integer.
Don't sort if we have 1 item, but do assert that it is the 1
ret void we expect. In the comparator, assert that neither
Value is a nullptr in case one ended up in a the list somehow.
Reviewed By: AndrewLitteken
Differential Revision: https://reviews.llvm.org/D130230
In contrast to AAPotentialValues, the constant values version can
contain implicit `undef` in the set. We had an assertion that could
misfire before. Handle it properly now.
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
This patch introduces the inline cost priority into the
module inliner, which uses the same computation as
InlineCost.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D130012
This patch introduces the inline cost priority into the
module inliner, which uses the same computation as
InlineCost.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D130012
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
The behaviour of this patch is not great, but it has some side-effects
that are required for OpenMPOpt to work. The problem is that when we use
`-mlink-builtin-bitcode` we only import used symbols from the runtime.
Then OpenMPOpt will insert calls to symbols that were not previously
included. This patch removed this implicit behaviour as these functions
were kept alive by the `noinline` simply because it kept calls to them
in the module. This caused regression in some tests that relied on some
OpenMPOpt passes without using LTO. Reverting for the LLVM15 release but
will try to fix it more correctly on main.
This reverts commit d61d72dae6.
Fixes#56752
Turning on opaque pointers has uncovered an issue with WPD where we currently pattern match away `assume(type.test)` in WPD so that a later LTT doesn't resolve the type test to undef and introduce an `assume(false)`. The pattern matching can fail in cases where we transform two `assume(type.test)`s into `assume(phi(type.test.1, type.test.2))`.
Currently we create `assume(type.test)` for all virtual calls that might be devirtualized. This is to support `-Wl,--lto-whole-program-visibility`.
To prevent this, all virtual calls that may not be in the same LTO module instead use a new `llvm.public.type.test` intrinsic in place of the `llvm.type.test`. Then when we know if `-Wl,--lto-whole-program-visibility` is passed or not, we can either replace all `llvm.public.type.test` with `llvm.type.test`, or replace all `llvm.public.type.test` with `true`. This prevents WPD from trying to pattern match away `assume(type.test)` for public virtual calls when failing the pattern matching will result in miscompiles.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D128955
We previously used the `noinline` attributes to specify some defintions
which should be kept alive in the runtime. These were then stripped
immediately in the OpenMPOpt module pass. However, Since the changes in
D130298, we not explicitly state which functions will have external
visiblity in the bitcode library. Additionally the OpenMPOpt module pass
should run before the inliner pass, so this shouldn't make a difference
in whether or not the functions will be alive for the initial pass of
OpenMPOpt. This should simplify the interface, and additionally save
time spend on scanning funciton names for noinline.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D130368
If we look at a write, we should not enact the "has been written to"
logic introduced to avoid spurious write -> read dependences. Doing so
lead to elimination of stores we needed, which is obviously bad.
The name `getEntrySamples` was misleading for 2 reasons. One, it's
close in name to `Function::getEntryCount`, but the equivalent here is
`getHeadSamples`; second, as opposed to the other get* APIs in
`FunctionSamples`, it performs an estimate/heuristic rather than just
retrieving raw data (or a non-heuristic derivate off that data, like
`getMaxCountInside`)
The new name should more clearly communicate its intent; and, being
close (in name) to `getHeadSamples`, it should allow the reader discover
the relation between them.
Also updated the doc comments for both `getHeadSamples[Estimate]` so a
reader may better understand the relation between them.
Differential Revision: https://reviews.llvm.org/D130281