TargetLibraryInfo isn't optional, so we have to provide it even with the
lageacy stuff. Ideally we wouldn't need it anymore but there are still
users out there that are stuck on the legacy PM.
Differential Revision: https://reviews.llvm.org/D133685
If multiple warnings created on the same instruction (debug location)
it can be difficult to figure out which input value is the cause.
This patches chains origins just before the warning using last origins
update debug information.
To avoid inflating the binary unnecessarily, do this only when uncertainty is
high enough, 3 warnings by default. On average it adds 0.4% to the
.text size.
Reviewed By: kda, fmayer
Differential Revision: https://reviews.llvm.org/D133232
GlobalsAA is considered stateless as usually transformations do not introduce
new global accesses, and removed global access is not a problem for GlobalsAA
users.
Sanitizers introduce new global accesses:
- Msan and Dfsan tracks origins and parameters with TLS, and to store stack origins.
- Sancov uses global counters. HWAsan store tag state in TLS.
- Asan modifies globals, but I am not sure if invalidation is required.
I see no evidence that TSan needs invalidation.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D133394
Introduces the SanitizerBinaryMetadata instrumentation pass which uses
the new MD_pcsections metadata kinds to instrument certain types of
instructions and functions required for breakpoint-based sanitizers.
The first intended user of the binary metadata emitted will be a variant
of GWP-TSan [1]. GWP-TSan will require information about atomic
accesses; to unambiguously determine if an access is atomic or not, we
also require "covered" information which code has been compiled with
SanitizerBinaryMetadata instrumentation enabled.
[1] https://llvm.org/devmtg/2020-09/slides/Morehouse-GWP-Tsan.pdf
Reviewed By: dvyukov
Differential Revision: https://reviews.llvm.org/D130887
After https://reviews.llvm.org/rG463aa814182a23 tsan replaces llvm
intrinsics with calls to glibc functions. However this approach is
fragile, as slight changes in pipeline can return llvm intrinsics back.
In particular InstCombine can do that.
Msan/Asan already declare own version of these memory
functions for the similar purpose.
KCSAN, or anything that uses something else than compiler-rt, needs to
implement this callbacks.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D133268
After https://reviews.llvm.org/rG463aa814182a23 tsan replaces llvm
intrinsics with calls to glibc functions. However this approach is
fragile, as slight changes in pipeline can return llvm intrinsics back.
In particular InstCombine can do that.
Msan/Asan already declare own version of these memory
functions for the similar purpose.
KCSAN, or anything that uses something else than compiler-rt, needs to
implement this callbacks.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D133268
When we want to add instrumentation after
an instruction, instrumentation still should
keep debug info of the instruction.
Reviewed By: kda, kstoimenov
Differential Revision: https://reviews.llvm.org/D133091
We currently instrument CallBrInst but do not annotate it with
the branch weight. This patch enables PGO annotation of CallBrInst.
Differential Revision: https://reviews.llvm.org/D133040
Reduces .text size by 1% on our large binary.
On CTMark (-O2 -fsanitize=memory -fsanitize-memory-use-after-dtor -fsanitize-memory-param-retval)
Size -0.4%
Time -0.8%
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D133071
It's a preparation of to combine shadow checks of the same instruction
Reviewed By: kda, kstoimenov
Differential Revision: https://reviews.llvm.org/D133065
When instrumenting `alloca`s, we use a `SmallSet` (i.e. `SmallPtrSet`). When there are fewer elements than the `SmallSet` size, it behaves like a vector, offering stable iteration order. Once we have too many `alloca`s to instrument, the iteration order becomes unstable. This manifests as non-deterministic builds because of the global constant we create while instrumenting the alloca.
The test added is a simple IR file, but was discovered while building `libcxx/src/filesystem/operations.cpp` from libc++. A reduced C++ example from that:
```
// clang++ -fsanitize=memory -fsanitize-memory-track-origins \
// -fno-discard-value-names -S -emit-llvm \
// -c op.cpp -o op.ll
struct Foo {
~Foo();
};
bool func1(Foo);
void func2(Foo);
void func3(int) {
int f_st, t_st;
Foo f, t;
func1(f) || func1(f) || func1(t) || func1(f) && func1(t);
func2(f);
}
```
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D133034
Current implementation promotes a non-cold function in the SampleFDO profile
into a hot function in the FDO profile. This is too aggressive. This patch
promotes a hot functions in the SampleFDO profile into a hot function, and a
warm function in SampleFDO into a warm function in FDO.
Differential Revision: https://reviews.llvm.org/D132601
The use of std::clamp should be safe here. MinRZ is at most 32, while
kMaxRZ is 1 << 18, so we have MinRZ <= kMaxRZ, avoiding the undefind
behavior of std::clamp.
If constant shadown enabled we had false reports because
!isZeroValue() does not guaranty that the values is actually not zero.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D132761
The array size specification of the an alloca can be any integer,
so zext or trunc it to intptr before attempting to multiply it
with an intptr constant.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D131846
We were passing the type of `Val` to `getShadowOriginPtr`, rather
than the type of `Val`'s shadow resulting in broken IR. The fix
is simple.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D131845
If a function only has a few instructions, instrumentation can significantly increase the size and performance overhead of that function. Add the `-pgo-function-size-threshold` option to select a size threshold so these small functions are not instrumented.
A similar option `-fxray-instruction-threshold=<N>` is used for XRay to reduce binary size overhead [1].
[1] https://www.llvm.org/docs/XRay.html
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D131816
Allows for even more savings in the binary image while simultaneously removing the name of the offending stack variable.
Depends on D131631
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D131728
The goal is to reduce the size of the MSAN with track origins binary, by making
the variable name locations constant which will allow the linker to compress
them.
Follows: https://reviews.llvm.org/D131415
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D131631
Other sanitizers (ASan, TSan, see added tests) already handle
memcpy.inline and memset.inline by not relying on InstVisitor to turn
the intrinsics into calls. Only MSan instrumentation currently does not
support them due to missing InstVisitor callbacks.
Fix it by actually making InstVisitor handle Mem*InlineInst.
While the mem*.inline intrinsics promise no calls to external functions
as an optimization, for the sanitizers we need to break this guarantee
since access into the runtime is required either way, and performance
can no longer be guaranteed. All other cases, where generating a call is
incorrect, should instead use no_sanitize.
Fixes: https://github.com/llvm/llvm-project/issues/57048
Reviewed By: vitalybuka, dvyukov
Differential Revision: https://reviews.llvm.org/D131577
This is done by calling __msan_set_alloca_origin and providing the location of the variable by using the call stack.
This is prepatory work for dropping variable names when track-origins is enabled.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D131205
COFF has a verifier check that private global variables don't have a comdat of the same name.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D131043
As discussed in [0], this diff adds the `skipprofile` attribute to
prevent the function from being profiled while allowing profiled
functions to be inlined into it. The `noprofile` attribute remains
unchanged.
The `noprofile` attribute is used for functions where it is
dangerous to add instrumentation to while the `skipprofile` attribute is
used to reduce code size or performance overhead.
[0] https://discourse.llvm.org/t/why-does-the-noprofile-attribute-restrict-inlining/64108
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D130807
BoundsChecking uses ObjectSizeOffsetEvaluator to keep track of the
underlying size/offset of pointers in allocations. However,
ObjectSizeOffsetVisitor (something ObjectSizeOffsetEvaluator
uses to check for constant sizes/offsets)
doesn't quite treat sizes and offsets the same way as
BoundsChecking. BoundsChecking wants to know the size of the
underlying allocation and the current pointer's offset within
it, but ObjectSizeOffsetVisitor only cares about the size
from the pointer to the end of the underlying allocation.
This only comes up when merging two size/offset pairs. Add a new mode to
ObjectSizeOffsetVisitor which cares about the underlying size/offset
rather than the size from the current pointer to the end of the
allocation.
Fixes a false positive with -fsanitize=bounds.
Reviewed By: vitalybuka, asbirlea
Differential Revision: https://reviews.llvm.org/D131001
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860