Instruction being hoisted could have nuw/nsw flags inferred from the old
context, and we cannot simply move it to the new location keeping them
because we are going to introduce new uses to them that didn't exist before.
Example in https://github.com/llvm/llvm-project/issues/57187 shows how
this can produce branch by poison from initially well-defined program.
This patch forcefully recomputes poison-generating flag in the new context.
Differential Revision: https://reviews.llvm.org/D132022
Reviewed By: fhahn, nikic
I'm planning to deprecate and eventually remove llvm::empty.
I thought about replacing llvm::empty(x) with std::empty(x), but it
turns out that all uses can be converted to x.empty(). That is, no
use requires the ability of std::empty to accept C arrays and
std::initializer_list.
Differential Revision: https://reviews.llvm.org/D133677
Replacing the following instances of UndefValue with PoisonValue, where the UndefValue is used as an arbitrary value:
- llvm/lib/CodeGen/WinEHPrepare.cpp
`demotePHIsOnFunclets`: RAUW arbitrary value for lingering uses of removed PHI nodes
- llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
`FoldSingleEntryPHINodes`: Removes a self-referential single entry phi node.
- llvm/lib/Transforms/Utils/CallGraphUpdater.cpp
`finalize`: Remove all references to removed functions.
- llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp
`cleanup`: the result is not used then the inserted instructions are removed.
- llvm/tools/bugpoint/CrashDebugger.cpp
`TestInts`: the program is cloned and instructions are removed to narrow down source of crash.
Differential Revision: https://reviews.llvm.org/D133640
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead.
Differential Revision: https://reviews.llvm.org/D133429
SimplifyCFG does some common code hoisting, which is limited
to hoisting a sequence of identical instruction in identical
order and stops at the first non-identical instruction.
This patch allows hoisting instruction pairs over
same-length sequences of non-matching instructions. The
linear asymptotic complexity of the algorithm stays the
same, there's an extra parameter
`simplifycfg-hoist-common-skip-limit` serving to limit
compilation time and/or the size of the hoisted live ranges.
The patch improves SPECv6/525.x264_r by about 10%.
Reviewed By: nikic, dmgreen
Differential Revision: https://reviews.llvm.org/D129370
Users of LCSSA may not expect non-phi uses when checking the uses
outside a loop, which may cause crashes. This is due to the fact that we
do not update uses in unreachable blocks.
To ensure all reachable uses outside the loop are phis, update uses in
unreachable blocks to use poison in dead code.
Fixes#57508.
Since D129288, callbr is allowed to have duplicate successors. This patch removes a limitation which prevents optimizations from actually producing such callbrs.
This is probably the riskiest of all the recent callbr changes, because code with incorrect assumptions might be lurking somewhere. I fixed the one case I encountered ahead of time in 8201e3ef5c.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D129997
Originally landed as
commit 08860f525a ("[Local] Allow creating callbr with duplicate successors")
Reverted in
commit 1cf6b93df1 ("Revert "[Local] Allow creating callbr with duplicate successors"")
This fixes https://github.com/llvm/llvm-project/issues/57336. It was exposed by a recent SCEV change, but appears to have been a long standing issue.
Note that the whole insert into the loop instead of a split exit edge is slightly contrived to begin with; it's there solely because IndVarSimplify preserves the CFG.
Differential Revision: https://reviews.llvm.org/D132571
This patch replaces calls to GreatestCommonDivisor64 with std::gcd
where both arguments are known to be of unsigned types no larger than
64 bits in size.
MisExpect was occasionally crashing under SampleProfiling, due to a division by zero.
We worked around that in D124302 by changing the assert to an early return.
This patch is intended to add a test case for the crashing scenario and
re-enable MisExpect for SampleProfiling.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D124481
Adds a pass ExpandLargeDivRem to expand div/rem instructions
with more than 128 bits into a loop computing that value.
As discussed on https://reviews.llvm.org/D120327, this approach has the advantage
that it is independent of the runtime library. This also helps the clang driver,
which otherwise would need to understand enough about the runtime library
to know whether to allow _BitInts with more than 128 bits.
Targets are still free to disable this pass and instead provide a faster
implementation in a runtime library.
Fixes https://github.com/llvm/llvm-project/issues/44994
Differential Revision: https://reviews.llvm.org/D126644
Fixes https://github.com/llvm/llvm-project/issues/57221.
This limits the tryWidenCondBranchToCondBranch transform making it
work only if the false block of widenable condition branch
has no successors.
If that block has successors, then SimplifyCondBranchToCondBranch
may undo the transform done by tryWidenCondBranchToCondBranch, which
would lead to infinite cycle of transformation and eventually
an assert failing.
Differential Revision: https://reviews.llvm.org/D132356
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c9549 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The diff modifies ext-tsp code layout algorithm in the following ways:
(i) fixes merging of cold block chains (this is a port of D129397);
(ii) adjusts the cost model utilized for optimization;
(iii) adjusts some APIs so that the implementation can be used in BOLT; this is
a prerequisite for D129895.
The only non-trivial change is (ii). Here we introduce different weights for
conditional and unconditional branches in the cost model. Based on the new model
it is slightly more important to increase the number of "fall-through
unconditional" jumps, which makes sense, as placing two blocks with an
unconditional jump next to each other reduces the number of jump instructions in
the generated code. Experimentally, this makes a mild impact on the performance;
I've seen up to 0.2%-0.3% perf win on some benchmarks.
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D129893
Initial implementation had too weak requirements to positive/negative
range crossings. Not crossing zero with nuw is not enough for two reasons:
- If ArLHS has negative step, it may turn from positive to negative
without crossing 0 boundary from left to right (and crossing right to
left doesn't count for unsigned);
- If ArLHS crosses SINT_MAX boundary, it still turns from positive to
negative;
In fact we require that ArLHS always stays non-negative or negative,
which an be enforced by the following set of preconditions:
- both nuw and nsw;
- positive step (looks liftable);
Because of positive step, boundary crossing is only possible from left
part to the right part. And because of no-wrap flags, it is guaranteed
to never happen.
Use `std::clamp` directly from the standard library now that LLVM is built with
C++17 standards mode.
Differential Revision: https://reviews.llvm.org/D131869
* Replace getUserCost with getInstructionCost, covering all cost kinds.
* Remove getInstructionLatency, it's not implemented by any backends, and we should fold the functionality into getUserCost (now getInstructionCost) to make it easier for targets to handle the cost kinds with their existing cost callbacks.
Original Patch by @samparker (Sam Parker)
Differential Revision: https://reviews.llvm.org/D79483
In D131869 we noticed that we jump through some hoops because we parse the
tolerance option used in MisExpect.cpp into a 64-bit integer. This is
unnecessary, since the value can only be in the range [0, 100).
This patch changes the underlying type to be 32-bit from where it is
parsed in Clang through to it's use in LLVM.
Reviewed By: jloser
Differential Revision: https://reviews.llvm.org/D131935
We don't have a dominator tree in this pass, so we
can't bail out sooner by checking for unreachable
code, but this is a minimal fix for the example in
issue #56875.
Contextual knowledge may be used to prove invariance of some conditions.
For example, in this case:
```
; %len >= 0
guard(%iv = {start,+,1}<nuw> <s %len)
guard(%iv = {start,+,1}<nuw> <u %len)
```
the 2nd check always fails if `start` is negative and always passes otherwise.
It looks like there are more opportunities of this kind that are still to be
implemented in the future.
Differential Revision: https://reviews.llvm.org/D129753
Reviewed By: apilipenko
The RelLookupTableConverter pass currently only supports 64-bit
pointers. This is currently enforced using an isArch64Bit() check
on the target triple. However, we consider x32 to be a 64-bit target,
even though the pointers are 32-bit. (And independently of that
specific example, there may be address spaces with different pointer
sizes.)
As such, add an additional guard for the size of the pointers that
are actually part of the lookup table.
Differential Revision: https://reviews.llvm.org/D131399