This patch fixes code that incorrectly handled dbg.values with duplicate
location operands, i.e. !DIArgList(i32 %a, i32 %a). The errors in
question were caused by either applying an update to dbg.value multiple
times when the update is only valid once, or by updating the
DIExpression for only the first instance of a value that appears
multiple times.
Differential Revision: https://reviews.llvm.org/D105831
This reverts commit 52aeacfbf5.
There isn't full agreement on a path forward yet, but there is agreement that
this shouldn't land as-is. See discussion on https://reviews.llvm.org/D105338
Also reverts unreviewed "[clang] Improve `-Wnull-dereference` diag to be more in-line with reality"
This reverts commit f4877c78c0.
And all the related changes to tests:
This reverts commit 9a0152799f.
This reverts commit 3f7c9cc274.
This reverts commit 329f8197ef.
This reverts commit aa9f58cc2c.
This reverts commit 2df37d5ddd.
This reverts commit a72a441812.
Currently InstructionSimplify.cpp knows how to simplify floating point
instructions that have a NaN operand. It does not know how to handle the
matching constrained FP intrinsic.
This patch teaches it how to simplify so long as the exception handling
is not "fpexcept.strict".
Differential Revision: https://reviews.llvm.org/D103169
This reverts commit 4e413e1621,
which landed almost 10 months ago under premise that the original behavior
didn't match reality and was breaking users, even though it was correct as per
the LangRef. But the LangRef change still hasn't appeared, which might suggest
that the affected parties aren't really worried about this problem.
Please refer to discussion in:
* https://reviews.llvm.org/D87399 (`Revert "[InstCombine] erase instructions leading up to unreachable"`)
* https://reviews.llvm.org/D53184 (`[LangRef] Clarify semantics of volatile operations.`)
* https://reviews.llvm.org/D87149 (`[InstCombine] erase instructions leading up to unreachable`)
clang has `-Wnull-dereference` which will diagnose the obvious cases
of null dereference, it was adjusted in f4877c78c0,
but it will only catch the cases where the pointer is a null literal,
it will not catch the cases where an arbitrary store is expected to trap.
Differential Revision: https://reviews.llvm.org/D105338
This patch enables the salvaging of debug values that may be calculated
from more than one SSA value, such as with binary operators that do not
use a constant argument. The actual functionality for this behaviour is
added in a previous commit (c7270567), but with the ability to actually
emit the resulting debug values switched off.
The reason for this is that the prior patch has been reverted several
times due to issues discovered downstream, some time after the actual
landing of the patch. The patch in question is rather large and touches
several widely used header files, and all issues discovered are more
related to the handling of variadic debug values as a whole rather than
the details of the patch itself. Therefore, to minimize the build time
impact and risk of conflicts involved in any potential future
revert/reapply of that patch, this significantly smaller patch (that
touches no header files) will instead be used as the capstone to enable
variadic debug value salvaging.
The review linked to this patch is mostly implemented by the previous
commit, c7270567, but also contains the changes in this patch.
Differential Revision: https://reviews.llvm.org/D91722
This is a partial reapply of the original commit and the followup commit
that were previously reverted; this reapply also includes a small fix
for a potential source of non-determinism, but also has a small change
to turn off variadic debug value salvaging, to ensure that any future
revert/reapply steps to disable and renable this feature do not risk
causing conflicts.
Differential Revision: https://reviews.llvm.org/D91722
This reverts commit 386b66b2fc.
As a follow-up to https://reviews.llvm.org/D104129, I'm cleaning up the danling probe related code in both the compiler and llvm-profgen.
I'm seeing a 5% size win for the pseudo_probe section for SPEC2017 and 10% for Ciner. Certain benchmark such as 602.gcc has a 20% size win. No obvious difference seen on build time for SPEC2017 and Cinder.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D104477
> This reapplies c0f3dfb9, which was reverted following the discovery of
> crashes on linux kernel and chromium builds - these issues have since
> been fixed, allowing this patch to re-land.
This reverts commit 36ec97f76a.
The change caused non-determinism in the compiler, see comments on the code
review at https://reviews.llvm.org/D91722.
Reverting to unbreak people's builds until that can be addressed.
This also reverts the follow-up "[DebugInfo] Limit the number of values
that may be referenced by a dbg.value" in
a0bd6105d8.
Following the addition of salvaging dbg.values using DIArgLists to
reference multiple values, a case has been found where excessively large
DIArgLists are produced as a result of this salvaging, resulting in
large enough performance costs to effectively freeze the compiler.
This patch introduces an upper bound of 16 to the number of values that
may be salvaged into a dbg.value, to limit the impact of these extreme
cases to performance.
Differential Revision: https://reviews.llvm.org/D103162
This reapplies c0f3dfb9, which was reverted following the discovery of
crashes on linux kernel and chromium builds - these issues have since
been fixed, allowing this patch to re-land.
This reverts commit 4397b7095d.
All the uses that we have for collectBitParts revolve around us matching down to an operation with a single root value - I don't think we're intending to change that (and a lot of collectBitParts assumes it).
The binops cases (OR/FSHL/FSHR) already check if the providers are the same, but that would still mean we waste time collecting through unaryops before getting to them.
As noticed on D90170, the recursion depth for matching a maximum of a i128 bitwidth was too high.
@lebedev.ri mentioned that we can probably do better by limiting the number of collected Values instead of just depth, but I'll look at that later.
We were missing bitreverse matches in cases where InstCombine had seen a byte-level rotation at the end of a bitreverse sequence (replacing or() with fshl()), hindering the exhaustive bitreverse matching in CodeGenPrepare later on.
When replacing a conditional branch by an unconditional one because the targets are identical, transfer the metadata to the new branch instruction.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D101226
When replacing a conditional branch by an unconditional one because the condition is a constant, transfer the metadata to the new branch instruction.
Part of fix for llvm.org/PR50060
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D101141
Previous build failures were caused by an error in bitcode reading and
writing for DIArgList metadata, which has been fixed in e5d844b587.
There were also some unnecessary asserts that were being triggered on
certain builds, which have been removed.
This reverts commit dad5caa59e.
Move the findDbg* functions into lib/IR/DebugInfo.cpp from
lib/Transforms/Utils/Local.cpp.
D99169 adds a call to a function (findDbgUsers) that lives in
lib/Transforms/Utils/Local.cpp (LLVMTransformUtils) from lib/IR/Value.cpp
(LLVMCore). The Core lib doesn't include TransformUtils. The builtbots caught
this here: https://lab.llvm.org/buildbot/#/builders/109/builds/12664. This patch
moves the function, and the 3 similar ones for consistency, into DebugInfo.cpp
which is part of LLVMCore.
Reviewed By: dblaikie, rnk
Differential Revision: https://reviews.llvm.org/D100632
This reverts commit ab98f2c712 and 98eea392cd.
It includes a fix for the clang test which triggered the revert. I failed to notice this one because there was another AMDGPU llvm test with a similiar name and the exact same text in the error message. Odd. Since only one build bot reported the clang test, I didn't notice that one.
Breaks check-clang, see comments on D100400
Also revert follow-up "[NFC] Move a recently added utility into a location to enable reuse"
This reverts commit 3ce61fb6d6.
This reverts commit 61a85da882.
First, we don't need vector-ness for the predecessor lists.
Secondly, like elsewhere, do insertions before deletions.
Lastly, the check that we actually need to insert an edge,
that it doesn't exist already, is backwards. Instead of
looking at successors of every single 'PredOfBB',
just always look at predecessors of the 'Succ'.
The result is always the same, but we avoid *really* inefficient code.
Follow up to a6d2a8d6f5. This covers all the public interfaces of the bundle related code. I tried to cleanup the internals where the changes were obvious, but there's definitely more room for improvement.
This *only* changes the cases where we *really* don't care
about the iteration order of the underlying contained,
namely when we will use the values from it to form DTU updates.
Fixed section of code that iterated through a SmallDenseMap and added
instructions in each iteration, causing non-deterministic code; replaced
SmallDenseMap with MapVector to prevent non-determinism.
This reverts commit 01ac6d1587.
This caused non-deterministic compiler output; see comment on the
code review.
> This patch updates the various IR passes to correctly handle dbg.values with a
> DIArgList location. This patch does not actually allow DIArgLists to be produced
> by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
> Other than that, it should cover every IR pass.
>
> Most of the changes simply extend code that operated on a single debug value to
> operate on the list of debug values in the style of any_of, all_of, for_each,
> etc. Instances of setOperand(0, ...) have been replaced with with
> replaceVariableLocationOp, which takes the value that is being replaced as an
> additional argument. In places where this value isn't readily available, we have
> to track the old value through to the point where it gets replaced.
>
> Differential Revision: https://reviews.llvm.org/D88232
This reverts commit df69c69427.
This patch improves salvageDebugInfoImpl by allowing it to salvage arithmetic
operations with two or more non-const operands; this includes the GetElementPtr
instruction, and most Binary Operator instructions. These salvages produce
DIArgList locations and are only valid for dbg.values, as currently variadic
DIExpressions must use DW_OP_stack_value. This functionality is also only added
for salvageDebugInfoForDbgValues; other functions that directly call
salvageDebugInfoImpl (such as in ISel or Coroutine frame building) can be
updated in a later patch.
Differential Revision: https://reviews.llvm.org/D91722
This patch refactors out the salvaging of GEP and BinOp instructions into
separate functions, in preparation for further changes to the salvaging of these
instructions coming in another patch; there should be no functional change as a
result of this refactor.
Differential Revision: https://reviews.llvm.org/D92851
This patch updates the various IR passes to correctly handle dbg.values with a
DIArgList location. This patch does not actually allow DIArgLists to be produced
by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
Other than that, it should cover every IR pass.
Most of the changes simply extend code that operated on a single debug value to
operate on the list of debug values in the style of any_of, all_of, for_each,
etc. Instances of setOperand(0, ...) have been replaced with with
replaceVariableLocationOp, which takes the value that is being replaced as an
additional argument. In places where this value isn't readily available, we have
to track the old value through to the point where it gets replaced.
Differential Revision: https://reviews.llvm.org/D88232
The code used for propagating equalities (e.g. assume facts) was conservative in two ways - one of which this patch fixes. Specifically, it shifts the code reasoning about whether a use is dominated by the end of the assume block to consider phi uses to exist on the predecessor edge. This matches the dominator tree handling for dominates(Edge, Use), and simply extends it to dominates(BB, Use).
Note that the decision to use the end of the block is itself a conservative choice. The more precise option would be to use the later of the assume and the value, and replace all uses after that. GVN handles that case separately (with the replace operand mechanism) because it used to be expensive to ask dominator questions within blocks. With the new instruction ordering support, we should probably rewrite this code at some point to simplify.
Differential Revision: https://reviews.llvm.org/D98082
This patch updates DbgVariableIntrinsics to support use of a DIArgList for the
location operand, resulting in a significant change to its interface. This patch
does not update all IR passes to support multiple location operands in a
dbg.value; the only change is to update the DbgVariableIntrinsic interface and
its uses. All code outside of the intrinsic classes assumes that an intrinsic
will always have exactly one location operand; they will still support
DIArgLists, but only if they contain exactly one Value.
Among other changes, the setOperand and setArgOperand functions in
DbgVariableIntrinsic have been made private. This is to prevent code from
setting the operands of these intrinsics directly, which could easily result in
incorrect/invalid operands being set. This does not prevent these functions from
being called on a debug intrinsic at all, as they can still be called on any
CallInst pointer; it is assumed that any code directly setting the operands on a
generic call instruction is doing so safely. The intention for making these
functions private is to prevent DIArgLists from being overwritten by code that's
naively trying to replace one of the Values it points to, and also to fail fast
if a DbgVariableIntrinsic is updated to use a DIArgList without a valid
corresponding DIExpression.
This change fixes a couple places where the pseudo probe intrinsic blocks optimizations because they are not naturally removable. To unblock those optimizations, the blocking pseudo probes are moved out of the original blocks and tagged dangling, instead of allowing pseudo probes to be literally removed. The reason is that when the original block is removed, we won't be able to sample it. Instead of assigning it a zero weight, moving all its pseudo probes into another block and marking them dangling should allow the counts inference a chance to assign them a more reasonable weight. We have not seen counts quality degradation from our experiments.
The optimizations being unblocked are:
1. Removing conditional probes for if-converted branches. Conditional probes are tagged dangling when their homing branch arms are folded so that they will not be over-counted.
2. Unblocking jump threading from removing empty blocks. Pseudo probe prevents jump threading from removing logically empty blocks that only has one unconditional jump instructions.
3. Unblocking SimplifyCFG and MIR tail duplicate to thread empty blocks and blocks with redundant branch checks.
Since dangling probes are logically deleted, they should not consume any samples in LTO postLink. This can be achieved by setting their distribution factors to zero when dangled.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D97481
In the example based on:
https://llvm.org/PR49218
...we are crashing because poison is a subclass of undef, so we merge blocks and create:
PHI node has multiple entries for the same basic block with different incoming values!
%k3 = phi i64 [ poison, %entry ], [ %k3, %g ], [ undef, %entry ]
If both poison and undef values are incoming, we soften the poison values to undef.
Differential Revision: https://reviews.llvm.org/D97495
collectBitParts uses int8_t for the bit indices, leaving a 128-bit limit.
We already test for this before calling collectBitParts, but rGb94c215592bd added truncate handling which meant we could end up processing wider integers.
Thanks to @manojgupta for the repro.
This moves the willReturn() helper from CallBase to Instruction,
so that it can be used in a more generic manner. This will make
it easier to fix additional passes (ADCE and BDCE), and will give
us one place to change if additional instructions should become
non-willreturn (e.g. there has been talk about handling volatile
operations this way).
I have also included the IntrinsicInst workaround directly in
here, so that it gets applied consistently. (As such this change
is not entirely NFC -- FuncAttrs will now use this as well.)
Differential Revision: https://reviews.llvm.org/D96992
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
When removing catchpad's from catchswitch, if that removes a successor,
we need to record that in DomTreeUpdater.
This fixes PostDomTree preservation failure in an existing test.
This appears to be the single issue that i see in my current test coverage.
When DomTreeUpdater is in lazy update mode, the blocks
that were scheduled to be removed, won't be removed
until the updates are flushed, e.g. by asking
DomTreeUpdater for a up-to-date DomTree.
From the function's current code, it is pretty evident
that the support for the lazy mode is an afterthought,
see e.g. how we roll-back NumRemoved statistic..
So instead of considering all the unreachable blocks
as the blocks-to-be-removed, simply additionally skip
all the blocks that are already scheduled to be removed
We need to handle this case before dealing with the case of constant
branch condition, because if the destinations match, latter fold
would try to remove the DomTree edge that would still be present.
This allows to make that particular DomTree update non-permissive
* Update valueCoversEntireFragment to use TypeSize.
* Add a regression test.
* Assertions have been added to protect untested codepaths.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91806
This migrates all LLVM (except Kaleidoscope and
CodeGen/StackProtector.cpp) DebugLoc::get to DILocation::get.
The CodeGen/StackProtector.cpp usage may have a nullptr Scope
and can trigger an assertion failure, so I don't migrate it.
Reviewed By: #debug-info, dblaikie
Differential Revision: https://reviews.llvm.org/D93087
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
This change introduces a GC parseable lowering for element atomic
memcpy/memmove intrinsics. This way runtime can provide an
implementation which can take a safepoint during copy operation.
See "GC-parseable element atomic memcpy/memmove" thread on llvm-dev
for the background and details:
https://groups.google.com/g/llvm-dev/c/NnENHzmX-b8/m/3PyN8Y2pCAAJ
Differential Revision: https://reviews.llvm.org/D88861
Add basic vector handling to recognizeBSwapOrBitReverseIdiom/collectBitParts - this works at the element level, all vector element operations must match (splat constants etc.) and there is no cross-element support (insert/extract/shuffle etc.).
If we're bswap'ing some bytes and zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
Reapplied with early-out if recognizeBSwapOrBitReverseIdiom collects a source wider than the result type.
Differential Revision: https://reviews.llvm.org/D88578
If we're bswap'ing some bytes and zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
Differential Revision: https://reviews.llvm.org/D88578
Make sure we're using getScalarSizeInBits instead of cast<IntegerType> to get Type bit widths.
This is preliminary cleanup before we can start adding vector support to the bswap/bitreverse (element level) matching.
There doesn't seem to be any good reason for having a separate path for when we bswap/bitreverse at a smaller size than the destination size - so merge these to make the instruction generation a lot clearer.
Fix a number of WShadow warnings (I was used as the instruction and index......) and fix cases to match style.
Also, replaced the Bit APInt mask check in AND instructions with a direct APInt[] bit check.
PR39793 demonstrated an issue where we fail to recognize 'partial' bswap patterns of the lower bytes of an integer source.
In fact, most of this is already in place collectBitParts suitably tags zero bits, so we just need to correctly handle this case by finding the zero'd upper bits and reducing the bswap pattern just to the active demanded bits.
Differential Revision: https://reviews.llvm.org/D88316
Pulled from D87452, this is a fixed version of the collectBitParts fshl/fshr handling which as @nikic noticed wasn't checking for different providers or had correct bit ordering (which was hid by only testing shift amounts of bitwidth/2).
Differential Revision: https://reviews.llvm.org/D88292
I want to export this function, and the current API was a bit
weird: It took an additional Alignment argument that didn't really
have anything to do with what the function does. Drop it, and
perform a max at the callsite.
Also rename it to tryEnforceAlignment().
When a switch case is folded into default's case, that's an IR change that
should be reported, update ConstantFoldTerminator accordingly.
Differential Revision: https://reviews.llvm.org/D87142
EarlyCSE has a mode to verify the invariant that hash equality equals
key equality, but EliminateDuplicatePHINodes() doesn't.
I've verified that this would have caught the stage2-stage3 mismatches
5ec2b757cc revert has fixed,
that were introduced last time in 3e69871ab5.
When removing instructions from unreachable blocks, and only debug info
intrinsics were removed, InstCombine could incorrectly return a false
Modified status.
This is fixed by making removeAllNonTerminatorAndEHPadInstructions()
also return how many debug info intrinsics that were removed, and take
that into account.
This was caught using the check introduced by D80916.
Reviewed By: majnemer
Differential Revision: https://reviews.llvm.org/D85839