For the longest time we used `AAValueSimplify` and
`genericValueTraversal` to determine "potential values". This was
problematic for many reasons:
- We recomputed the result a lot as there was no caching for the 9
locations calling `genericValueTraversal`.
- We added the idea of "intra" vs. "inter" procedural simplification
only as an afterthought. `genericValueTraversal` did offer an option
but `AAValueSimplify` did not. Thus, we might end up with "too much"
simplification in certain situations and then gave up on it.
- Because `genericValueTraversal` was not a real `AA` we ended up with
problems like the infinite recursion bug (#54981) as well as code
duplication.
This patch introduces `AAPotentialValues` and replaces the
`AAValueSimplify` uses with it. `genericValueTraversal` is folded into
`AAPotentialValues` as are the instruction simplifications performed in
`AAValueSimplify` before. We further distinguish "intra" and "inter"
procedural simplification now.
`AAValueSimplify` was not deleted as we haven't ported the
re-materialization of instructions yet. There are other differences over
the former handling, e.g., we may not fold trivially foldable
instructions right now, e.g., `add i32 1, 1` is not folded to `i32 2`
but if an operand would be simplified to `i32 1` we would fold it still.
We are also even more aware of function/SCC boundaries in CGSCC passes,
which is good even if some tests look like they regress.
Fixes: https://github.com/llvm/llvm-project/issues/54981
Note: A previous version was flawed and consequently reverted in
6555558a80.
For the longest time we used `AAValueSimplify` and
`genericValueTraversal` to determine "potential values". This was
problematic for many reasons:
- We recomputed the result a lot as there was no caching for the 9
locations calling `genericValueTraversal`.
- We added the idea of "intra" vs. "inter" procedural simplification
only as an afterthought. `genericValueTraversal` did offer an option
but `AAValueSimplify` did not. Thus, we might end up with "too much"
simplification in certain situations and then gave up on it.
- Because `genericValueTraversal` was not a real `AA` we ended up with
problems like the infinite recursion bug (#54981) as well as code
duplication.
This patch introduces `AAPotentialValues` and replaces the
`AAValueSimplify` uses with it. `genericValueTraversal` is folded into
`AAPotentialValues` as are the instruction simplifications performed in
`AAValueSimplify` before. We further distinguish "intra" and "inter"
procedural simplification now.
`AAValueSimplify` was not deleted as we haven't ported the
re-materialization of instructions yet. There are other differences over
the former handling, e.g., we may not fold trivially foldable
instructions right now, e.g., `add i32 1, 1` is not folded to `i32 2`
but if an operand would be simplified to `i32 1` we would fold it still.
We are also even more aware of function/SCC boundaries in CGSCC passes,
which is good even if some tests look like they regress.
Fixes: https://github.com/llvm/llvm-project/issues/54981
Note: A previous version was flawed and consequently reverted in
6555558a80.
For the longest time we used `AAValueSimplify` and
`genericValueTraversal` to determine "potential values". This was
problematic for many reasons:
- We recomputed the result a lot as there was no caching for the 9
locations calling `genericValueTraversal`.
- We added the idea of "intra" vs. "inter" procedural simplification
only as an afterthought. `genericValueTraversal` did offer an option
but `AAValueSimplify` did not. Thus, we might end up with "too much"
simplification in certain situations and then gave up on it.
- Because `genericValueTraversal` was not a real `AA` we ended up with
problems like the infinite recursion bug (#54981) as well as code
duplication.
This patch introduces `AAPotentialValues` and replaces the
`AAValueSimplify` uses with it. `genericValueTraversal` is folded into
`AAPotentialValues` as are the instruction simplifications performed in
`AAValueSimplify` before. We further distinguish "intra" and "inter"
procedural simplification now.
`AAValueSimplify` was not deleted as we haven't ported the
re-materialization of instructions yet. There are other differences over
the former handling, e.g., we may not fold trivially foldable
instructions right now, e.g., `add i32 1, 1` is not folded to `i32 2`
but if an operand would be simplified to `i32 1` we would fold it still.
We are also even more aware of function/SCC boundaries in CGSCC passes,
which is good.
Fixes: https://github.com/llvm/llvm-project/issues/54981
We used to be very conservative when integer states were merged.
Instead of adding the known range (which is large due to uncertainty)
into the assumed range (which is hopefully small), we can also only
allow to merge in both at the same time into their respective
counterpart. This will ensure we keep the invariant that assumed is part
of known.
When we run the CGSCC pass we should only invest time on the SCC. We can
initialize AAs with information from the module slice but we should not
update those AAs. We make an exception for are call site of the SCC as
they are helpful providing information for the SCC.
Minor modifications to pointer privatization allow us to perform it even
in the CGSCC pass, similar to ArgumentPromotion.
When we run the CGSCC pass we should only invest time on the SCC. We can
initialize AAs with information from the module slice but we should not
update those AAs.
There was some ad-hoc handling of liveness and manifest to avoid
breaking CGSCC guarantees. Things always slipped through though.
This cleanup will:
1) Prevent us from manifesting any "information" outside the CGSCC.
This might be too conservative but we need to opt-in to annotation
not try to avoid some problematic ones.
2) Avoid running any liveness analysis outside the CGSCC. We did have
some AAIsDeadFunction handling to this end but we need this for all
AAIsDead classes. The reason is that AAIsDead information is only
correct if we actually manifest it, since we don't (see point 1) we
cannot actually derive/use it at all. We are currently trying to
avoid running any AA updates outside the CGSCC but that seems to
impact things quite a bit.
3) Assert, don't check, that our modifications (during cleanup) modifies
only CGSCC functions.
The oversight caused us to ignore call sites that are effectively dead
when we computed reachability (or more precise the call edges of a
function). The problem is that loads in the readonly callee might depend
on stores prior to the callee. If we do not track the call edge we
mistakenly assumed the store before the call cannot reach the load.
The problem is nicely visible in:
`llvm/test/Transforms/Attributor/ArgumentPromotion/basictest.ll`
Caused by D118673.
Fixes https://github.com/llvm/llvm-project/issues/53726
D106720 introduced features that did not work properly as we could add
new queries after a fixpoint was reached and which could not be answered
by the information gathered up to the fixpoint alone.
As an alternative to D110078, which forced eager computation where we
want to continue to be lazy, this patch fixes the problem.
QueryAAs are AAs that allow lazy queries during their lifetime. They are
never fixed if they have no outstanding dependences and always run as
part of the updates in an iteration. To determine if we are done, all
query AAs are asked if they received new queries, if not, we only need
to consider updated AAs, as before. If new queries are present we go for
another iteration.
Differential Revision: https://reviews.llvm.org/D118669
We missed out on AANoRecurse in the module pass because we had no call
graph. With AAFunctionReachability we can simply ask if the function may
reach itself.
Differential Revision: https://reviews.llvm.org/D110099
genericValueTraversal can look through arguments and allow value
simplification across function boundaries. In fact, the latter already
happened unchecked. With this change we allow the user of
genericValueTraversal to opt-out of interprocedural traversal if
required. We explicitly look through arguments now which helps to do
various things, incl. the propagation of constants into OpenMP parallel
regions (on the host).
This fixes a conceptual problem with our AAIsDead usage which conflated
call site liveness with call site return value liveness. Without the
fix tests would obviously miscompile as we make genericValueTraversal
more powerful (in a follow up). The effects on the tests are mixed but
mostly marginal. The most prominent one is the lack of `noreturn` for
functions. The reason is that we make entire blocks live at the same
time (for time reasons). Now that we actually look at the block
liveness, which we need to do, the return instructions are live and
will survive. As an example, `noreturn_async.ll` has been modified
to retain the `noreturn` even with block granularity. We could address
this easily but there is little need in practice.
The old method to avoid unconstrained expansion of the constant range in
a loop did not work as soon as there were multiple instructions in
between the phi and its input. We now take a generic approach and limit
the number of updates as a fallback. The old method is kept as it
catches "the common case" early.
When we simplify at least one operand in the Attributor simplification
we can use the InstSimplify to work on the simplified operands. This
allows us to avoid duplication of the logic.
Depends on D106189
Differential Revision: https://reviews.llvm.org/D106190
We should use AAValueSimplify for all value simplification, however
there was some leftover logic that predates AAValueSimplify in
AAReturnedValues. This remove the AAReturnedValues part and provides a
replacement by making AAValueSimplifyReturned strong enough to handle
all previously covered cases. Further, this improve
AAValueSimplifyCallSiteReturned to handle returned arguments.
AAReturnedValues is now much easier and the collected returned
values/instructions are now from the associated function only, making it
much more sane. We also do not have the brittle logic anymore that looks
for unresolved calls. Instead, we use AAValueSimplify to handle
recursion.
Useful code has been split into helper functions, e.g., an Attributor
interface to get a simplified value.
Differential Revision: https://reviews.llvm.org/D103860
Not all attributes are able to handle the interprocedural step and
follow the uses into a call site. Let them be able to combine call site
uses instead. This might result in some unused values/arguments being
leftover but it removes problems where we misused "is dead" even though
it was actually "is simplified/replaced".
We explicitly check for dead values due to constant propagation in
`AAIsDeadValueImpl::areAllUsesAssumedDead` instead.
Differential Revision: https://reviews.llvm.org/D103858
Broke check-clang, see https://reviews.llvm.org/D102307#2869065
Ran `git revert -n ebbe149a6f08535ede848a531a601ae6591cfbc5..269416d41908bb670f67af689155d5ab8eea689a`
We should use AAValueSimplify for all value simplification, however
there was some leftover logic that predates AAValueSimplify in
AAReturnedValues. This remove the AAReturnedValues part and provides a
replacement by making AAValueSimplifyReturned strong enough to handle
all previously covered cases. Further, this improve
AAValueSimplifyCallSiteReturned to handle returned arguments.
AAReturnedValues is now much easier and the collected returned
values/instructions are now from the associated function only, making it
much more sane. We also do not have the brittle logic anymore that looks
for unresolved calls. Instead, we use AAValueSimplify to handle
recursion.
Useful code has been split into helper functions, e.g., an Attributor
interface to get a simplified value.
Differential Revision: https://reviews.llvm.org/D103860
Not all attributes are able to handle the interprocedural step and
follow the uses into a call site. Let them be able to combine call site
uses instead. This might result in some unused values/arguments being
leftover but it removes problems where we misused "is dead" even though
it was actually "is simplified/replaced".
We explicitly check for dead values due to constant propagation in
`AAIsDeadValueImpl::areAllUsesAssumedDead` instead.
Differential Revision: https://reviews.llvm.org/D103858
We often need to deal with the value lattice that contains none and
undef as special values. A simple helper makes this much nicer.
Differential Revision: https://reviews.llvm.org/D103857
When we do simplification via AAPotentialValues or AAValueConstantRange
we need to simplify the operands of an instruction we deconstruct first.
This does not only improve the result, see for example range.ll, but is
required as we allow outside AAs to provide simplification rules via
callbacks. If we do ignore the simplification rules and base other
simplifications on the IR instead we can create an inconsistent state.
Summary:
The current implementation of AANoFreeFloating will incorrectly list floating
point loads and stores as may-free. This prevents other attributor instances
like HeapToStack from pushing some allocations to the stack.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D103975
We have seen various problems when the call graph was not updated or
the updated did not succeed because it involved functions outside the
SCC. This patch adds assertions and checks to avoid accidentally
changing something outside the SCC that would impact the call graph.
It also prevents us from reanalyzing functions outside the current
SCC which could cause problems on its own. Note that the transformations
we do might cause the CG to be "more precise" but the original one would
always be a super set of the most precise one. Since the call graph is
by nature an approximation, it is good enough to have a super set of all
call edges.
Since D86233 we have `mustprogress` which, in combination with
`readonly`, implies `willreturn`. The idea is that every side-effect
has to be modeled as a "write". Consequently, `readonly` means there
is no side-effect, and `mustprogress` guarantees that we cannot "loop"
forever without side-effect.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94125
The update_test_checks script can now check for global symbols and is able
to handle them properly when they differ across prefixes, e.g.,
attribute #0 might be different in different runs.
This patch simply updates all the Attributor tests with the new script.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D97906
We don't need a bool and an enum to express the three options we
currently have. This makes the interface nicer and much easier to
use optional dependencies. Also avoids mistakes where the bool is
false and enum ignored.
This is a follow-up of D95238's LangRef update.
This patch updates `programUndefinedIfUndefOrPoison(V)` to return true if
`V` is used by any memory-accessing instruction.
Interestingly, this affected many tests in Attributors, mainly about adding noundefs.
The tests are updated using llvm/utils/update_test_checks.py. I checked that the diffs
are about updating noundefs.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96642
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
If we are looking at a call site argument it might be a load or call
which is in a different context than the call site argument. We cannot
simply use the call site argument range for the call or load.
Bug reported and reduced by Whitney Tsang <whitneyt@ca.ibm.com>.
Summary:
The module slice describes which functions we can analyze and transform
while working on an SCC as part of the Attributor-CGSCC pass. So far we
simply restricted it to the SCC.
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D86319
Even though `noundef` IR attribute might be attached to non-void type values, AANoUndef is mistakenly identified for pointer type values only.
This patch fixes that.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86737
Currently, although we handle `CallBase` case in updateImpl, we give up in initialize in the case.
That is problematic when we propagate a range from call site returned position to floating position.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86196
All these tests already explicitly test against both legacy PM and NPM.
$ sed -i 's/ -attributor / -attributor -enable-new-pm=0 /g' $(rg --path-separator // -l -- -passes=)
$ sed -i 's/ -attributor-cgscc / -attributor-cgscc -enable-new-pm=0 /g' $(rg --path-separator // -l -- -passes=)
Now all tests in Transforms/Attributor/ pass under NPM.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D84813
Summary:
All tests are updated, except wrapper.ll since it is not working nicely
with newly created functions.
Reviewers: jdoerfert, uenoku, baziotis, homerdin
Subscribers: arphaman, jfb, kuter, bbn, okura, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D84130
We should never give up on AAIsDead as it guards other AAs from
unreachable code (in which SSA properties are meaningless). We did
however use required dependences on some queries in AAIsDead which
caused us to invalidate AAIsDead if the queried AA got invalidated.
We now use optional dependences instead. The bug that exposed this is
added to the liveness.ll test and other test changes show the impact.
Bug report by @sdmitriev.
In a recent patch we introduced a problem with abstract attributes that
were assumed dead at some point. Since `Attributor::updateAA` was
introduced in 95e0d28b71, we did not
remember the dependence on the liveness AA when an abstract attribute
was assumed dead and therefore not updated.
Explicit reproducer added in liveness.ll.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 509242 (345483/s)
temporary memory allocations: 98666 (66937/s)
peak heap memory consumption: 18.60MB
peak RSS (including heaptrack overhead): 103.29MB
total memory leaked: 269.10KB
```
After:
```
calls to allocation functions: 529332 (355494/s)
temporary memory allocations: 102107 (68574/s)
peak heap memory consumption: 19.40MB
peak RSS (including heaptrack overhead): 102.79MB
total memory leaked: 269.10KB
```
Difference:
```
calls to allocation functions: 20090 (1339333/s)
temporary memory allocations: 3441 (229400/s)
peak heap memory consumption: 801.45KB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
```
Before we eagerly put dependences into the QueryMap as soon as we
encountered them (via `Attributor::getAAFor<>` or
`Attributor::recordDependence`). Now we will wait to see if the
dependence is useful, that is if the target is not already in a fixpoint
state at the end of the update. If so, there is no need to record the
dependence at all.
Due to the abstraction via `Attributor::updateAA` we will now also treat
the very first update (during attribute creation) as we do subsequent
updates.
Finally this resolves the problematic usage of QueriedNonFixAA.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 554675 (389245/s)
temporary memory allocations: 101574 (71280/s)
peak heap memory consumption: 28.46MB
peak RSS (including heaptrack overhead): 116.26MB
total memory leaked: 269.10KB
```
After:
```
calls to allocation functions: 512465 (345559/s)
temporary memory allocations: 98832 (66643/s)
peak heap memory consumption: 22.54MB
peak RSS (including heaptrack overhead): 106.58MB
total memory leaked: 269.10KB
```
Difference:
```
calls to allocation functions: -42210 (-727758/s)
temporary memory allocations: -2742 (-47275/s)
peak heap memory consumption: -5.92MB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
```
If we have a dependence between an abstract attribute A to an abstract
attribute B such hat changes in A should trigger an update of B, we do
not need to keep the dependence around once the update was triggered. If
the dependence is still required the update will reinsert it into the
dependence map, if it is not we avoid triggering B in the future. This
replaces the "recompute interval" mechanism we used before to prune
stale dependences.
Number of required iterations is generally down, compile time for the
module pass (not really the CGSCC pass) is down quite a bit.
There is one test change which looks like an artifact in the undefined
behavior AA that needs to be looked at.
When the Attributor was created the test update scripts were not well
suited to deal with the challenges of IR attribute checking. This
partially improved.
Since then we also added three additional configurations that need
testing; in total we now have the following four:
{ TUNIT, CGSCC } x { old pass manager (OPM), new pass manager (NPM) }
Finally, the number of developers and tests grew rapidly (partially due
to the addition of ArgumentPromotion and IPConstantProp tests), which
resulted in tests only being run in some configurations, different
prefixes being used, and different "styles" of checks being used.
Due to the above reasons I believed we needed to take another look at
the test update scripts. While we started to use them, via UTC_ARGS:
--enable/disable, the other problems remained. To improve the testing
situation for *all* configurations, to simplify future updates to the
test, and to help identify subtle effects of future changes, we now use
the test update scripts for (almost) all Attributor tests.
An exhaustive prefix list minimizes the number of check lines and makes
it easy to identify and compare configurations.
Tests have been adjusted in the process but we tried to keep their
intend unchanged.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D76588