We already support SGE, so the same logic should hold for SLE with
the LHS and RHS swapped.
I didn't see this in the wild. Just happened to walk past this code
and thought it was odd that it was asymmetric in what condition
codes it handled.
Reviewed By: spatel, reames
Differential Revision: https://reviews.llvm.org/D131805
Another ticket split out of D107285, this extends the optimization
of 0.0 - -X to just X when using constrained intrinsics and the
optimization is allowed.
If the negation of X is done with fsub then the match fails because of
the lack of IR Matcher support for constrained intrinsics.
While I'm here, remove some TODO notices since the work is no longer
planned.
Differential Revision: https://reviews.llvm.org/D131607
We get a couple of improvements from recognizing swapped
operand patterns that were not handled by the replicated
code.
This should also enable simplifying larger patterns as
seen in issue #56653 and issue #56654, but that requires
enhancements to isImpliedCondition() itself.
Given a poison constant as input, the dyn_cast to a ConstantInt would
fail so we would fall through to the generic code that attempts to fold
each element of the input vectors. The inputs to these intrinsics are
not vectors though, leading to a compile time crash. Instead bail out
properly for poison values by returning nullptr. This doesn't try to
define what poison means for these intrinsics.
Fixes#56945
issue #56775
I rearranged the Thumb2 codegen test to avoid simplifying the chain
of rounding instructions. I'm assuming the intent of the test is
to verify lowering of each of those intrinsics.
Add vp.add test cases that can are optimized with D92086 to show the
potential of generalized pattern rewriting.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D129746
D128820 stopped creating div/rem constant expressions by default;
this patch removes support for them entirely.
The getUDiv(), getExactUDiv(), getSDiv(), getExactSDiv(), getURem()
and getSRem() on ConstantExpr are removed, and ConstantExpr::get()
now only accepts binary operators for which
ConstantExpr::isSupportedBinOp() returns true. Uses of these methods
may be replaced either by corresponding IRBuilder methods, or
ConstantFoldBinaryOpOperands (if a constant result is required).
On the C API side, LLVMConstUDiv, LLVMConstExactUDiv, LLVMConstSDiv,
LLVMConstExactSDiv, LLVMConstURem and LLVMConstSRem are removed and
corresponding LLVMBuild methods should be used.
Importantly, this also means that constant expressions can no longer
trap! This patch still keeps the canTrap() method to minimize diff --
I plan to drop it in a separate NFC patch.
Differential Revision: https://reviews.llvm.org/D129148
The div/rem constant expressions are going away in D129148. Convert
some tests to use InstSimplify instead, to show that the constant
folding still happens.
Handle denormal constant input for fcmp instructions based on the
denormal handling mode.
Reviewed By: spatel, dcandler
Differential Revision: https://reviews.llvm.org/D128647
This removes the extractvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
extractvalue is already not supported in bitcode, so we do not need
to worry about bitcode auto-upgrade.
Uses of ConstantExpr::getExtractValue() should be replaced with
IRBuilder::CreateExtractValue() (if the fact that the result is
constant is not important) or ConstantFoldExtractValueInstruction()
(if it is). Though for this particular case, it is also possible
and usually preferable to use getAggregateElement() instead.
The C API function LLVMConstExtractValue() is removed, as the
underlying constant expression no longer exists. Instead,
LLVMBuildExtractValue() should be used (which will constant fold
or create an instruction). Depending on the use-case,
LLVMGetAggregateElement() may also be used instead.
Differential Revision: https://reviews.llvm.org/D125795
These intrinsics are now fundemental for SVE code generation and have been
present for a year and a half, hence move them out of the experimental
namespace.
Differential Revision: https://reviews.llvm.org/D127976
Previously left these behind due to the required instruction
renumbering, drop them now. This more accurately represents
opaque pointer input IR.
Also drop duplicate opaque pointer check lines in one SROA test.
Depending on the environment, a floating point instruction should
treat denormal inputs as zero, and/or flush a denormal output to zero.
Denormals are not currently accounted for when an instruction gets
folded to a constant, which can lead to differences in output between
a folded and a unfolded instruction when running on the target. The
denormal handling mode can be set by the function level attribute
denormal-fp-math, which this patch uses to determine whether any
denormal inputs to or outputs from folding should be zero, and that
the sign is set appropriately.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D116952
These tests demonstrate cases where the constant produced by folding
a floating point instruction should differ based on the denormal
handling mode set in function attributes.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D125807
Unfortunately, it's not just constant expressions that can trap,
we might also have a trapping constant expression nested inside
a constant aggregate.
Perform the check during phi folding on Constant rather than
ConstantExpr, and extend the Constant::mayTrap() implementation
to also recursive into ConstantAggregates, not just ConstantExprs.
Fixes https://github.com/llvm/llvm-project/issues/49839.
With opaque pointers, we end up merging these GEPs and dropping
the inrange attribute (in the last two cases). This did not happen
previously, because typed pointers use less powerful GEP folding logic.
I'm a bit unsure whether this is something we need to be concerned
about or not. I believe that generally our stance is that we should
perform folds even if this requires losing poison-generating flags
like inrange.
We can either a) accept this as-is, b) try to inhibit folding if it
requires dropping inrange or c) try to fold to poison if we know
that inrange is going to be violated.
For now, we accept it as-is.
Differential Revision: https://reviews.llvm.org/D127503
The only interesting test change is in @PR31262, where the following
fold is now performed, while it previously was not:
https://alive2.llvm.org/ce/z/a5Qmr6
llvm/test/Transforms/InstSimplify/ConstProp/gep.ll has not been
updated, because there is a tradeoff between folding and inrange
preservation there that we may want to discuss.
Updates have been performed using:
https://gist.github.com/nikic/98357b71fd67756b0f064c9517b62a34
isImpliedCondition() currently handles and/or on the LHS, but not
on the RHS, resulting in asymmetric behavior. This patch adds two
new implication rules:
* LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
* LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
Differential Revision: https://reviews.llvm.org/D125551
This adds two conjugated folds:
* A | B -> B if A implies B (https://alive2.llvm.org/ce/z/R6GU4j)
* A & B -> A if A implies B (https://alive2.llvm.org/ce/z/EGMqyy)
If A and B are icmps themselves, we will usually fold this through
other logic already (though the tests show a couple additional cases
we previously missed). However, isImpliedCond() also supports A
being of the form X & Y, which allows us to handle cases like
(X & Y) | B where X implies B. This addresses the regression from
D125398.
Something that notably doesn't work yet is the (X | Y) & B case.
This is due to an asymmetry in the isImpliedCondition()
implementation that will have to be addressed separately.
Differential Revision: https://reviews.llvm.org/D125530
Most of insertelement constant folding is blocked if the vector type
is scalable. I believe we can make an exception for inserting null
into an all zeros vector.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D123413
Currently the fsub optimizations in InstSimplify don't know how to fold
-0.0 - (-X) to X when the constrained intrinsics are used. This adds partial
support. The rest of the support will come later with work on the IR
matchers.
This review is split out from D107285.
Differential Revision: https://reviews.llvm.org/D123396
With opaque pointers, we can eliminate zero-index GEPs even if
they have multiple indices, as this no longer impacts the result
type of the GEP.
This optimization is already done for instructions in InstSimplify,
but we were missing the corresponding constant expression handling.
The constexpr transform is a bit more powerful, because it can
produce a vector splat constant and also handles undef values --
it is an extension of an existing single-index transform.