Adding the pre-header to CSEBlocks ensures instructions are CSE'd even
after hoisting.
This was original discovered by @atrick a while ago.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D133649
If the reused scalars are clustered, i.e. each part of the reused mask
contains all elements of the original scalars exactly once, we can
reorder those clusters to improve the whole ordering of of the clustered
vectors.
Differential Revision: https://reviews.llvm.org/D133524
Need either follow the original order of the operands for bool logical
ops, or emit freeze instruction to avoid poison propagation.
Differential Revision: https://reviews.llvm.org/D126877
The pointer operands for the ScatterVectorize node may contain
non-instruction values and they are not checked for "already being
vectorized". Need to check that such pointers are already vectorized and
gather them instead of trying to build vectorize node to avoid compiler
crash.
Differential Revision: https://reviews.llvm.org/D132949
This patch changes order of searching for reductions vs other vectorization possibilities.
The idea is if we do not match a reduction it won't be harmful for further attempts to
find vectorizable operations on a vector build sequences. But doing it in the opposite
order we have good chance to ruin opportunity to match a reduction later.
We also don't want to try vectorizing binary operations too early as 2-way vectorization
may effectively prohibit wider ones leading to producing less effective code.
Differential Revision: https://reviews.llvm.org/D132590
Add test cases for AArch64 that show over-eager SLP vectorization on
AArch64, where keeping the things scalar allows efficient lowering using
scalar fmas.
When estimating the cost of the in-tree vectorized scalars in
buildvector sequences, need to take into account the vectorized
insertelement instruction. The top of the buildvector seuences is the
topmost vectorized insertelement instruction, because it will have
> than 1 use after the vectorization.
For the affected test case improves througput from 21 to 16 (per
llvm-mca).
Differential Revision: https://reviews.llvm.org/D132740
This change implements a TTI query with the goal of disabling slp vectorization on RISCV. The current default configuration disables SLP already, but its current tied to the ability to lower fixed length vectors. Over in D131508, I want to enable fixed length vectors for purposes of LoopVectorizer, but preliminary analysis has revealed a couple of SLP specific issues we need to resolve before enabling it by default. This change exists to allow us to enable LV without SLP.
Differential Revision: https://reviews.llvm.org/D132680
SLP vectorizer tries to find the reductions starting the operands of the
instructions with no-users/void returns/etc. But such operands can be
postponable instructions, like Cmp, InsertElement or InsertValue. Such
operands still must be postponed, vectorizer should not try to vectorize
them immediately.
Differential Revision: https://reviews.llvm.org/D131965
In many cases constant buildvector results in a vector load from a
constant/data pool. Need to consider this cost too.
Differential Revision: https://reviews.llvm.org/D126885
Currently, we try to vectorize values, feeding into stores, only if
slp-vectorize-hor-store option is provided. We can safely enable
vectorization of the value operand of a single store in the basic block,
if the operand value is used only in store.
It should enable extra vectorization and should not increase compile
time significantly.
Fixes https://github.com/llvm/llvm-project/issues/51320
Differential Revision: https://reviews.llvm.org/D131894
2xi64 is the legalized type for wide reductions (like 16xi64) and setting the
cost to 2 makes `load-reduce` and `load-zext-reduce` patterns profitable.
The few performance measurments that I did on an aarch64 machine confirm that
these patterns are actually faster when vectorized.
Differential Revision: https://reviews.llvm.org/D130740
We currently assert in vectorizeTree(TreeEntry*) when processing a PHI
bundle in a block containing a catchswitch. We attempt to set the
IRBuilder insertion point following the catchswitch, which is invalid.
This is done so that ShuffleBuilder.finalize() knows where to insert
a shuffle if one is needed.
To avoid this occurring, watch out for catchswitch blocks during
buildTree_rec() processing, and avoid adding PHIs in such blocks to
the vectorizable tree. It is unlikely that constraining vectorization
over an exception path will cause a noticeable performance loss, so
this seems preferable to trying to anticipate when a shuffle will and
will not be required.
This patch slightly extends the limit on the RecursionMaxDepth inside
the SLP vectorizer. It does it only when it hits a load (or zext/sext of
a load), which allows it to peek through in the places where it will be
the most valuable, without ballooning out the O(..) by any 2^n factors.
Differential Revision: https://reviews.llvm.org/D122148
Building on the work on D124284, this patch tags v4i8 and v2i16 vector loads as custom, enabling SLP to try to vectorize these types ending in a partial store (using the SSE MOVD instruction) - we already do something similar for 64-bit vector types.
Differential Revision: https://reviews.llvm.org/D127604
If the root order itself does not require reordering, we can just
remove its reorder mask safely (e.g., if the root node is a vector of
phis). But if this node is used as an operand in the graph, we cannot
delete the reordering, need to keep it. Otherwise the graph nodes are
not synchronized with the operands. It may cause an extra gather
instruction(s) or a compiler crash.
Also, need to be very careful when selecting the gather nodes for
reordering since there might several gather nodes with the same scalars
and we can try to reorder just the same node many times instead of
different nodes.
Differential Revision: https://reviews.llvm.org/D128680
Improved/fixed cost modeling for shuffles by providing masks, improved
cost model for non-identity insertelements.
Differential Revision: https://reviews.llvm.org/D115462
Patch was reverted in 4c5f10a due to buildbot failures, now being
reapplied with updated AArch64 and RISCV tests.
This patch adds handling for the llvm.powi.* intrinsics in
BasicTTIImplBase::getIntrinsicInstrCost() and improves vectorization.
Closes#53887.
Differential Revision: https://reviews.llvm.org/D128172
If the masked gather nodes must be reordered, we can just reorder
scalars, just like for gather nodes. But if the node contains reused
scalars, it must be handled same way as a regular vectorizable node,
since need to reorder reused mask, not the scalars directly.
Differential Revision: https://reviews.llvm.org/D128360
This reverts commit cac60940b7.
Caused -Os -fsanitize=memory -march=haswell miscompile to pytorch/cpuinfo.
See my latest comment (may update) on D115462.
During the reordering transformation we should try to avoid reordering bundles
like fadd,fsub because this may block them being matched into a single vector
instruction in x86.
We do this by checking if a TreeEntry is such a pattern and adding it to the
list of TreeEntries with orders that need to be considered.
Differential Revision: https://reviews.llvm.org/D125712
This patch adds handling for the llvm.powi.* intrinsics in
BasicTTIImplBase::getIntrinsicInstrCost() and improves vectorization.
Closes#53887.
Differential Revision: https://reviews.llvm.org/D128172
If the OffsetBeg + InsertVecSz is greater than VecSz, need to estimate
the cost as shuffle of 2 vector, not as insert of subvector. Otherwise,
the inserted subvector is out of range and compiler may crash.
Differential Revision: https://reviews.llvm.org/D128071
If the root scalar is mapped to to the smallest bit width, the vector is
truncated and the types between original buildvector and extracted value
mismatched. For extract, we emit sext/zext instructions, for shuffles we
can reuse oringal vector instead of the truncated one.
Differential Revision: https://reviews.llvm.org/D127974
Currently scatter vectorize nodes can be emitted only for GEPs with
constant indices. But we can also emit such nodes for GEPs with the same
ptr and non-constant vectorizable/gathered indices, if profitable. Patch
adds support for such nodes and tries to improve handling of GEPs with
non-const indeces for such nodes.
Metric: SLP.NumVectorInstructions
Program SLP.NumVectorInstructions
results results0 diff
test-suite :: External/SPEC/CFP2017speed/638.imagick_s/638.imagick_s.test 5243.00 5240.00 -0.1%
test-suite :: External/SPEC/CFP2017rate/538.imagick_r/538.imagick_r.test 5243.00 5240.00 -0.1%
test-suite :: External/SPEC/CFP2017rate/526.blender_r/526.blender_r.test 27550.00 27507.00 -0.2%
test-suite :: External/SPEC/CFP2006/453.povray/453.povray.test 5395.00 5380.00 -0.3%
test-suite :: External/SPEC/CFP2017rate/511.povray_r/511.povray_r.test 5389.00 5374.00 -0.3%
test-suite :: External/SPEC/CINT2017rate/520.omnetpp_r/520.omnetpp_r.test 961.00 958.00 -0.3%
test-suite :: External/SPEC/CINT2017speed/620.omnetpp_s/620.omnetpp_s.test 961.00 958.00 -0.3%
test-suite :: External/SPEC/CFP2006/447.dealII/447.dealII.test 5664.00 5643.00 -0.4%
test-suite :: External/SPEC/CFP2017rate/510.parest_r/510.parest_r.test 13202.00 13127.00 -0.6%
test-suite :: External/SPEC/CINT2006/445.gobmk/445.gobmk.test 212.00 207.00 -2.4%
test-suite :: MultiSource/Benchmarks/7zip/7zip-benchmark.test 890.00 850.00 -4.5%
test-suite :: External/SPEC/CINT2006/464.h264ref/464.h264ref.test 1695.00 1581.00 -6.7%
test-suite :: MultiSource/Applications/JM/lencod/lencod.test 2338.00 2140.00 -8.5%
test-suite :: SingleSource/UnitTests/matrix-types-spec.test 63.00 55.00 -12.7%
test-suite :: SingleSource/Benchmarks/Adobe-C++/loop_unroll.test 468.00 356.00 -23.9%
Geomean difference -0.3%
All numbers show increased number of generated vector instructions.
Diff:
SingleSource/Benchmarks/Adobe-C++/loop_unroll - better without LTO, but
need an extra analysis with LTO (with LTO compiler generates
masked_gather, while before regular loads were emitted because of extra
data, availbale at LTO time).
SingleSource/UnitTests/matrix-types-spec - more vector code.
MultiSource/Applications/JM/lencod/lencod - same.
External/SPEC/CINT2006/464.h264ref/464.h264ref - same.
MultiSource/Benchmarks/7zip/7zip-benchmark - same.
External/SPEC/CINT2006/445.gobmk/445.gobmk - no changes.
External/SPEC/CFP2017rate/510.parest_r/510.parest_r - more vector code.
External/SPEC/CFP2006/447.dealII/447.dealII - same
External/SPEC/CINT2017speed/620.omnetpp_s/620.omnetpp_s - same
External/SPEC/CINT2017rate/520.omnetpp_r/520.omnetpp - same
External/SPEC/CFP2017rate/511.povray_r/511.povray - same
External/SPEC/CFP2006/453.povray/453.povray - same
External/SPEC/CFP2017rate/526.blender_r/526.blender_r - same
External/SPEC/CFP2017rate/538.imagick_r/538.imagick_r - same
External/SPEC/CFP2017speed/638.imagick_s/638.imagick_s - same
Differential Revision: https://reviews.llvm.org/D127219
We can skip the analysis of the constant nodes, their order should not
affect the ordering of the trees/subtrees.
Differential Revision: https://reviews.llvm.org/D127775