Commit Graph

59 Commits

Author SHA1 Message Date
Alexey Bataev c167028684 [SLP]Delay vectorization of postponable values for instructions with no users.
SLP vectorizer tries to find the reductions starting the operands of the
instructions with no-users/void returns/etc. But such operands can be
postponable instructions, like Cmp, InsertElement or InsertValue. Such
operands still must be postponed, vectorizer should not try to vectorize
them immediately.

Differential Revision: https://reviews.llvm.org/D131965
2022-08-19 08:39:16 -07:00
Florian Hahn aeb19817d6
Revert "[SLP]Do not emit extract elements for insertelements users, replace with shuffles directly."
This reverts commit fc9c59c355.

The patch triggers an assertion when building SPEC on X86. Reduced
reproducer shared at D107966.

Also reverts follow-up commit 11a09af76d.
2022-05-21 21:00:01 +01:00
Alexey Bataev fc9c59c355 [SLP]Do not emit extract elements for insertelements users, replace with shuffles directly.
SLP vectorizer emits extracts for externally used vectorized scalars and
estimates the cost for each such extract. But in many cases these
scalars are input for insertelement instructions, forming buildvector,
and instead of extractelement/insertelement pair we can emit/cost
estimate shuffle(s) cost and generate series of shuffles, which can be
further optimized.

Tested using test-suite (+SPEC2017), the tests passed, SLP was able to
generate/vectorize more instructions in many cases and it allowed to reduce
number of re-vectorization attempts (where we could try to vectorize
buildector insertelements again and again).

Differential Revision: https://reviews.llvm.org/D107966
2022-05-20 05:58:09 -07:00
Alexey Bataev 7ea03f0b4e [SLP]Improve reductions analysis and emission, part 1.
Currently SLP vectorizer walks through the instructions and selects
3 main classes of values: 1) reduction operations - instructions with same
reduction opcode (add, mul, min/max, etc.), which build the reduction,
2) reduced values - instructions with the same opcodes, but different
from the reduction opcode, 3) extra arguments - all other values,
instructions from the different basic block rather than the root node,
instructions with to many/less uses.

This scheme is not very efficient. It excludes some instructions and all
non-instruction values from the reductions (constants, proficient
gathers), to many possibly reduced values are marked as extra arguments.
Patch improves this process by introducing a bit extended analysis
stage. During this stage, we still try to select 3 classes of the
values: 1) reduction operations - same as before, 2) possibly reduced
values - all instructions from the current block/non-instructions, which
may build a vectorization tree, 3) extra arguments - instructions from
the different basic blocks. Additionally, an extra sorting of the
possibly reduced values occurs to build the scalar sequences which
highly likely will bed vectorized, e.g. loads are grouped by the
distance between them, constants are grouped together, cmp instructions
are sorted by their compare types and predicates, extractelement
instructions are sorted by the vector operand, etc. Also, these groups
are reordered by their length so the longest group is the first in the
list of the possibly reduced values.

The vectorization process tries to emit the reductions for all these
groups. These reductions, remaining non-vectorized possible reduced
values and extra arguments are then combined into the final expression
just like it was before.

Differential Revision: https://reviews.llvm.org/D114171
2022-05-02 12:03:58 -07:00
Valery N Dmitriev 88b9e46fb5 [SLP] Steer for the best chance in tryToVectorize() when rooting with binary ops.
tryToVectorize() method implements one of searching paths for vectorizable tree roots in SLP vectorizer,
specifically for binary and comparison operations. Order of making probes for various scalar pairs
was defined by its implementation: the instruction operands, then climb over one operand if
the instruction is its sole user and then perform same actions for another operand if previous
attempts failed. Problem with this approach is that among these options we can have more than a
single vectorizable tree candidate and it is not necessarily the one that encountered first.
Trying to build vectorizable tree for each possible combination for just evaluation is expensive.
But we already have lookahead heuristics mechanism which we use for finding best pick among
operands of commutative instructions. It calculates cumulative score for candidates in two
consecutive lanes. This patch introduces use of the heuristics for choosing the best pair among
several combinations. We only try one that looks as most promising for vectorization.
Additional benefit is that we reduce total number of vectorization trees built for probes
because we skip those looking non-profitable early.

Reviewed By: Alexey Bataev (ABataev), Vasileios Porpodas (vporpo)
Differential Revision: https://reviews.llvm.org/D124309
2022-04-25 12:25:33 -07:00
Philip Reames 48cc9287f5 Reapply "[SLP] Schedule only sub-graph of vectorizable instructions"" (try 3)
The original commit exposed several missing dependencies (e.g. latent bugs in SLP scheduling).  Most of these were fixed over the weekend and have had several days to bake.  The last was fixed this morning after being noticed in manual review of test changes yesterday.  See the review thread for links to each change.

Original commit message follows:

SLP currently schedules all instructions within a scheduling window which stretches from the first instruction potentially vectorized to the last. This window can include a very large number of unrelated instructions which are not being considered for vectorization. This change switches the code to only schedule the sub-graph consisting of the instructions being vectorized and their transitive users.

This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:

   Before this patch:

   704357 SLP                          - Number of calcDeps actions
   699021 SLP                          - Number of schedule calls
   5598 SLP                          - Number of ReSchedule actions
   59 SLP                          - Number of ReScheduleOnFail actions
   10084 SLP                          - Number of schedule resets
   8523 SLP                          - Number of vector instructions generated

   After this patch:

   102895 SLP                          - Number of calcDeps actions
   161916 SLP                          - Number of schedule calls
   5637 SLP                          - Number of ReSchedule actions
   55 SLP                          - Number of ReScheduleOnFail actions
   10083 SLP                          - Number of schedule resets
   8403 SLP                          - Number of vector instructions generated

I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.

The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.

For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.

Differential Revision: https://reviews.llvm.org/D118538
2022-03-25 10:39:23 -07:00
Philip Reames deae979a2c Revert "Reapply "[SLP] Schedule only sub-graph of vectorizable instructions"""
This reverts commit 738042711b. A second, apparently separate, issue has been reported on the original review.
2022-03-03 11:35:34 -08:00
Philip Reames 738042711b Reapply "[SLP] Schedule only sub-graph of vectorizable instructions""
Root issue which triggered the revert was fixed in 689bab.  No changes in the reapplied patch.

Original commit message follows:

SLP currently schedules all instructions within a scheduling window which stretches from the first instr
uction potentially vectorized to the last. This window can include a very large number of unrelated instruct
ions which are not being considered for vectorization. This change switches the code to only schedule the su
b-graph consisting of the instructions being vectorized and their transitive users.

This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:

    Before this patch:

    704357 SLP                          - Number of calcDeps actions
     699021 SLP                          - Number of schedule calls
       5598 SLP                          - Number of ReSchedule actions
         59 SLP                          - Number of ReScheduleOnFail actions
      10084 SLP                          - Number of schedule resets
       8523 SLP                          - Number of vector instructions generated

    After this patch:

    102895 SLP                          - Number of calcDeps actions
     161916 SLP                          - Number of schedule calls
       5637 SLP                          - Number of ReSchedule actions
         55 SLP                          - Number of ReScheduleOnFail actions
      10083 SLP                          - Number of schedule resets
       8403 SLP                          - Number of vector instructions generated

I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.

The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.

For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.

Differential Revision: https://reviews.llvm.org/D118538
2022-03-02 10:47:20 -08:00
Arthur Eubanks 9c6250ee41 Revert "[SLP] Schedule only sub-graph of vectorizable instructions"
This reverts commit 0539a26d91.

Causes a miscompile, see comments on D118538.

Required updating bottom-to-top-reorder.ll.
2022-03-01 17:31:16 -08:00
Philip Reames 0539a26d91 [SLP] Schedule only sub-graph of vectorizable instructions
SLP currently schedules all instructions within a scheduling window which stretches from the first instruction potentially vectorized to the last. This window can include a very large number of unrelated instructions which are not being considered for vectorization. This change switches the code to only schedule the sub-graph consisting of the instructions being vectorized and their transitive users.

This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:

Before this patch:

704357 SLP                          - Number of calcDeps actions
 699021 SLP                          - Number of schedule calls
   5598 SLP                          - Number of ReSchedule actions
     59 SLP                          - Number of ReScheduleOnFail actions
  10084 SLP                          - Number of schedule resets
   8523 SLP                          - Number of vector instructions generated

After this patch:

102895 SLP                          - Number of calcDeps actions
 161916 SLP                          - Number of schedule calls
   5637 SLP                          - Number of ReSchedule actions
     55 SLP                          - Number of ReScheduleOnFail actions
  10083 SLP                          - Number of schedule resets
   8403 SLP                          - Number of vector instructions generated

I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.

The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.

For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.

Differential Revision: https://reviews.llvm.org/D118538
2022-02-22 10:15:55 -08:00
Alexey Bataev ddce6e0561 [SLP]Improve vectorization of cmp instructions sequences.
Final attempt to vectorize bundles of comptatible cmp instructions after
all other instructions processing.

Metric: SLP.NumVectorInstructions

Program                                                                             results results0 diff
        test-suite :: MultiSource/Benchmarks/mediabench/g721/g721encode/encode.test    1.00    5.00  400.0%
                              test-suite :: MultiSource/Benchmarks/PAQ8p/paq8p.test    8.00   11.00   37.5%
                    test-suite :: MultiSource/Benchmarks/Olden/voronoi/voronoi.test   20.00   26.00   30.0%
                test-suite :: External/SPEC/CINT2017rate/525.x264_r/525.x264_r.test 1344.00 1648.00   22.6%
               test-suite :: External/SPEC/CINT2017speed/625.x264_s/625.x264_s.test 1344.00 1648.00   22.6%
                              test-suite :: MultiSource/Benchmarks/Olden/bh/bh.test  102.00  124.00   21.6%
                test-suite :: MultiSource/Benchmarks/DOE-ProxyApps-C/CoMD/CoMD.test  118.00  133.00   12.7%
          test-suite :: External/SPEC/CFP2017speed/638.imagick_s/638.imagick_s.test 3233.00 3554.00    9.9%
           test-suite :: External/SPEC/CFP2017rate/538.imagick_r/538.imagick_r.test 3233.00 3554.00    9.9%
                        test-suite :: MultiSource/Benchmarks/Olden/power/power.test   64.00   70.00    9.4%
           test-suite :: External/SPEC/CFP2017rate/526.blender_r/526.blender_r.test 7879.00 8604.00    9.2%
           test-suite :: MultiSource/Benchmarks/Prolangs-C/simulator/simulator.test   50.00   54.00    8.0%
                        test-suite :: MultiSource/Applications/sqlite3/sqlite3.test   27.00   29.00    7.4%
             test-suite :: External/SPEC/CFP2017rate/510.parest_r/510.parest_r.test 8345.00 8955.00    7.3%
     test-suite :: MultiSource/Benchmarks/Prolangs-C/TimberWolfMC/timberwolfmc.test  694.00  738.00    6.3%
                        test-suite :: MultiSource/Benchmarks/MallocBench/gs/gs.test  361.00  382.00    5.8%
                      test-suite :: MultiSource/Benchmarks/7zip/7zip-benchmark.test  409.00  430.00    5.1%
     test-suite :: External/SPEC/CINT2017speed/600.perlbench_s/600.perlbench_s.test  140.00  147.00    5.0%
      test-suite :: External/SPEC/CINT2017rate/500.perlbench_r/500.perlbench_r.test  140.00  147.00    5.0%
             test-suite :: External/SPEC/CFP2017rate/511.povray_r/511.povray_r.test 4013.00 4206.00    4.8%
                       test-suite :: MultiSource/Applications/JM/ldecod/ldecod.test  966.00 1011.00    4.7%
                           test-suite :: SingleSource/Benchmarks/Misc/oourafft.test   65.00   68.00    4.6%
                            test-suite :: MultiSource/Benchmarks/Bullet/bullet.test 4219.00 4381.00    3.8%
                    test-suite :: MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4.test 1911.00 1973.00    3.2%
      test-suite :: External/SPEC/CINT2017rate/531.deepsjeng_r/531.deepsjeng_r.test   62.00   64.00    3.2%
     test-suite :: External/SPEC/CINT2017speed/631.deepsjeng_s/631.deepsjeng_s.test   62.00   64.00    3.2%
                 test-suite :: External/SPEC/CINT2017speed/602.gcc_s/602.gcc_s.test  852.00  877.00    2.9%
                  test-suite :: External/SPEC/CINT2017rate/502.gcc_r/502.gcc_r.test  852.00  877.00    2.9%
                       test-suite :: MultiSource/Applications/JM/lencod/lencod.test 1624.00 1668.00    2.7%
                         test-suite :: MultiSource/Benchmarks/McCat/18-imp/imp.test   39.00   40.00    2.6%
test-suite :: MultiSource/Benchmarks/MiBench/consumer-typeset/consumer-typeset.test  613.00  624.00    1.8%
      test-suite :: MultiSource/Benchmarks/MiBench/consumer-lame/consumer-lame.test  378.00  383.00    1.3%
      test-suite :: MultiSource/Benchmarks/MiBench/consumer-jpeg/consumer-jpeg.test  293.00  295.00    0.7%
            test-suite :: MultiSource/Benchmarks/mediabench/jpeg/jpeg-6a/cjpeg.test  297.00  299.00    0.7%
      test-suite :: External/SPEC/CINT2017rate/523.xalancbmk_r/523.xalancbmk_r.test 5522.00 5534.00    0.2%
     test-suite :: External/SPEC/CINT2017speed/623.xalancbmk_s/623.xalancbmk_s.test 5522.00 5534.00    0.2%

Differential Revision: https://reviews.llvm.org/D114799
2021-12-01 07:26:29 -08:00
Alexey Bataev eb9b75dd4d [SLP]Change the order of the reduction/binops args pair vectorization attempts.
Need to change the order of the reduction/binops args pair vectorization
attempts. Need to try to find the reduction at first and postpone
vectorization of binops args. This may help to find more reduction
patterns and vectorize them.
Part of D111574.

Differential Revision: https://reviews.llvm.org/D112224
2021-10-25 06:27:14 -07:00
Alexey Bataev e7c3eaa8ae [SLP]Do not emit extra shuffle for insertelements vectorization.
If the vectorized insertelements instructions form indentity subvector
(the subvector at the beginning of the long vector), it is just enough
to extend the vector itself, no need to generate inserting subvector
shuffle.

Differential Revision: https://reviews.llvm.org/D107494
2021-08-05 08:41:24 -07:00
Alexey Bataev 214f99b27c Revert "[SLP]Do not emit extra shuffle for insertelements vectorization."
This reverts commit 871ea69803 to fix the
problem if the first vector is not just undef.
2021-08-04 11:28:59 -07:00
Alexey Bataev 871ea69803 [SLP]Do not emit extra shuffle for insertelements vectorization.
If the vectorized insertelements instructions form indentity subvector
(the subvector at the beginning of the long vector), it is just enough
to extend the vector itself, no need to generate inserting subvector
shuffle.

Differential Revision: https://reviews.llvm.org/D107344
2021-08-03 13:18:41 -07:00
Alexey Bataev a010d4230e [SLP]Allow reordering of insertelements.
After we added support for non-ordered insertelements, we can allow
their reordering.

Differential Revision: https://reviews.llvm.org/D104057
2021-06-11 08:47:41 -07:00
Alexey Bataev 74af4bb1f4 [SLP]Remove unnecessary UndefValue in CreateShuffle.
No need to use UndefValue in CreateShuffle call.

Differential Revision: https://reviews.llvm.org/D104113
2021-06-11 08:08:30 -07:00
Alexey Bataev a893b44187 [SLP]Disable scheduling of insertelements.
There is no need to schedule insertelement instructions. The compiler
did not schedule them before it started support their vectorization and
it should not do it after. We pre-schedule them manually when finding
a build vector sequence.
Disabling scheduling of insertelement instructions improves compile
time and vectorization of the very large basic blocks by saving
scheduling budget for other instructions.

Differential Revision: https://reviews.llvm.org/D104026
2021-06-10 10:25:26 -07:00
Anton Afanasyev b2cd895011 [SLP] Fix "gathering" of insertelement instructions
For rare exceptional case vector tree node (insertelements for now only)
is marked as `NeedToGather`, this case is processed by patch. Follow-up
of D98714 to fix bug reported here https://reviews.llvm.org/D98714#2764135.

Differential Revision: https://reviews.llvm.org/D102675
2021-05-25 01:35:43 +03:00
serge-sans-paille 4ab3041acb Revert "[NFC] remove explicit default value for strboolattr attribute in tests"
This reverts commit bda6e5bee0.

See https://lab.llvm.org/buildbot/#/builders/109/builds/15424 for instance
2021-05-24 19:43:40 +02:00
serge-sans-paille bda6e5bee0 [NFC] remove explicit default value for strboolattr attribute in tests
Since d6de1e1a71, no attributes is quivalent to
setting attribute to false.

This is a preliminary commit for https://reviews.llvm.org/D99080
2021-05-24 19:31:04 +02:00
Alexey Bataev 8dab25954b [SLP]Improve handling of compensate external uses cost.
External insertelement users can be represented as a result of shuffle
of the vectorized element and noconsecutive insertlements too. Added
support for handling non-consecutive insertelements.

Differential Revision: https://reviews.llvm.org/D101555
2021-05-21 07:45:31 -07:00
Alexey Bataev 20e2b4f6e0 [SLP][NFC]Add a test for non-consecutive inserts, NFC. 2021-05-14 12:44:35 -07:00
Anton Afanasyev ab2c499d3a [SLP] Add insertelement instructions to vectorizable tree
Add new type of tree node for `InsertElementInst` chain forming vector.
These instructions could be either removed, or replaced by shuffles during
vectorization and we can add this node to cost model, so naturally estimating
their cost, getting rid of `CompensateCost` tricks and reducing further work
for InstCombine. This fixes PR40522 and PR35732 in a natural way. Also this
patch is the first step towards revectorization of partially vectorization
(to fix PR42022 completely). After adding inserts to tree the next step is
to add vector instructions there (for instance, to merge `store <2 x float>`
and `store <2 x float>` to `store <4 x float>`).

Fixes PR40522 and PR35732.

Differential Revision: https://reviews.llvm.org/D98714
2021-05-13 07:41:45 +03:00
Juneyoung Lee 4a8e6ed2f7 [SLP,LV] Use poison constant vector for shufflevector/initial insertelement
This patch makes SLP and LV emit operations with initial vectors set to poison constant instead of undef.
This is a part of efforts for using poison vector instead of undef to represent "doesn't care" vector.
The goal is to make nice shufflevector optimizations valid that is currently incorrect due to the tricky interaction between undef and poison (see https://bugs.llvm.org/show_bug.cgi?id=44185 ).

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D94061
2021-01-06 11:22:50 +09:00
Juneyoung Lee 278aa65cc4 [IR] Let IRBuilder's CreateVectorSplat/CreateShuffleVector use poison as placeholder
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93793
2020-12-30 04:21:04 +09:00
Simon Pilgrim 119e4550dd [SLPVectorizer][X86] Remove unused check-prefixes 2020-11-08 14:03:55 +00:00
Anton Afanasyev a7478fab6c [SLP] Fix order of `insertelement`/`insertvalue` seed operands
Summary:
This patch takes the indices operands of `insertelement`/`insertvalue`
into account while generation of seed elements for `findBuildAggregate()`.
This function has kept the original order of `insert`s before.
Also this patch optimizes `findBuildAggregate()` preventing it from
redundant temporary vector allocations and its multiple reversing.

Fixes llvm.org/pr44067

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D83779
2020-08-06 22:09:24 +03:00
Simon Pilgrim 168a44a70e [CostModel][X86] Improve extract/insert element costs (PR43605)
This tries to improve the accuracy of extract/insert element costs by accounting for subvector extraction/insertion for >128-bit vectors and the shuffling of elements to/from the 0'th index.

It also adds INSERTPS for f32 types and PINSR/PEXTR costs for integer types (at the moment we assume the same cost as MOVD/MOVQ - which isn't always true).

Differential Revision: https://reviews.llvm.org/D74976
2020-02-27 15:54:13 +00:00
Fangrui Song 502a77f125 Migrate function attribute "no-frame-pointer-elim" to "frame-pointer"="all" as cleanups after D56351 2019-12-24 15:57:33 -08:00
Sanjay Patel b80033ef65 [SLP] reduce duplicate CHECK lines in tests; NFC 2019-11-20 10:12:54 -05:00
Craig Topper 8b5f2ab2a4 Recommit r367901 "[X86] Enable -x86-experimental-vector-widening-legalization by default."
The assert that caused this to be reverted should be fixed now.

Original commit message:

This patch changes our defualt legalization behavior for 16, 32, and
64 bit vectors with i8/i16/i32/i64 scalar types from promotion to
widening. For example, v8i8 will now be widened to v16i8 instead of
promoted to v8i16. This keeps the elements widths the same and pads
with undef elements. We believe this is a better legalization strategy.
But it carries some issues due to the fragmented vector ISA. For
example, i8 shifts and multiplies get widened and then later have
to be promoted/split into vXi16 vectors.

This has the potential to cause regressions so we wanted to get
it in early in the 10.0 cycle so we have plenty of time to
address them.

Next steps will be to merge tests that explicitly test the command
line option. And then we can remove the option and its associated
code.

llvm-svn: 368183
2019-08-07 16:24:26 +00:00
Mitch Phillips bd0d97e1c4 Revert "[X86] Enable -x86-experimental-vector-widening-legalization by default."
This reverts commit 3de33245d2.

This commit broke the MSan buildbots. See
https://reviews.llvm.org/rL367901 for more information.

llvm-svn: 368107
2019-08-06 23:00:43 +00:00
Craig Topper 3de33245d2 [X86] Enable -x86-experimental-vector-widening-legalization by default.
This patch changes our defualt legalization behavior for 16, 32, and
64 bit vectors with i8/i16/i32/i64 scalar types from promotion to
widening. For example, v8i8 will now be widened to v16i8 instead of
promoted to v8i16. This keeps the elements widths the same and pads
with undef elements. We believe this is a better legalization strategy.
But it carries some issues due to the fragmented vector ISA. For
example, i8 shifts and multiplies get widened and then later have
to be promoted/split into vXi16 vectors.

This has the potential to cause regressions so we wanted to get
it in early in the 10.0 cycle so we have plenty of time to
address them.

Next steps will be to merge tests that explicitly test the command
line option. And then we can remove the option and its associated
code.

llvm-svn: 367901
2019-08-05 18:25:36 +00:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Simon Pilgrim ff3abef395 [SLPVectorizer] reorderInputsAccordingToOpcode - remove non-Instruction canonicalization
Remove attempts to commute non-Instructions to the LHS - the codegen changes appear to rely on chance more than anything else and also have a tendency to fight existing instcombine canonicalization which moves constants to the RHS of commutable binary ops.

This is prep work towards:
(a) reusing reorderInputsAccordingToOpcode for alt-shuffles and removing the similar reorderAltShuffleOperands
(b) improving reordering to optimized cases with commutable and non-commutable instructions to still find splat/consecutive ops.

Differential Revision: https://reviews.llvm.org/D59738

llvm-svn: 356913
2019-03-25 15:53:55 +00:00
Alexey Bataev ca2396e673 [SLP] Take user instructions cost into consideration in insertelement vectorization.
Summary:
For better vectorization result we should take into consideration the
cost of the user insertelement instructions when we try to
vectorize sequences that build the whole vector. I.e. if we have the
following scalar code:
```
<Scalar code>
insertelement <ScalarCode>, ...
```
we should consider the cost of the last `insertelement ` instructions as
the cost of the scalar code.

Reviewers: RKSimon, spatel, hfinkel, mkuper

Subscribers: javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D42657

llvm-svn: 324893
2018-02-12 14:54:48 +00:00
Alexey Bataev 5b9a77d4ea [SLP] Fix PR35777: Incorrect handling of aggregate values.
Summary:
Fixes the bug with incorrect handling of InsertValue|InsertElement
instrucions in SLP vectorizer. Currently, we may use incorrect
ExtractElement instructions as the operands of the original
InsertValue|InsertElement instructions.

Reviewers: mkuper, hfinkel, RKSimon, spatel

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D41767

llvm-svn: 321994
2018-01-08 14:43:06 +00:00
Alexey Bataev fa13848da8 [SLP] Update more test checks, NFC.
llvm-svn: 321872
2018-01-05 16:15:17 +00:00
Alexey Bataev 9581b42589 [SLP] General improvements of SLP vectorization process.
Patch tries to improve two-pass vectorization analysis, existing in SLP vectorizer. What it does:

1. Defines key nodes, that are the vectorization roots. Previously vectorization started if StoreInst or ReturnInst is found. For now, the vectorization started for all Instructions with no users and void types (Terminators, StoreInst) + CallInsts.
2. CmpInsts, InsertElementInsts and InsertValueInsts are stored in the
array. This array is processed only after the vectorization of the
first-after-these instructions key node is finished. Vectorization goes
in reverse order to try to vectorize as much code as possible.

Reviewers: mzolotukhin, Ayal, mkuper, gilr, hfinkel, RKSimon

Subscribers: ashahid, anemet, RKSimon, mssimpso, llvm-commits

Differential Revision: https://reviews.llvm.org/D29826

llvm-svn: 310260
2017-08-07 15:25:49 +00:00
Alexey Bataev 53d523c9eb Revert "[SLP] General improvements of SLP vectorization process."
This reverts commit r310255.

llvm-svn: 310257
2017-08-07 14:51:52 +00:00
Alexey Bataev faace8f1f1 [SLP] General improvements of SLP vectorization process.
Summary:
Patch tries to improve two-pass vectorization analysis, existing in SLP vectorizer. What it does:
1. Defines key nodes, that are the vectorization roots. Previously vectorization started if StoreInst or ReturnInst is found. For now, the vectorization started for all Instructions with no users and void types (Terminators, StoreInst) + CallInsts.
2. CmpInsts, InsertElementInsts and InsertValueInsts are stored in the array. This array is processed only after the vectorization of the first-after-these instructions key node is finished. Vectorization goes in reverse order to try to vectorize as much code as possible.

Reviewers: mzolotukhin, Ayal, mkuper, gilr, hfinkel, RKSimon

Subscribers: ashahid, anemet, RKSimon, mssimpso, llvm-commits

Differential Revision: https://reviews.llvm.org/D29826

llvm-svn: 310255
2017-08-07 14:03:17 +00:00
Alexey Bataev 4f0d469d45 [SLP] Fix for PR6246: vectorization for scalar ops on vector elements.
When trying to vectorize trees that start at insertelement instructions
function tryToVectorizeList() uses vectorization factor calculated as
MinVecRegSize/ScalarTypeSize. But sometimes it does not work as tree
cost for this fixed vectorization factor is too high.
Patch tries to improve the situation. It tries different vectorization
factors from max(PowerOf2Floor(NumberOfVectorizedValues),
MinVecRegSize/ScalarTypeSize) to MinVecRegSize/ScalarTypeSize and tries
to choose the best one.

Differential Revision: https://reviews.llvm.org/D27215

llvm-svn: 289043
2016-12-08 11:57:51 +00:00
Renato Golin 5b8e7ecdb3 Revert "[SLP] Fix for PR6246: vectorization for scalar ops on vector elements."
This reverts commit r288497, as it broke the AArch64 build of Compiler-RT's
builtins (twice: once in r288412 and once in r288497). We should investigate
this offline.

llvm-svn: 288508
2016-12-02 16:56:26 +00:00
Alexey Bataev e8e94a7176 [SLP] Fix for PR6246: vectorization for scalar ops on vector elements.
When trying to vectorize trees that start at insertelement instructions
function tryToVectorizeList() uses vectorization factor calculated as
MinVecRegSize/ScalarTypeSize. But sometimes it does not work as tree
cost for this fixed vectorization factor is too high.
Patch tries to improve the situation. It tries different vectorization
factors from max(PowerOf2Floor(NumberOfVectorizedValues),
MinVecRegSize/ScalarTypeSize) to MinVecRegSize/ScalarTypeSize and tries
to choose the best one.

Differential Revision: https://reviews.llvm.org/D27215

llvm-svn: 288497
2016-12-02 12:20:22 +00:00
Artem Belevich 704395a25a Revert "[SLP] Fix for PR6246: vectorization for scalar ops on vector elements."
This reverts r288412 which causes severe compile-time regression.

llvm-svn: 288431
2016-12-01 22:52:15 +00:00
Alexey Bataev 2c01af5904 [SLP] Fix for PR6246: vectorization for scalar ops on vector elements.
When trying to vectorize trees that start at insertelement instructions
function tryToVectorizeList() uses vectorization factor calculated as
MinVecRegSize/ScalarTypeSize. But sometimes it does not work as tree
cost for this fixed vectorization factor is too high.
Patch tries to improve the situation. It tries different vectorization
factors from max(PowerOf2Floor(NumberOfVectorizedValues),
MinVecRegSize/ScalarTypeSize) to MinVecRegSize/ScalarTypeSize and tries
to choose the best one.

Differential Revision: https://reviews.llvm.org/D27215

llvm-svn: 288412
2016-12-01 20:06:53 +00:00
Alexey Bataev e951e5eb7b [SLP] Add a new test for tree vectorization starting from insertelement
instruction.

llvm-svn: 288148
2016-11-29 15:37:52 +00:00
Hal Finkel 3b7fc86677 [SLPVectorize] Basic ephemeral-value awareness
The SLP vectorizer should not vectorize ephemeral values. These are used to
express information to the optimizer, and vectorizing them does not lead to
faster code (because the ephemeral values are dropped prior to code generation,
vectorized or not), and obscures the information the instructions are
attempting to communicate (the logic that interprets the arguments to
@llvm.assume generically does not understand vectorized conditions).

Also, uses by ephemeral values are free (because they, and the necessary
extractelement instructions, will be dropped prior to code generation).

llvm-svn: 219816
2014-10-15 17:35:01 +00:00