All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
The sign extend might be from an i16 or i8 type and was inserted by InstCombine to match the pointer width. X86 gather legalization isn't currently detecting this to reinsert a sign extend to make things legal.
It's a bit weird for the SelectionDAGBuilder to do this kind of optimization in the first place. With this removed we can at least lean on InstCombine somewhat to ensure the index is i32 or i64.
I'll work on trying to recover some of the test cases by removing sign extends in the backend when its safe to do so with an understanding of the current legalizer capabilities.
This should fix PR30690.
llvm-svn: 318466
SelectionDAGBuilder::visitAlloca assumes alloca address space is 0, which is
incorrect for triple amdgcn---amdgiz and causes isel failure.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D40095
llvm-svn: 318392
Due to integer precision, we might have numerator greater than denominator in
the branch probability scaling. Add a check to prevent this from happening.
llvm-svn: 318353
This patch peels off the top case in switch statement into a branch if the
probability exceeds a threshold. This will help the branch prediction and
avoids the extra compares when lowering into chain of branches.
Differential Revision: http://reviews.llvm.org/D39262
llvm-svn: 318202
TargetLowering::LowerCallTo assumes that sret value type corresponds to a
pointer in default address space, which is incorrect, since sret value type
should correspond to a pointer in alloca address space, which may not
be the default address space. This causes assertion for amdgcn target
in amdgiz environment.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D39996
llvm-svn: 318167
This is a fix for a bug in r317947. We were supposed to check that all the indices are are constant 0, but instead we're only make sure that indices that are constant are 0. Non-constant indices are being ignored.
llvm-svn: 317950
Currently we can only get a uniform base from a simple GEP with 2 operands. This causes us to miss address folding opportunities for simple global array accesses as the test case shows.
This patch adds support for larger GEPs if the other indices are 0 since those don't require any additional computations to be inserted.
We may also want to handle constant splats of zero here, but I'm leaving that for future work when I have a real world example.
Differential Revision: https://reviews.llvm.org/D39911
llvm-svn: 317947
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
In 2010 a commit with no testcase and no further explanation
explicitly disabled the handling of inlined variables in
EmitFuncArgumentDbgValue(). I don't think there is a good reason for
this any more and re-enabling this adds debug locations for variables
associated with an LLVM function argument in functions that are
inlined into the first basic block. The only downside of doing this is
that we may insert a DBG_VALUE before the inlined scope, but (1) this
could be filtered out later, and (2) LiveDebugValues will not
propagate it into subsequent basic blocks if they don't dominate the
variable's lexical scope, so this seems like a small price to pay.
rdar://problem/26228128
llvm-svn: 317702
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
Summary:
For reference, see: http://lists.llvm.org/pipermail/llvm-dev/2017-August/116589.html
This patch fleshes out the instruction class hierarchy with respect to atomic and
non-atomic memory intrinsics. With this change, the relevant part of the class
hierarchy becomes:
IntrinsicInst
-> MemIntrinsicBase (methods-only class)
-> MemIntrinsic (non-atomic intrinsics)
-> MemSetInst
-> MemTransferInst
-> MemCpyInst
-> MemMoveInst
-> AtomicMemIntrinsic (atomic intrinsics)
-> AtomicMemSetInst
-> AtomicMemTransferInst
-> AtomicMemCpyInst
-> AtomicMemMoveInst
-> AnyMemIntrinsic (both atomicities)
-> AnyMemSetInst
-> AnyMemTransferInst
-> AnyMemCpyInst
-> AnyMemMoveInst
This involves some class renaming:
ElementUnorderedAtomicMemCpyInst -> AtomicMemCpyInst
ElementUnorderedAtomicMemMoveInst -> AtomicMemMoveInst
ElementUnorderedAtomicMemSetInst -> AtomicMemSetInst
A script for doing this renaming in downstream trees is included below.
An example of where the Any* classes should be used in LLVM is when reasoning
about the effects of an instruction (ex: aliasing).
---
Script for renaming AtomicMem* classes:
PREFIXES="[<,([:space:]]"
CLASSES="MemIntrinsic|MemTransferInst|MemSetInst|MemMoveInst|MemCpyInst"
SUFFIXES="[;)>,[:space:]]"
REGEX="(${PREFIXES})ElementUnorderedAtomic(${CLASSES})(${SUFFIXES})"
REGEX2="visitElementUnorderedAtomic(${CLASSES})"
FILES=$( grep -E "(${REGEX}|${REGEX2})" -r . | tr ':' ' ' | awk '{print $1}' | sort | uniq )
SED_SCRIPT="s~${REGEX}~\1Atomic\2\3~g"
SED_SCRIPT2="s~${REGEX2}~visitAtomic\1~g"
for f in $FILES; do
echo "Processing: $f"
sed -i ".bak" -E "${SED_SCRIPT};${SED_SCRIPT2};${EA_SED_SCRIPT};${EA_SED_SCRIPT2}" $f
done
Reviewers: sanjoy, deadalnix, apilipenko, anna, skatkov, mkazantsev
Reviewed By: sanjoy
Subscribers: hfinkel, jholewinski, arsenm, sdardis, nhaehnle, JDevlieghere, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D38419
llvm-svn: 316950
This fixes a bug where we'd crash given code like the test-case from
https://bugs.llvm.org/show_bug.cgi?id=30792 . Instead, we let the
offending clobber silently slide through.
This doesn't fully fix said bug, since the assembler will still complain
the moment it sees a crypto/fp/vector op, and we still don't diagnose
calls that require vector regs.
Differential Revision: https://reviews.llvm.org/D39030
llvm-svn: 316374
The NumFixedArgs field of CallLoweringInfo is used by
TargetLowering::LowerCallTo to determine whether a given argument is passed
using the vararg calling convention or not (specifically, to set IsFixed for
each ISD::OutputArg).
Firstly, CallLoweringInfo::setLibCallee and CallLoweringInfo::setCallee both
incorrectly set NumFixedArgs based on the _previous_ args list. Secondly,
TargetLowering::LowerCallTo failed to increment NumFixedArgs when modifying
the argument list so a pointer is passed for the return value.
If your backend uses the IsFixed property or directly accesses NumFixedArgs,
it is _possible_ this change could result in codegen changes (although the
previous behaviour would have been incorrect). No such cases have been
identified during code review for any in-tree architecture.
Differential Revision: https://reviews.llvm.org/D37898
llvm-svn: 315457
The fix is to avoid invalidating our insertion point in
replaceDbgDeclare:
Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
+ if (DII == InsertBefore)
+ InsertBefore = &*std::next(InsertBefore->getIterator());
DII->eraseFromParent();
I had to write a unit tests for this instead of a lit test because the
use list order matters in order to trigger the bug.
The reduced C test case for this was:
void useit(int*);
static inline void inlineme() {
int x[2];
useit(x);
}
void f() {
inlineme();
inlineme();
}
llvm-svn: 313905
Summary:
SelectionDAGISel::LowerArguments is associating arguments
with frame indices (FuncInfo->setArgumentFrameIndex). That
information is later on used by EmitFuncArgumentDbgValue to
create DBG_VALUE instructions that denotes that a variable
can be found on the stack.
I discovered that for our (big endian) out-of-tree target
the association created by SelectionDAGISel::LowerArguments
sometimes is wrong. I've seen this happen when a 64-bit value
is passed on the stack. The argument will occupy two stack
slots (frame index X, and frame index X+1). The fault is
that a call to setArgumentFrameIndex is associating the
64-bit argument with frame index X+1. The effect is that the
debug information (DBG_VALUE) will point at the least significant
part of the arguement on the stack. When printing the
argument in a debugger I will get the wrong value.
I managed to create a test case for PowerPC that seems to
show the same kind of problem.
The bugfix will look at the datalayout, taking endianness into
account when examining a BUILD_PAIR node, assuming that the
least significant part is in the first operand of the BUILD_PAIR.
For big endian targets we should use the frame index from
the second operand, as the most significant part will be stored
at the lower address (using the highest frame index).
Reviewers: bogner, rnk, hfinkel, sdardis, aprantl
Reviewed By: aprantl
Subscribers: nemanjai, aprantl, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37740
llvm-svn: 313901
.. as well as the two subsequent changes r313826 and r313875.
This leads to segfaults in combination with ASAN. Will forward repro
instructions to the original author (rnk).
llvm-svn: 313876
Summary:
This implements the design discussed on llvm-dev for better tracking of
variables that live in memory through optimizations:
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117222.html
This is tracked as PR34136
llvm.dbg.addr is intended to be produced and used in almost precisely
the same way as llvm.dbg.declare is today, with the exception that it is
control-dependent. That means that dbg.addr should always have a
position in the instruction stream, and it will allow passes that
optimize memory operations on local variables to insert llvm.dbg.value
calls to reflect deleted stores. See SourceLevelDebugging.rst for more
details.
The main drawback to generating DBG_VALUE machine instrs is that they
usually cause LLVM to emit a location list for DW_AT_location. The next
step will be to teach DwarfDebug.cpp how to recognize more DBG_VALUE
ranges as not needing a location list, and possibly start setting
DW_AT_start_offset for variables whose lifetimes begin mid-scope.
Reviewers: aprantl, dblaikie, probinson
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37768
llvm-svn: 313825
Summary:
This intrinsic represents a label with a list of associated metadata
strings. It is modelled as reading and writing inaccessible memory so
that it won't be removed as dead code. I think the intention is that the
annotation strings should appear at most once in the debug info, so I
marked it noduplicate. We are allowed to inline code with annotations as
long as we strip the annotation, but that can be done later.
Reviewers: majnemer
Subscribers: eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D36904
llvm-svn: 312569
Previously we would just describe the first register and then call it
quits. This patch emits fragment expressions for each register.
<rdar://problem/34075307>
llvm-svn: 312169
The SelectionDAGBuilder translates various conditional branches into
CaseBlocks which are then translated into SDNodes. If a conditional
branch results in multiple CaseBlocks only the first CaseBlock is
translated into SDNodes immediately, the rest of the CaseBlocks are
put in a queue and processed when all LLVM IR instructions in the
basic block have been processed.
When a CaseBlock is transformed into SDNodes the SelectionDAGBuilder
is queried for the current LLVM IR instruction and the resulting
SDNodes are annotated with the debug info of the current
instruction (if it exists and has debug metadata).
When the deferred CaseBlocks are processed, the SelectionDAGBuilder
does not have a current LLVM IR instruction, and the resulting SDNodes
will not have any debuginfo. As DwarfDebug::beginInstruction() outputs
a .loc directive for the first instruction in a labeled
block (typically the case for something coming from a CaseBlock) this
tends to produce a line-0 directive.
This patch changes the handling of CaseBlocks to store the current
instruction's debug info into the CaseBlock when it is created (and the
SelectionDAGBuilder knows the current instruction) and to always use
the stored debug info when translating a CaseBlock to SDNodes.
Patch by Frej Drejhammar!
Differential Revision: https://reviews.llvm.org/D36671
llvm-svn: 311097
Summary:
We already have information about static alloca stack locations in our
side table. Emitting instructions for them is inefficient, and it only
happens when the address of the alloca has been materialized within the
current block, which isn't often.
Reviewers: aprantl, probinson, dblaikie
Subscribers: jfb, dschuff, sbc100, jgravelle-google, hiraditya, llvm-commits, aheejin
Differential Revision: https://reviews.llvm.org/D36117
llvm-svn: 309729
PR33883 shows that calls to intrinsic functions should not have their vector
arguments or returns subject to ABI changes required by the target.
This resolves PR33883.
Thanks to Alex Crichton for reporting the issue!
Reviewers: zoran.jovanovic, atanasyan
Differential Revision: https://reviews.llvm.org/D35765
llvm-svn: 309561
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
Summary: Continuing the work from https://reviews.llvm.org/D33240, this change introduces an element unordered-atomic memset intrinsic. This intrinsic is essentially memset with the implementation requirement that all stores used for the assignment are done with unordered-atomic stores of a given element size.
Reviewers: eli.friedman, reames, mkazantsev, skatkov
Reviewed By: reames
Subscribers: jfb, dschuff, sbc100, jgravelle-google, aheejin, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D34885
llvm-svn: 307854
Summary: Continuing the work from https://reviews.llvm.org/D33240, this change introduces an element unordered-atomic memmove intrinsic. This intrinsic is essentially memmove with the implementation requirement that all loads/stores used for the copy are done with unordered-atomic loads/stores of a given element size.
Reviewers: eli.friedman, reames, mkazantsev, skatkov
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34884
llvm-svn: 307796
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
This change fixes a bug in SelectionDAGBuilder::visitInsertValue and SelectionDAGBuilder::visitExtractValue where constant expressions (InsertValueConstantExpr and ExtractValueConstantExpr) would be treated as non-constant instructions (InsertValueInst and ExtractValueInst). This bug resulted in an incorrect memory access, which manifested as an assertion failure in SDValue::SDValue.
Fixes PR#33094.
Submitted on behalf of @Praetonus (Benoit Vey)
Differential Revision: https://reviews.llvm.org/D34538
llvm-svn: 307502
If we are lowering a libcall after legalization, we'll split the return type into a pair of legal values.
Patch by Jatin Bhateja and Eli Friedman.
Differential Revision: https://reviews.llvm.org/D34240
llvm-svn: 307207
Summary:
Background: http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html
This change is to alter the prototype for the atomic memcpy intrinsic. The prototype itself is being changed to more closely resemble the semantics and parameters of the llvm.memcpy intrinsic -- to ease later combination of the llvm.memcpy and atomic memcpy intrinsics. Furthermore, the name of the atomic memcpy intrinsic is being changed to make it clear that it is not a generic atomic memcpy, but specifically a memcpy is unordered atomic.
Reviewers: reames, sanjoy, efriedma
Reviewed By: reames
Subscribers: mzolotukhin, anna, llvm-commits, skatkov
Differential Revision: https://reviews.llvm.org/D33240
llvm-svn: 305558
The code assumed that we process instructions in basic block order. FastISel
processes instructions in reverse basic block order. We need to pre-assign
virtual registers before selecting otherwise we get def-use relationships wrong.
This only affects code with swifterror registers.
rdar://32659327
llvm-svn: 305484
By target hookifying getRegisterType, getNumRegisters, getVectorBreakdown,
backends can request that LLVM to scalarize vector types for calls
and returns.
The MIPS vector ABI requires that vector arguments and returns are passed in
integer registers. With SelectionDAG's new hooks, the MIPS backend can now
handle LLVM-IR with vector types in calls and returns. E.g.
'call @foo(<4 x i32> %4)'.
Previously these cases would be scalarized for the MIPS O32/N32/N64 ABI for
calls and returns if vector types were not legal. If vector types were legal,
a single 128bit vector argument would be assigned to a single 32 bit / 64 bit
integer register.
By teaching the MIPS backend to inspect the original types, it can now
implement the MIPS vector ABI which requires a particular method of
scalarizing vectors.
Previously, the MIPS backend relied on clang to scalarize types such as "call
@foo(<4 x float> %a) into "call @foo(i32 inreg %1, i32 inreg %2, i32 inreg %3,
i32 inreg %4)".
This patch enables the MIPS backend to take either form for vector types.
The previous version of this patch had a "conditional move or jump depends on
uninitialized value".
Reviewers: zoran.jovanovic, jaydeep, vkalintiris, slthakur
Differential Revision: https://reviews.llvm.org/D27845
llvm-svn: 305083