There are several problems with the current annotations (AnnotateRWLockCreate and friends):
- they don't fully support deadlock detection (we need a hook _before_ mutex lock)
- they don't support insertion of random artificial delays to perturb execution (again we need a hook _before_ mutex lock)
- they don't support setting extended mutex attributes like read/write reentrancy (only "linker init" was bolted on)
- they don't support setting mutex attributes if a mutex don't have a "constructor" (e.g. static, Java, Go mutexes)
- they don't ignore synchronization inside of lock/unlock operations which leads to slowdown and false negatives
The new annotations solve of the above problems. See tsan_interface.h for the interface specification and comments.
Reviewed in https://reviews.llvm.org/D31093
llvm-svn: 298809
When dealing with GCD worker threads, TSan currently prints weird things like "created by thread T-1" and "[failed to restore the stack]" in reports. This patch avoids that and instead prints "Thread T3 (...) is a GCD worker thread".
Differential Revision: https://reviews.llvm.org/D29103
llvm-svn: 293882
Current interface assumes that Go calls ProcWire/ProcUnwire
to establish the association between thread and proc.
With the wisdom of hindsight, this interface does not work
very well. I had to sprinkle Go scheduler with wire/unwire
calls, and any mistake leads to hard to debug crashes.
This is not something one wants to maintian.
Fortunately, there is a simpler solution. We can ask Go
runtime as to what is the current Processor, and that
question is very easy to answer on Go side.
Switch to such interface.
llvm-svn: 267703
This is reincarnation of http://reviews.llvm.org/D17648 with the bug fix pointed out by Adhemerval (zatrazz).
Currently ThreadState holds both logical state (required for race-detection algorithm, user-visible)
and physical state (various caches, most notably malloc cache). Move physical state in a new
Process entity. Besides just being the right thing from abstraction point of view, this solves several
problems:
Cache everything on P level in Go. Currently we cache on a mix of goroutine and OS thread levels.
This unnecessary increases memory consumption.
Properly handle free operations in Go. Frees are issue by GC which don't have goroutine context.
As the result we could not do anything more than just clearing shadow. For example, we leaked
sync objects and heap block descriptors.
This will allow to get rid of libc malloc in Go (now we have Processor context for internal allocator cache).
This in turn will allow to get rid of dependency on libc entirely.
Potentially we can make Processor per-CPU in C++ mode instead of per-thread, which will
reduce resource consumption.
The distinction between Thread and Processor is currently used only by Go, C++ creates Processor per OS thread,
which is equivalent to the current scheme.
llvm-svn: 267678
Currently ThreadState holds both logical state (required for race-detection algorithm, user-visible)
and physical state (various caches, most notably malloc cache). Move physical state in a new
Process entity. Besides just being the right thing from abstraction point of view, this solves several
problems:
1. Cache everything on P level in Go. Currently we cache on a mix of goroutine and OS thread levels.
This unnecessary increases memory consumption.
2. Properly handle free operations in Go. Frees are issue by GC which don't have goroutine context.
As the result we could not do anything more than just clearing shadow. For example, we leaked
sync objects and heap block descriptors.
3. This will allow to get rid of libc malloc in Go (now we have Processor context for internal allocator cache).
This in turn will allow to get rid of dependency on libc entirely.
4. Potentially we can make Processor per-CPU in C++ mode instead of per-thread, which will
reduce resource consumption.
The distinction between Thread and Processor is currently used only by Go, C++ creates Processor per OS thread,
which is equivalent to the current scheme.
llvm-svn: 262037
Return a linked list of AddressInfo objects, instead of using an array of
these objects as an output parameter. This simplifies the code in callers
of this function (especially TSan).
Fix a few memory leaks from internal allocator, when the returned
AddressInfo objects were not properly cleared.
llvm-svn: 223145
AddressInfo contains the results of symbolization. Store this object
directly in the symbolized stack, instead of copying data around and
making unnecessary memory allocations.
No functionality change.
llvm-svn: 221294
This is intended to address the following problem.
Episodically we see CHECK-failures when recursive interceptors call back into user code. Effectively we are not "in_rtl" at this point, but it's very complicated and fragile to properly maintain in_rtl property. Instead get rid of it. It was used mostly for sanity CHECKs, which basically never uncover real problems.
Instead introduce ignore_interceptors flag, which is used in very few narrow places to disable recursive interceptors (e.g. during runtime initialization).
llvm-svn: 197979