Summary:
This is a test-the-water change about possibilities of reducing duplication in
the register context definitions.
I've named the new class RegisterInfoPOSIX, as RegisterContextPOSIX was already
taken :(. The two files were identical except for a fix by Tamas in D12636,
which was applied to the Linux version only, which fixed a discrepancy between
the definitions of fpsr and fpcr on one hand, and all other floating point
register definitions on the other.
Linux test suite still passes after this change. For freebsd, make the floating
point register behavior consistent, but I don't know whether it will be
consistently fixed, or consistently broken. By eyeballing the code, I have a
feeling that a similar fix to D12636 will be required in
RegisterContextPOSIXProcessMonitor_arm64::ReadRegister, but I can't be sure as I
have no way to test it (the assert in that function should fire upon accessing
the registers if it is wrong though).
Reviewers: emaste, clayborg
Subscribers: aemerson, rengolin, beanz, mgorny, modocache, dmikulin, lldb-commits
Differential Revision: https://reviews.llvm.org/D25947
llvm-svn: 287916
the chrono library there uses long long as the underlying chrono type, but
defines int64_t as long (or the other way around, I am not sure). In any case,
this caused the implicit conversion to not trigger. This should address that.
Also fix up the relevant unit test.
llvm-svn: 287867
Summary:
This replaces the usage of raw integers with duration classes in the gdb-remote
packet management functions. The values are still converted back to integers once
they go into the generic Communication class -- that I am leaving to a separate
change.
The changes are mostly straight-forward (*), the only tricky part was
representation of infinite timeouts.
Currently, we use UINT32_MAX to denote infinite timeout. This is not well suited
for duration classes, as they tend to do arithmetic on the values, and the
identity of the MAX value can easily get lost (e.g.
microseconds(seconds(UINT32_MAX)).count() != UINT32_MAX). We cannot use zero to
represent infinity (as Listener classes do) because we already use it to do
non-blocking polling reads. For this reason, I chose to have an explicit value
for infinity.
The way I achieved that is via llvm::Optional, and I think it reads quite
natural. Passing llvm::None as "timeout" means "no timeout", while passing zero
means "poll". The only tricky part is this breaks implicit conversions (seconds
are implicitly convertible to microseconds, but Optional<seconds> cannot be
easily converted into Optional<microseconds>). For this reason I added a special
class Timeout, inheriting from Optional, and enabling the necessary conversions
one would normally expect.
(*) The other tricky part was GDBRemoteCommunication::PopPacketFromQueue, which
was needlessly complicated. I've simplified it, but that one is only used in
non-stop mode, and so is untested.
Reviewers: clayborg, zturner, jingham
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D26971
llvm-svn: 287864
Summary:
This patch changes the way ProcessElfCore.cpp handles signal information.
The patch changes ProcessElfCore.cpp to use the signal from si_signo in SIGINFO notes in preference to the value of cursig in PRSTATUS notes. The value from SIGINFO seems to be more thread specific. The value from PRSTATUS is usually the same for all threads even if only one thread received a signal.
If it cannot find any SIGINFO blocks it reverts to the old behaviour and uses the value from cursig in PRSTATUS. If after that no thread appears to have been stopped it forces the status of the first thread to be SIGSTOP to prevent lldb hanging waiting for any thread from the core file to change state.
The order is:
- If one or more threads have a non-zero si_signo in SIGINFO that will be used.
- If no threads had a SIGINFO block with a non-zero si_signo set all threads signals to the value in cursig in their PRSTATUS notes.
- If no thread has a signal set to a non-zero value set the signal for only the first thread to SIGSTOP.
This resolves two issues. The first was identified in bug 26322, the second became apparent while investigating this problem and looking at the signal values reported for each thread via “thread list”.
Firstly lldb is able to load core dumps generated by gcore where each thread has a SIGINFO note containing a signal number but cursig in the PRSTATUS block for each thread is 0.
Secondly if a SIGINFO note was found the “thread list” command will no longer show the same signal number for all threads. At the moment if a process crashes, for example with SIGILL, all threads will show “stop reason = signal SIGILL”. With this patch only the thread that executed the illegal instruction shows that stop reason. The other threads show “stop reason = signal 0”.
Reviewers: jingham, clayborg
Subscribers: sas, labath, lldb-commits
Differential Revision: https://reviews.llvm.org/D26676
llvm-svn: 287858
The Windows process plugin was broken up into multiple pieces a while back in
order to share code between debugging live processes and minidumps
(postmortem) debugging. The minidump portion was replaced by a cross-platform
solution. This left the plugin split into a formerly "common" base classes and
the derived classes for live debugging. This extra layer made the code harder
to understand and work with.
This patch simplifies these class hierarchies by rolling the live debugging
concrete classes up to the base classes. Last week I posted my intent to make
this change to lldb-dev, and I didn't hear any objections.
This involved moving code and changing references to classes like
ProcessWindowsLive to ProcessWindows. It still builds for both 32- and 64-bit,
and the tests still pass on 32-bit. (Tests on 64-bit weren't passing before
this refactor for unrelated reasons.)
llvm-svn: 287770
Summary:
The floating-point and SSE registers could be present in the elf-core
file in the note NT_FPREGSET for 64 bit ones, and in the note
NT_PRXFPREG for 32 bit ones.
The entire note is a binary blob matching the layout of the x87 save
area that gets generated by the FXSAVE instruction (see Intel developers
manual for more information).
This CL mainly modifies the RegisterRead function in
RegisterContextPOSIXCore_x86_64 for it to return the correct data both
for GPR and FPR/SSE registers, and return false (meaning "this register
is not available") for other registers.
I added a test to TestElfCore.py that tests reading FPR/SSE registers
both from a 32 and 64 bit elf-core file and I have inluded the source
which I used to generate the core files.
I tried to also add support for the AVX registers, because this info could
also be present in the elf-core file (note NT_X86_XSTATE - that is the result of
the newer XSAVE instruction). Parsing the contents from the file is
easy. The problem is that the ymm registers are split into two halves
and they are in different places in the note. For making this work one
would either make a "hacky" approach, because there won't be
any other way with the current state of the register contexts - they
assume that "this register is of size N and at offset M" and
don't have the notion of discontinuos registers.
Reviewers: labath
Subscribers: emaste, lldb-commits
Differential Revision: https://reviews.llvm.org/D26300
llvm-svn: 287506
This is a large API change that removes the two functions from
StreamString that return a std::string& and a const std::string&,
and instead provide one function which returns a StringRef.
Direct access to the underlying buffer violates the concept of
a "stream" which is intended to provide forward only access,
and makes porting to llvm::raw_ostream more difficult in the
future.
Differential Revision: https://reviews.llvm.org/D26698
llvm-svn: 287152
With the cross-platform minidump plugin working, the Windows-specific one is no longer needed. This eliminates the unnecessary code.
This does not eliminate the Windows-specific tests, as they hit a few cases the general tests don't. (The Windows-specific tests are currently passing.) I'll look into a separate patch to make sure we're not doing too much duplicate testing.
After that I might do a little re-org in the Windows plugin, as there was some factoring there (Common & Live) that probably isn't necessary anymore.
Differential Revision: https://reviews.llvm.org/D26697
llvm-svn: 287113
My script updated lldb::Errors, and I failed to fix it entirely
before pushing. This restore everything in lldb as it was before
r286561.
llvm-svn: 286565
This is forcing to use Error::success(), which is in a wide majority
of cases a lot more readable.
Differential Revision: https://reviews.llvm.org/D26481
llvm-svn: 286561
Summary:
This commit disables the windows-only minidump plugin and enables the new
cross-platform plugin for windows minidump files. Test decorators are adjusted to
reflect that: windows minidump tests can now run on all platforms. The exception
is the tests that create minidump files, as that functionality is not available
yet. I've checked that this works on windows and linux.
Reviewers: amccarth, zturner
Subscribers: dvlahovski, lldb-commits
Differential Revision: https://reviews.llvm.org/D26393
llvm-svn: 286352
The mock server was listening for only one packet (I forgot to put a loop around
it), which caused the client to stall in debug builds, as the timeout there is
1000 seconds. In case of a release builds the test would just silently succeed as
the tested function does not check or report errors (which should be fixed).
This fixes the test by adding the server loop. Since the test was taking quite a
long time now (8s), I have added a parameter to control the amount of data sent
(default 4MB), and call it with a smaller value in the test, to make the test run
faster.
llvm-svn: 285992
Summary:
One of the tests was flaky, because similarly to
https://reviews.llvm.org/D18697 (rL265391) - if there is a process running
which is with the same PID as in the core file, the minidump
core file debugging will fail, because we get some information from the
running process.
The fix is routing the ProcessInfo requests through the Process class
and overriding it in ProcessMinidump to return correct data.
Reviewers: labath
Subscribers: lldb-commits, beanz
Differential Revision: https://reviews.llvm.org/D26193
llvm-svn: 285698
Summary:
Most of the changes are very straight-forward, the only tricky part was the
"packet speed-test" function, which is very time-heavy. As the function was
completely untested, I added a quick unit smoke test for it.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D25391
llvm-svn: 285602
Summary:
This plugin resembles the already existing Windows-only Minidump plugin.
The WinMinidumpPlugin uses the Windows API for parsing Minidumps
while this plugin is cross-platform because it includes a Minidump
parser (which is already commited)
It is able to produce a backtrace, to read the general puprose regiters,
inspect local variables, show image list, do memory reads, etc.
For now the only arches that this supports are x86_32 and x86_64.
This is because I have only written register contexts for those.
Others will come in next CLs.
I copied the WinMinidump tests and adapted them a little bit for them to
work with the new plugin (and they pass)
I will add more tests, aiming for better code coverage.
There is still functionality to be added, see TODOs in code.
Reviewers: labath, zturner
Subscribers: beanz, mgorny, modocache, lldb-commits, amccarth
Differential Revision: https://reviews.llvm.org/D25905
llvm-svn: 285587
Summary:
This, like the x86_64 case, reads the register values from the minidump
file, and emits a binary buffer that is ordered using the offsets from
the RegisterInfoInterface argument. That way we can reuse an existing
register context.
Added unit tests.
Reviewers: labath, zturner
Subscribers: beanz, mgorny, modocache, amccarth, lldb-commits
Differential Revision: https://reviews.llvm.org/D25832
llvm-svn: 285584
Summary:
Check whether the setting the breakpoint failed during instruction emulation. If
it did, the next pc is likely in unmapped memory, and the inferior will crash
anyway after the next instruction. Do not return an error in this case, but just
continue stepping.
Reenabled the crash during step test for android/linux.
Reviewers: labath
Subscribers: aemerson, rengolin, tberghammer, danalbert, srhines, lldb-commits
Differential Revision: https://reviews.llvm.org/D25926
Author: Jason Majors <jmajors@google.com>
llvm-svn: 285187
The "value regs" field was filled incorrectly. It is supposed to list the
registers that *this* register is a sub-register of, not the other way around.
This manifested itself in "register read" showing only the smaller sub-registers
(and a bunch of tests not passing). I am not sure if the "invalidates" field is
correct either, but it's usage seems to be inconsistent, so I'll leave that as-is
for now.
llvm-svn: 284981
It's quite sad that we have to edit so many files just to add a register. I am
going to investigate how to merge these definitions somehow, but for now this
should at least get arm64 linux working again.
llvm-svn: 284970
Summary:
I misunderstood the format of the register context layout.
I thought it was a dynamically changing structure, and that it's size
depended on context_flags.
It turned out that it always has the same fixed layout and size,
and the context_flags says which fields of the
struct have valid values.
This required a minor redesign of the register context class.
The layout inconsistency, however, was not a "problem" before (e.g. the plugin was working)
because there also was a bug with checking context_flags - the code was
parsing the entire struct regardless of context_flags.
This bug is also fixed in this commit.
Reviewers: labath, zturner
Subscribers: lldb-commits, amccarth
Differential Revision: https://reviews.llvm.org/D25677
llvm-svn: 284741
This patch fixes ARM/AArch64 watchpoint bug which was taking inferior out of control while stepping over watchpoints.
Also adds a test case that tests above problem.
Differential revision: https://reviews.llvm.org/D25057
llvm-svn: 284706
RegisterInfos_arm64.h. These register definitions include the
offset into the register context, which will vary depending on the
endianness of the arm64 target system (e.g. s8 is at offset 0 in
v8 on little-endian, it is at offset 12 on big-endian) and I've
only added the little-endian definitions to the table. If we want
to add a big-endian arm64 target, we'll need a separate table which
uses the big-endian offsets for these registers. I changed the
name of the register table from g_register_infos_arm64 to
g_register_infos_arm64_le to make it explicit that this is the
little-endian version of that table, and updated users of the table
to use the new name.
I added support for the "w", "s", and "d" registers to
RegisterContextDarwin_arm64 but it was more an example than anything
useful -- this plugin is only used when working with core files and
darwin core files do not (today) include the floating point register
context, so it only added the support for the "w" pseudo registers.
When we're connected to a real arm64 device, we use the ProcessGDBRemote
code.
llvm-svn: 284666
Summary:
Now the Minidump parser can parse the:
1) MemoryInfoList - containing region info about memory ranges (readable,
writable, executable)
2) Memory64List - this is the stuct used when the Minidump is a
full-memory one.
3) Adding filtering of the module list (shared libraries list) - there
can be mutliple records in the module list under the same name but with
different load address (e.g. when the binary has non contigious
sections). FilterModuleList eliminates the duplicated modules, leaving
the one with the lowest load addr.
Added unit tests for everything.
Reviewers: labath, zturner
Subscribers: beanz, mgorny, modocache, lldb-commits, amccarth
Differential Revision: https://reviews.llvm.org/D25569
llvm-svn: 284593
Summary:
This patch adds support for handling the SIGSEGV signal with 'si_code ==
SEGV_BNDERR', which is thrown when a bound violation is caught by the
Intel(R) MPX technology.
Differential Revision: https://reviews.llvm.org/D25329
llvm-svn: 283474
Tests are failing and build is failing on windows and darwin.
Will fix and commit it later
-------------------------------------------------------------
Revert "xfailing minidump tests again ... :("
This reverts commit 97eade002c9e43c1e0d11475a4888083a8965044.
Revert "Fixing new Minidump plugin tests"
This reverts commit 0dd93b3ab39c8288696001dd50b9a093b813b09c.
Revert "Add the new minidump files to the Xcode project."
This reverts commit 2f638a1d046b8a88e61e212220edc40aecd2ce44.
Revert "xfailing tests for Minidump plugin"
This reverts commit 99311c0b22338a83e6a00c4fbddfd3577914c003.
Revert "Adding a new Minidump post-mortem debugging plugin"
This reverts commit b09a7e4dae231663095a84dac4be3da00b03a021.
llvm-svn: 283352
Summary:
This plugin resembles the already existing Windows-only Minidump plugin.
The WinMinidumpPlugin uses the Windows API for parsing Minidumps
while this plugin is cross-platform because it includes a Minidump
parser (which is already commited)
It is able to produce a backtrace, to read the general puprose regiters,
inspect local variables, show image list, do memory reads, etc.
For now the only arch that this supports is x86 64 bit
This is because I have only written a register context for that arch.
Others will come in next CLs.
I copied the WinMinidump tests and adapted them a little bit for them to
work with the new plugin (and they pass)
I will add more tests, aiming for better code coverage.
There is still functionality to be added, see TODOs in code.
Reviewers: labath, zturner
Subscribers: beanz, mgorny, amccarth, lldb-commits, modocache
Differential Revision: https://reviews.llvm.org/D25196
llvm-svn: 283259
Summary:
This lets people link against LLVM and their own version of the UTF
library.
I determined this only affects llvm, clang, lld, and lldb by running
$ git grep -wl 'UTF[0-9]\+\|\bConvertUTF\bisLegalUTF\|getNumBytesFor' | cut -f 1 -d '/' | sort | uniq
clang
lld
lldb
llvm
Tested with
ninja lldb
ninja check-clang check-llvm check-lld
(ninja check-lldb doesn't complete for me with or without this patch.)
Reviewers: rnk
Subscribers: klimek, beanz, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D24996
llvm-svn: 282822
Summary:
This is a register context converter from Minidump to Linux reg context.
This knows the layout of the register context in the Minidump file
(which is the same as in Windows FYI) and as a result emits a binary data
buffer that matches the Linux register context binary layout.
This way we can reuse the existing RegisterContextLinux_x86_64 and
RegisterContextCorePOSIX_x86_64 classes.
Reviewers: labath, zturner
Subscribers: beanz, mgorny, lldb-commits, amccarth
Differential Revision: https://reviews.llvm.org/D24919
llvm-svn: 282529
This updates getters and setters to use StringRef instead of
const char *. I tested the build on Linux, Windows, and OSX
and saw no build or test failures. I cannot test any BSD
or Android variants, however I expect the required changes
to be minimal or non-existant.
llvm-svn: 282079
This patch refactors the way the XState type is checked and, in order to
simplify the code, it removes the usage of the 'cpuid' instruction: just checking
if the ptrace calls done throuhg ReadFPR is enough to verify both if there is
HW support and if there is kernel support. Also the XCR0 bits are enough to check if
there is both HW and kernel support for AVX and MPX.
Differential Revision: https://reviews.llvm.org/D24764
llvm-svn: 282072
This patch also marks the const char* versions as =delete to prevent
their use. This has the potential to cause build breakages on some
platforms which I can't compile. I have tested on Windows, Linux,
and OSX. Best practices for fixing broken callsites are outlined in
Args.h in a comment above the deleted function declarations.
Eventually we can remove these =delete declarations, but for now they
are important to make sure that all implicit conversions from
const char * are manually audited to make sure that they do not invoke a
conversion from nullptr.
llvm-svn: 281919
Where possible, remove the const char* version. To keep the
risk and impact here minimal, I've only done the simplest
functions.
In the process, I found a few opportunities for adding some
unit tests, so I added those as well.
Tested on Windows, Linux, and OSX.
llvm-svn: 281799
Summary:
This patch uses the instruction CPUID to verify that FXSAVE, XSAVE, AVX
and MPX are supported by the target hardware. In case the HW supports XSAVE,
and at least one of the extended register sets, it further checks if the
target software has the kernel support for such features, by verifying that
their XSAVE part is correctly managed.
Differential Revision: https://reviews.llvm.org/D24559
llvm-svn: 281507
Summary:
Added parsing of the MiscInfo data stream.
The main member of it that we care about is the process_id
On Linux generated Minidump (from breakpad) we don't have
the MiscInfo, we have the /proc/$pid/status from where we can get the
pid.
Also parsing the module list - the list of all of the loaded
modules/shared libraries.
Parsing the exception stream.
Parsing MinidumpStrings.
I have unit tests for all of that.
Also added some tests using a Minidump generated from Windows tools (not
from breakpad)
Reviewers: labath, zturner
Subscribers: beanz, lldb-commits
Differential Revision: https://reviews.llvm.org/D24385
llvm-svn: 281348
Summary:
It fixes the following compile warnings:
1. '0' flag ignored with precision and ‘%d’ gnu_printf format
2. enumeral and non-enumeral type in conditional expression
3. format ‘%d’ expects argument of type ‘int’, but argument 4 has type ...
4. enumeration value ‘...’ not handled in switch
5. cast from type ‘const uint64_t* {aka ...}’ to type ‘int64_t* {aka ...}’ casts away qualifiers
6. extra ‘;’
7. comparison between signed and unsigned integer expressions
8. variable ‘register_operand’ set but not used
9. control reaches end of non-void function
Reviewers: jingham, emaste, zturner, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D24331
llvm-svn: 281191
This change does the following:
* Changes the signature for the continuation delegate method that handles
async structured data from accepting an already-parsed structured data
element to taking just the packet contents.
* Moves the conversion of the JSON-async: packet contents from
GDBRemoteClientBase to the continuation delegate method.
* Adds a new unit test for verifying that the $JSON-asyc: packets get
decoded and that the decoded packets get forwarded on to the delegate
for further processing. Thanks to Pavel for making that whole section of
code easily unit testable!
* Tightens up the packet verification on reception of a $JSON-async:
packet contents. The code prior to this change is susceptible to a
segfault if a packet is carefully crafted that starts with $J but
has a total length shorter than the length of "$JSON-async:".
Reviewers: labath, clayborg, zturner
Differential Revision: https://reviews.llvm.org/D23884
llvm-svn: 281121
Summary:
This adds the jModulesInfo packet, which is the equivalent of qModulesInfo, but it enables us to
query multiple modules at once. This makes a significant speed improvement in case the
application has many (over a hundred) modules, and the communication link has a non-negligible
latency. This functionality is accessed by ProcessGdbRemote::PrefetchModuleSpecs(), which does
the caching. GetModuleSpecs() is modified to first consult the cache before asking the remote
stub. PrefetchModuleSpecs is currently only called from POSIX-DYLD dynamic loader plugin, after
it reads the list of modules from the inferior memory, but other uses are possible.
This decreases the attach time to an android application by about 40%.
Reviewers: clayborg
Subscribers: tberghammer, lldb-commits, danalbert
Differential Revision: https://reviews.llvm.org/D24236
llvm-svn: 280919
Most of these issues arose as a result of header re-ordering, but
it turned up a real bug, which is that MSVC doesn't support
__attribute__((packed)) or __attribute__((aligned)). This was
working before because there's a Windows header that #defines
__attribute__(x) to nothing. We should fix this by removing
that #define entirely, and dealing with the fallout separately
which may turn up even more bugs.
I fixed this by replacing them with the corresponding LLVM
macros which understand how to do these operations on all the
different compilers.
llvm-svn: 280757
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
This reverts commit rL280668 because the register tests fail on i386
Linux.
I investigated a little bit what causes the failure - there are missing
registers when running 'register read -a'.
This is the output I got at the bottom:
"""
...
Memory Protection Extensions:
bnd0 = {0x0000000000000000 0x0000000000000000}
bnd1 = {0x0000000000000000 0x0000000000000000}
bnd2 = {0x0000000000000000 0x0000000000000000}
bnd3 = {0x0000000000000000 0x0000000000000000}
unknown:
2 registers were unavailable.
"""
Also looking at the packets exchanged between the client and server:
"""
...
history[308] tid=0x7338 < 19> send packet: $qRegisterInfo4a#d7
history[309] tid=0x7338 < 130> read packet:
$name:bnd0;bitsize:128;offset:1032;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:101;dwarf:101;#48
history[310] tid=0x7338 < 19> send packet: $qRegisterInfo4b#d8
history[311] tid=0x7338 < 130> read packet:
$name:bnd1;bitsize:128;offset:1048;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:102;dwarf:102;#52
history[312] tid=0x7338 < 19> send packet: $qRegisterInfo4c#d9
history[313] tid=0x7338 < 130> read packet:
$name:bnd2;bitsize:128;offset:1064;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:103;dwarf:103;#53
history[314] tid=0x7338 < 19> send packet: $qRegisterInfo4d#da
history[315] tid=0x7338 < 130> read packet:
$name:bnd3;bitsize:128;offset:1080;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:104;dwarf:104;#54
history[316] tid=0x7338 < 19> send packet: $qRegisterInfo4e#db
history[317] tid=0x7338 < 76> read packet:
$name:bndcfgu;bitsize:64;offset:1096;encoding:vector;format:vector-uint8;#99
history[318] tid=0x7338 < 19> send packet: $qRegisterInfo4f#dc
history[319] tid=0x7338 < 78> read packet:
$name:bndstatus;bitsize:64;offset:1104;encoding:vector;format:vector-uint8;#8e
...
"""
The bndcfgu and bndstatus registers don't have the 'Memory Protections
Extension' set. I looked at the code and it seems that that is set
correctly.
So I'm not sure what's the problem or where does it come from.
Also there is a second failure related to something like this in the
tests:
"""
registerSet.GetName().lower()
"""
For some reason the registerSet.GetName() returns None.
llvm-svn: 280703
Summary:
The Intel(R) Memory Protection Extensions (Intel(R) MPX) associates pointers
to bounds, against which the software can check memory references to
prevent out of bound memory access.
This patch allows accessing the MPX registers:
* bnd0-3: 128-bit registers to hold the bound values,
* bndcfgu, bndstatus: 64-bit configuration registers,
This patch also adds read/write tests for the MPX registers in the register
command tests and adds a new subdirectory for MPX specific tests.
Signed-off-by: Valentina Giusti <valentina.giusti@intel.com>
Reviewers: labath, granata.enrico, lldb-commits, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D24187
llvm-svn: 280668
This code represents the Week of Code work I did on bringing up
lldb-server LLGS support for Darwin. It does not include the
Xcode project changes needed, as we don't want to throw that switch
until more support is implemented (i.e. this change is inert, no
build systems use it yet. I've verified on Ubuntu 16.04, macOS
Xcode and macOS cmake builds).
This change does some minimal refactoring of code that is shared
with the Linux LLGS portion, moving it from NativeProcessLinux into
NativeProcessProtocol. That code is also used by NativeProcessDarwin.
Current state on Darwin:
* Process launching is implemented. (Attach is not).
Launching on devices has not yet been tested (FBS/BKS might
need a bit of work).
* Inferior waitpid monitoring and communication of exit status
via MainLoop callback is implemented.
* Memory read/write, breakpoints, thread register context, etc.
are not yet implemented. This impacts process stop/resume, as
the initial launch suspended immediately starts the process
up and running because it doesn't know it is supposed to remain
stopped.
* I implemented the equivalent of MachThreadList as
NativeThreadListDarwin, in anticipation that we might want to
factor out common parts into NativeThreadList{Protocol} and share
some code here. After writing it, though, the fallout from merging
Mach Task/Process into a single concept plus some other minor
changes makes the whole NativeThreadListDarwin concept nothing more
than dead weight. I am likely going to get rid of this class and
just manage it directly in NativeProcessDarwin, much like I did
for NativeProcessLinux.
* There is a stub-out call for starting a STDIO thread. That will
go away and adopt the MainLoop pselect-based IOObject reading.
I am developing the fully-integrated changes in the following repo,
which contains the necessary Xcode bits and the glue that enables
lldb-debugserver on a macOS system:
https://github.com/tfiala/lldb/tree/llgs-darwin
This change also breaks out a few of the lldb-server tests into
their own directory, and adds some $qHostInfo tests (not sure why
I didn't write those tests back when I initially implemented that
on the Linux side).
llvm-svn: 280604
Summary:
This is a Minidump parsing code.
There are still some more structures/data streams that need to be added.
The aim ot this is to be used in the implementation of
a minidump debugging plugin that works on all platforms/architectures.
Currently we have a windows-only plugin that uses the WinAPI to parse
the dump files.
Also added unittests for the current functionality.
Reviewers: labath, amccarth
Subscribers: tberghammer, danalbert, srhines, lldb-commits, dschuff
Differential Revision: https://reviews.llvm.org/D23545
llvm-svn: 280356
The rewrite of StringExtractor::GetHexMaxU32 changes functionality in a way which makes
lldb-server crash. The crash (assert) happens when parsing the "qRegisterInfo0" packet, because
the function tries to drop_front more bytes than the packet contains. It's not clear to me
whether we should consider this a bug in the caller or the callee, but it any case, it worked
before, so I am reverting this until we can figure out what the proper interface should be.
llvm-svn: 280207
Summary:
e80f43fd78
greatly improved an API, but missed one more occurence of legacy usage.
This leads to:
if (extractor.GetHexBytes(&payload_bytes[0], payload_bytes.size(), '\xdd') != payload_bytes.size())
~~~~~~~~~~~~~~~~~~~~~ ^~~~~~
/lldb/include/lldb/Utility/StringExtractor.h:151:5: note: 'GetHexBytes' declared here
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D24064
Author: Taras Tsugrii <ttsugrii@fb.com>
llvm-svn: 280202
Makes Peek() return a StringRef instead of a const char*.
This leads to a few callers of Peek() being able to be made a
little nicer (for example using StringRef member functions instead
of c-style strncmp and related functions) and generally safer
usage.
llvm-svn: 280139
MutableArrayRef<T> is essentially a safer version of passing around
(T*, length) pairs and provides some convenient functions for working
with the data without having to manually manipulate indices.
This is a minor NFC.
llvm-svn: 280123
StringExtractor::GetNameColonValue() looks for a substring of the
form "<name>:<value>" and returns <name> and <value> to the caller.
This results in two unnecessary string copies, since the name and
value are not translated in any way and simply returned as-is.
By converting this to return StringRefs we can get rid of hundreds
of string copies.
llvm-svn: 280000
This started as an effort to change StringExtractor to store a
StringRef internally instead of a std::string. I got that working
locally with just 1 test failure which I was unable to figure out the
cause of. But it was also a massive changelist due to a trickle
down effect of changes.
So I'm starting over, using what I learned from the first time to
tackle smaller, more isolated changes hopefully leading up to
a full conversion by the end.
At first the changes (such as in this CL) will seem mostly
a matter of preference and pointless otherwise. However, there
are some places in my larger CL where using StringRef turned 20+
lines of code into 2, drastically simplifying logic. Hopefully
once these go in they will illustrate some of the benefits of
thinking in terms of StringRef.
llvm-svn: 279917
Summary:
This is a preparatory commit for D22914, where I'd like to replace this mutex by an R/W lock
(which is also not recursive). This required a couple of changes:
- The only caller of Read/WriteRegister, GDBRemoteRegisterContext class, was already acquiring
the mutex, so these functions do not need to. All functions which now do not take a lock, take
an lock argument instead, to remind the caller of this fact.
- GetThreadSuffixSupported() was being called from locked and unlocked contexts (including
contexts where the process was running, and the call would fail if it did not have the result
cached). I have split this into two functions, one which computes the thread suffix support and
caches it (this one always takes the lock), and another, which returns the cached value (and
never needs to take the lock). This feels quite natural as ProcessGdbRemote was already
pre-caching this value at the start.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D23802
llvm-svn: 279725
Summary:
The tricky part here was that the exisiting implementation of WriteAllRegisters was expecting
hex-encoded data (as that was what the first implementation I replaced was using, but here we had
binary data to begin with. I thought the read/write register functions would be more useful if
they handled the hex-encoding themselves (all the other client functions provide the responses in
a more-or-less digested form). The read functions return a DataBuffer, so they can allocate as
much memory as they need to, while the write functions functions take an llvm::ArrayRef, as that
can be constructed from pretty much anything.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D23659
llvm-svn: 279232
Take 2, with missing cmake line fixed. Build tested on
Ubuntu 14.04 with clang-3.6.
See docs/structured_data/StructuredDataPlugins.md for details.
differential review: https://reviews.llvm.org/D22976
reviewers: clayborg, jingham
llvm-svn: 279202
Summary:
Before this, each function had a copy of the code which handled appending of the thread suffix to
the packet (or using $Hg instead). I have moved that code into a single function and made
everyone else use that. The function takes the partial packet as a StreamString rvalue reference,
to avoid a copy and to remind the users that the packet will have undeterminate contents after
the call.
This also fixes the incorrect formatting of the QRestoreRegisterState packet in case thread
suffix is not supported.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D23604
llvm-svn: 279040
Summary:
When saving/restoring registers the GDBRemoteRegisterContext class was manually constructing
the register save/restore packets. This creates appropriate helper functions in
GDBRemoteCommunicationClient, and switches the class to use those. It also removes what a
duplicate packet send in some of those functions, a thing that I can only attribute to a bad
merge artefact.
I also add a test framework for testing gdb-remote client functionality and add tests for the new
functions I introduced. I'd like to be able to test the register context changes in isolation as
well, but currently there doesn't seem to be a way to reasonably construct a standalone register
context object, so we'll have to rely on the end-to-end tests to verify that.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D23553
llvm-svn: 278915
Despite its comment, the function is only used in the Client class, and its presence was merely
complicating mock implementation in unit tests.
llvm-svn: 278785
The commit started passing a nullptr port into GDBRemoteCommunication::StartDebugserverProcess.
The function was mostly handling the null value correctly, but it one case it did not check it's
value before assigning to it. Fix that.
llvm-svn: 278662
This change opens a socket pair and passes the second socket pair file descriptor down to the debugserver binary using a new option: "--fd=N" where N is the file descriptor. This file descriptor gets passed via posix_spawn() so that there is no need to do any bind/listen or bind/accept calls and eliminates the hanshake unix socket that is used to pass the result of the actual port that ends up being used so it can save time on launch as well as being faster.
This is currently only enabled on __APPLE__ builds. Other OSs should try modifying the #define from ProcessGDBRemote.cpp but the first person will need to port the --fd option over to lldb-server. Any OSs that enable USE_SOCKETPAIR_FOR_LOCAL_CONNECTION in their native builds can use the socket pair stuff. The #define is Apple only right now, but looks like:
#if defined (__APPLE__)
#define USE_SOCKETPAIR_FOR_LOCAL_CONNECTION 1
#endif
<rdar://problem/27814880>
llvm-svn: 278524
Options used to store a reference to the CommandInterpreter instance
in the base Options class. This made it impossible to parse options
independent of a CommandInterpreter.
This change removes the reference from the base class. Instead, it
modifies the options-parsing-related methods to take an
ExecutionContext pointer, which the options may inspect if they need
to do so.
Closes https://reviews.llvm.org/D23416
Reviewers: clayborg, jingham
llvm-svn: 278440
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177
Resumbitting the commit after fixing the following problems:
- broken unit tests on windows: incorrect gtest usage on my part (TEST vs. TEST_F)
- the new code did not correctly handle the case where we went to interrupt the process, but it
stopped due to a different reason - the interrupt request would remain queued and would
interfere with the following "continue". I also added a unit test for this case.
This reapplies r277156 and r277139.
llvm-svn: 278118
also take the opportunity to replace NULL with nullptr and add clang-format guards to prevent it
from messing up the nice table there.
llvm-svn: 278005
It only contained a reimplementation of std::to_string, which I have replaced with usages of
pre-existing llvm::to_string (also, injecting members into the std namespace is evil).
llvm-svn: 278000
This reverts commit r277139, because:
- broken unittest on windows (likely typo on my part)
- seems to break TestCallThatRestart (needs investigation)
llvm-svn: 277154
Summary:
There were places in the code, assuming(hardcoding) offsets
and types that were only valid for the x86_64 elf core file format.
The NT_PRSTATUS and NT_PRPSINFO structures are with the 64 bit layout.
I have reused them and parse i386 files manually, and fill them in the
same struct.
Also added some error handling during parsing that checks if the
available bytes in the buffer are enough to fill the structures.
The i386 core file test case now passes.
For reference on the structures layout, I generally used the
source of binutils (bfd, readelf)
Bug: https://llvm.org/bugs/show_bug.cgi?id=26947
Reviewers: labath
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D22917
llvm-svn: 277140
SendContinuePacketAndWaitForResponse was huge function with very complex interactions with
several other functions (SendAsyncSignal, SendInterrupt, SendPacket). This meant that making any
changes to how packet sending functions and threads interact was very difficult and error-prone.
This change does not add any functionality yet, it merely paves the way for future changes. In a
follow-up, I plan to add the ability to have multiple query packets in flight (i.e.,
request,request,response,response instead of the usual request,response sequences) and use that
to speed up qModuleInfo packet processing.
Here, I introduce two special kinds of locks: ContinueLock, which is used by the continue thread,
and Lock, which is used by everyone else. ContinueLock (atomically) sends a continue packet, and
blocks any other async threads from accessing the connection. Other threads create an instance of
the Lock object when they want to access the connection. This object, while in scope prevents the
continue from being send. Optionally, it can also interrupt the process to gain access to the
connection for async processing.
Most of the syncrhonization logic is encapsulated within these two classes. Some of it still
had to bleed over into the SendContinuePacketAndWaitForResponse, but the function is still much
more manageable than before -- partly because of most of the work is done in the ContinueLock
class, and partly because I have factored out a lot of the packet processing code separate
functions (this also makes the functionality more easily testable). Most importantly, there is
none of syncrhonization code in the async thread users -- as far as they are concerned, they just
need to declare a Lock object, and they are good to go (SendPacketAndWaitForResponse is now a
very thin wrapper around the NoLock version of the function, whereas previously it had over 100
lines of synchronization code). This will make my follow up changes there easy.
I have written a number of unit tests for the new code and I have ran the test suite on linux and
osx with no regressions.
Subscribers: tberghammer
Differential Revision: https://reviews.llvm.org/D22629
llvm-svn: 277139
Greg added in r272276 -- when working with a non-user-process mach-o
core file, force the permissions to readable + executable, else the
unwinder can stop backtracing early if it gets a pc value in a segment
that it thinks is non-executable.
<rdar://problem/27138456>
<rdar://problem/27462904>
llvm-svn: 277065
This finally removes the use of the Mutex and Condition classes. This is an
intricate patch as the Mutex and Condition classes were tied together.
Furthermore, many places had slightly differing uses of time values. Convert
timeout values to relative everywhere to permit the use of
std::chrono::duration, which is required for the use of
std::condition_variable's timeout. Adjust all Condition and related Mutex
classes over to std::{,recursive_}mutex and std::condition_variable.
This change primarily comes at the cost of breaking the TracingMutex which was
based around the Mutex class. It would be possible to write a wrapper to
provide similar functionality, but that is beyond the scope of this change.
llvm-svn: 277011
"Incorrect" file name seen on Android whene the main executable is
called "app_process32" (or 64) but the linker specifies the package
name (e.g. com.android.calculator2). Additionally it can be present
in case of some linker bugs.
This CL adds logic to try to fetch the correct file name from the proc
file system based on the base address sepcified by the linker in case
we are failed to load the module by name.
Differential revision: http://reviews.llvm.org/D22219
llvm-svn: 276411
Summary:
The binary layout of prstatus and prpsinfo was wrong.
Some of the member variables where not aligned properly
and others where with a wrong type (e.g. the time related
stuff in prstatus).
I used the structs defined in bfd in binutils to see what the layout
of the elf-core format in these section is.
(https://sourceware.org/git/?p=binutils-gdb.git;a=blob;f=bfd/hosts/x86-64linux.h;h=4e420a1f2081dd3b51f5d6b7a8e4093580f5cdb5;hb=master)
Note: those structures are only for x86 64 bit elf-core files
This shouldn't have any impact on the functionality, because
lldb actually uses only a few of the member variables of those structs
and they are with a correct type and alignment.
I found this while trying to add/fix the support for
i386 core files (https://llvm.org/bugs/show_bug.cgi?id=26947)
Reviewers: labath
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D22628
Author: Dimitar Vlahovski <dvlahovski@google.com>
llvm-svn: 276406
debugserver jGetSharedCacheInfo packet instead of reading
the dyld internal data structures directly. This code is
(currently) only used for ios native lldb's - I should really
move this ObjectFileMachO::GetProcessSharedCacheUUID method
somewhere else, it makes less and less sense being in the
file reader.
<rdar://problem/25251243>
llvm-svn: 276369
Summary:
We've had two copies of code for launching processes:
- one in NativeProcessLinux, used for launching debugged processes
- one in ProcessLauncherAndroid, used on android for launching all other kinds of processes
These have over time acquired support for various launch options, but neither supported all of
them. I now replace them with a single implementation ProcessLauncherLinux, which supports all
the options the individual versions supported and set it to be used to launch all processes on
linux.
This also works around the ETXTBSY issue on android when the process is started from the platform
instance, as that used to go through the version which did not contain the workaround.
Reviewers: tberghammer
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: https://reviews.llvm.org/D22457
llvm-svn: 276288
for the fall (northern hemisphere) 2016 Darwin platforms to learn
about loaded images, instead of reading dyld internal data structures.
These new SPI don't exist on older releases, and new packets are
needed from debugserver to use them (those changes are already committed).
I had to change the minimum deployment target for debugserver in the xcode
project file to macOS 10.10 so that debugserver will use the
[[NSProcessInfo processInfo] operatingSystemVersion]
call in MachProcess::GetOSVersionNumbers to get the operarting system
version # -- this API is only available in macOS 10.10 and newer
("OS X Yosemite", released Oct 2014). If we have many people building
llvm.org lldb on older systems still, we can back off on this for the
llvm.org sources.
There should be no change in behavior with this commit, either to
older darwin systems or newer darwin systems.
For now the new DynamicLoader plugin is never activated - I'm forcing
the old plugin to be used in DynamicLoaderDarwin::UseDYLDSPI.
I'll remove that unconditional use of the old plugin soon, so the
newer plugin is used on the newest Darwin platforms.
<rdar://problem/25251243>
llvm-svn: 276254
Summary:
This patch fills in the implementation of GetMemoryRegions() on the Windows live process and minidump implementations of lldb_private::Process (ProcessWindowsLive::GetMemoryRegionInfo and ProcessWinMiniDump::Impl::GetMemoryRegionInfo.) The GetMemoryRegions API was added under: http://reviews.llvm.org/D20565
The existing Windows implementations didn’t fill in the start and end addresses within MemoryRegionInfo. This patch fixes that and adds support for the new mapped flag on MemoryRegionInfo that says whether a memory range is mapped into the process address space or not.
The behaviour of both live and core implementations should match the behaviour documented on Process::GetMemoryRegionInfo (in Process.h) which in turn should match the behaviour of the qMemoryRegionInfo query documented in lldb-gdb-remote.txt.
Reviewers: clayborg, amccarth
Subscribers: amccarth, lldb-commits
Differential Revision: https://reviews.llvm.org/D22352
llvm-svn: 275778
Summary:
This removes one level of indirection, which was just packing and repacking launch args into
different structures. NFC.
Reviewers: tberghammer
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D22357
llvm-svn: 275544
review it for consistency, accuracy, and clarity. These changes attempt to
address all of the above while keeping the text relatively terse.
<rdar://problem/24868841>
llvm-svn: 275485
If LLDB reads some incorrect input form /proc/<pid>/maps then it
should report an error instead of assert-ing as we don't want to
crash in case of an incorrect maps file.
Differential revision: http://reviews.llvm.org/D22211
llvm-svn: 275060
On android M it can happen that we get a ETXTBSY, when we try to launch the inferior. Sleeping
and retrying should help us get more stable results.
llvm-svn: 274763
Summary:
This patch fills in the implementation of GetMemoryRegions() on the Linux and Mac OS core file implementations of lldb_private::Process (ProcessElfCore::GetMemoryRegions and ProcessMachCore::GetMemoryRegions.) The GetMemoryRegions API was added under: http://reviews.llvm.org/D20565
The patch re-uses the m_core_range_infos list that was recently added to implement GetMemoryRegionInfo in both ProcessElfCore and ProcessMachCore to ensure the returned regions match the regions returned by Process::GetMemoryRegionInfo(addr_t load_addr, MemoryRegionInfo ®ion_info).
Reviewers: clayborg
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D21751
llvm-svn: 274741
Summary:
We are seeing infrequent failures to launch the inferior process on android. The failing call
seems to be execve(). This adds more logging to see the actual error reported by the call.
Reviewers: tberghammer
Subscribers: tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D22039
llvm-svn: 274624
Summary:
This removes the last usage of Platform plugins in lldb-server -- it was used for launching child
processes, where it can be trivially replaced by Host::LaunchProces (as lldb-server is always
running on the host).
Removing platform plugins enables us to remove a lot of other unused code, which was pulled in as
a transitive dependency, and it reduces lldb-server size by 4%--9% (depending on build type and
architecture).
Reviewers: clayborg
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: http://reviews.llvm.org/D20440
llvm-svn: 274125
for TestNamespaceLookup.py; didn't see anything obviously wrong so I'll
need to look at this more closely before re-committing. (passed OK on
macOS ;)
llvm-svn: 273531
There's uses of "macosx" that will be more tricky to
change, like in triples (e.g. "x86_64-apple-macosx10.11") -
for now I'm just updating source comments and strings printed
for humans.
llvm-svn: 273524
This patch allows LLDB for AArch64 to watch all bytes, words or double words individually on non 8-byte alligned addresses.
This patch also adds tests to verify this functionality.
Differential revision: http://reviews.llvm.org/D21280
llvm-svn: 272916
Summary:
This removes the last usage of the Platform plugin in NPL. It was being
used for determining the architecture of the debugged process. I replace
the call that went through the Platform plugin with a lower level call
on the ObjectFile directly.
Reviewers: tberghammer
Subscribers: uweigand, nitesh.jain, omjavaid, lldb-commits
Differential Revision: http://reviews.llvm.org/D21324
llvm-svn: 272686
Address Size File off File size
---------- ---------- ---------- ----------
LC_SEGMENT 0x000f6000 0x00001000 0x1d509ee8 0x00001000 --- --- 0 0x00000000 __TEXT
LC_SEGMENT 0x0f600000 0x00100000 0x1d50aee8 0x00100000 --- --- 0 0x00000000 __TEXT
LC_SEGMENT 0x000f7000 0x00001000 0x1d60aee8 0x00001000 --- --- 0 0x00000000 __TEXT
Any if the user executes the following command:
(lldb) mem read 0xf6ff0
We would attempt to read 32 bytes from 0xf6ff0 but would only get 16 unless we loop through consecutive memory ranges that are contiguous in the address space, but not in the file data.
This fixes the ProcessMachCore::DoReadMemory() to do the right thing.
<rdar://problem/19729287>
llvm-svn: 272322
In order to make this happen, I have added permissions to sections so that we can know what the permissions are for a given section, and modified both core file plug-ins to override Process::GetMemoryRegionInfo() and answer things correctly.
llvm-svn: 272276
Summary:
Because PIE executables have an e_type of llvm::ELF::ET_DYN,
they are not of type eTypeExecutable, and were being removed
when svr4 packets were used.
Reviewers: clayborg, ADodds, tfiala, sas
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20990
llvm-svn: 271899
return NULL for an invalid register.
The unwind logic asks for the "return address register" which doesn't exist
on x86/x86_64, returns -1 and calls this with -1 as a parameter, ends up
out of scope of the array bounds for g_register_infos and later SIGSEGVs
on accessing. This now matches the other GetRegisterInfoAtIndex for
other platforms.
llvm-svn: 271876
This change implements dumping the executable, triple,
args and environment when using ProcessInfo::Dump().
It also tweaks the way Args::Dump() works so that it prints
a configurable label rather than argv[{index}]={value}. By
default it behaves the same, but if the Dump() method with
the additional arg is provided, it can be overridden. The
environment variables dumped as part of ProcessInfo::Dump()
make use of that.
lldb-server has been modified to dump the gdb-remote stub's
ProcessInfo before launching if the "gdb-remote process" channel
is logged.
llvm-svn: 271312
r259714 introduces the transport method into the
URL passed to the gdb-remote stub. On debugserver,
this is not supported and prevented debugserver from
being launched by lldb-server in platform mode.
This change skips the transport method addition from
r259714 when on Apple hosts.
llvm-svn: 270961
Patch by Nitesh Jain.
Summary: Currently floating point regsiters has eEncodingUint encoding. Hence register write '1.25' will failed. This patch add eEncodingIEEE754 encoding for floating point registers( - ). This patch will fix test_fp_register_write in TestRegisters.py
Reviewers: clayborg, sagar
Subscribers: mohit.bhakkad, jaydeep, bhushan, sdardis, lldb-commits
Differential: D18853
llvm-svn: 270208
values for the pc or return address register.
On ios with arm64 and a binary that has multiple functions without
individual symbol boundaries, we end up with an assembly profile
unwind plan that says lr=<same> - that is, the link register contents
are unmodified from the caller's value. This gets the unwinder in
a loop.
When we're off the 0th frame, we never want to look to a caller for
a pc or return-address register value.
Add checks to ReadGPRValue and ReadRegister to prevent both the pc
and ra register values from recursing.
If this causes problems with backtraces on android, let me know or
back it out and I'll look into it -- but I think these are
straightforward and don't expect problems.
<rdar://problem/24610365>
llvm-svn: 270162
The error was not getting propagated to the caller, so the higher layers thought the breakpoint
was successfully set & resolved.
I added a testcase, but it assumes 0x0 is not a valid place to set a breakpoint. On most systems
that is true, but if it isn't true of your system, either find another good place and add it to the
test, or x-fail the test.
<rdar://problem/26345962>
llvm-svn: 270014
This is a pretty straightforward first pass over removing a number of uses of
Mutex in favor of std::mutex or std::recursive_mutex. The problem is that there
are interfaces which take Mutex::Locker & to lock internal locks. This patch
cleans up most of the easy cases. The only non-trivial change is in
CommandObjectTarget.cpp where a Mutex::Locker was split into two.
llvm-svn: 269877
NPL now assumes it is running from a single thread now, so its thread-safety is untested
anyway (and if that assumption is broken, we'll have bigger problems (due to ptrace restrictions)
than a couple of missing mutexes).
llvm-svn: 269640
Summary:
MonitorDebugServerProcess went to a lot of effort to make sure its asynchronous invocation does
not cause any mischief, but it was still not race-free. Specifically, in a quick stop-restart
sequence (like the one in TestAddressBreakpoints) the copying of the process shared pointer via
target_sp->GetProcessSP() was racing with the resetting of the pointer in DeleteCurrentProcess,
as they were both accessing the same shared_ptr object.
To avoid this, I simply pass in a weak_ptr to the process when the callback is created. Locking
this pointer is race-free as they are two separate object even though they point to the same
process instance. This also removes the need for the complicated tap-dance around retrieving the
process pointer.
Reviewers: clayborg
Subscribers: tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D20107
llvm-svn: 269281
Summary:
This replaces the C-style "void *" baton of the child process monitoring functions with a more
C++-like API taking a std::function. The motivation for this was that it was very difficult to
handle the ownership of the object passed into the callback function -- each caller ended up
implementing his own way of doing it, some doing it better than others. With the new API, one can
just pass a smart pointer into the callback and all of the lifetime management will be handled
automatically.
This has enabled me to simplify the rather complicated handshake in Host::RunShellCommand. I have
left handling of MonitorDebugServerProcess (my original motivation for this change) to a separate
commit to reduce the scope of this change.
Reviewers: clayborg, zturner, emaste, krytarowski
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20106
llvm-svn: 269205
Summary:
If the remote uses svr4 packets to communicate library info,
the LoadUnload tests will fail, as lldb only used the basename
for modules, causing problems when two modules have the same basename.
Using absolute path as sent by the remote will ensure that lldb
locates the module from the correct directory when there are overlapping
basenames. When debugging a remote process, LoadModuleAtAddress will still
fall back to using basename and module_search_paths, so we don't
need to worry about using absolute paths in this case.
Reviewers: ADodds, jasonmolenda, clayborg, ovyalov
Subscribers: lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D19557
llvm-svn: 267741
Summary:
If the remote uses include features when communicating
xml register info back to lldb, the existing code would reset the
lldb register index at the beginning of each include node.
This would lead to multiple registers having the same lldb register index.
Since the lldb register numbers should be contiguous and unique,
maintain them accross the parsing of all of the xml feature nodes.
Reviewers: jingham, jasonmolenda, clayborg
Subscribers: lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D19303
llvm-svn: 267468
Summary:
When we receive an svr4 packet from the remote, we check for new modules
and add them to the list of images in the target. However, we did not
do the same for modules which have been removed.
This was causing TestLoadUnload to fail when using ds2, which uses
svr4 packets to communicate all library info on Linux. This patch fixes
the failing test.
Reviewers: zturner, tfiala, ADodds
Subscribers: lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D19230
llvm-svn: 267467
Summary:
eRegisterKindProcessPlugin is used to store the register
indices used by the remote, and eRegisterKindLLDB is used
to store the internal lldb register indices. However, we're currently
using the lldb indices instead of the process plugin indices
when sending p/P packets. This will break if the remote uses
non-contiguous register indices.
Reviewers: jasonmolenda, clayborg
Subscribers: lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D19305
llvm-svn: 267466
RegisterContextLLDB::InitializeNonZerothFrame already has code to attempt
to detect and handle the case where the PC points beyond the end of a
function, but there are certain cases where this doesn't work correctly.
In fact, there are *two* different places where this detection is attempted,
and the failure is in fact a result of an unfortunate interaction between
those two separate attempts.
First, the ResolveSymbolContextForAddress routine is called with the
resolve_tail_call_address flag set to true. This causes the routine
to internally accept a PC pointing beyond the end of a function, and
still resolving the PC to that function symbol.
Second, the InitializeNonZerothFrame routine itself maintains a
"decr_pc_and_recompute_addr_range" flag and, if that turns out to
be true, itself decrements the PC by one and searches again for
a symbol at that new PC value.
Both approaches correctly identify the symbol associated with the PC.
However, the problem is now that later on, we also need to find the
DWARF CFI record associated with the PC. This is done in the
RegisterContextLLDB::GetFullUnwindPlanForFrame routine, and uses
the "m_current_offset_backed_up_one" member variable.
However, that variable only actually contains the PC "backed up by
one" if the *second* approach above was taken. If the function was
already identified via the first approach above, that member variable
is *not* backed up by one but simply points to the original PC.
This in turn causes GetEHFrameUnwindPlan to not correctly identify
the DWARF CFI record associated with the PC.
Now, in many cases, if the first method had to back up the PC by one,
we *still* use the second method too, because of this piece of code:
// Or if we're in the middle of the stack (and not "above" an asynchronous event like sigtramp),
// and our "current" pc is the start of a function...
if (m_sym_ctx_valid
&& GetNextFrame()->m_frame_type != eTrapHandlerFrame
&& GetNextFrame()->m_frame_type != eDebuggerFrame
&& addr_range.GetBaseAddress().IsValid()
&& addr_range.GetBaseAddress().GetSection() == m_current_pc.GetSection()
&& addr_range.GetBaseAddress().GetOffset() == m_current_pc.GetOffset())
{
decr_pc_and_recompute_addr_range = true;
}
In many cases, when the PC is one beyond the end of the current function,
it will indeed then be exactly at the start of the next function. But this
is not always the case, e.g. if there happens to be alignment padding
between the end of one function and the start of the next.
In those cases, we may sucessfully look up the function symbol via
ResolveSymbolContextForAddress, but *not* set decr_pc_and_recompute_addr_range,
and therefore fail to find the correct DWARF CFI record.
A very simple fix for this problem is to just never use the first method.
Call ResolveSymbolContextForAddress with resolve_tail_call_address set
to false, which will cause it to fail if the PC is beyond the end of
the current function; or else, identify the next function if the PC
is also at the start of the next function. In either case, we will
then set the decr_pc_and_recompute_addr_range variable and back up the
PC anyway, but this time also find the correct DWARF CFI.
A related problem is that the ResolveSymbolContextForAddress sometimes
returns a "symbol" with empty name. This turns out to be an ELF section
symbol. Now, usually those get type eSymbolTypeInvalid. However, there
is code in ObjectFileELF::ParseSymbols that tries to change the type of
invalid symbols to eSymbolTypeCode or eSymbolTypeData if the symbol
lies within the code or data section.
Unfortunately, this check also hits the symbol for the code section
itself, which is then marked as eSymbolTypeCode. While the size of
the section symbol is 0 according to the ELF file, LLDB considers
this size invalid and attempts to figure out the "correct" size.
Depending on how this goes, we may end up with a symbol that overlays
part of the code section, even outside areas covered by real function
symbols.
Therefore, if we call ResolveSymbolContextForAddress with PC pointing
beyond the end of a function, we may get this bogus section symbol.
This again means InitializeNonZerothFrame thinks we have a valid PC,
but then we don't find any unwind info for it.
The fix for this problem is me to simply always leave ELF section
symbols as type eSymbolTypeInvalid.
Differential Revision: http://reviews.llvm.org/D18975
llvm-svn: 267363
This patch adds support for Linux on SystemZ:
- A new ArchSpec value of eCore_s390x_generic
- A new directory Plugins/ABI/SysV-s390x providing an ABI implementation
- Register context support
- Native Linux support including watchpoint support
- ELF core file support
- Misc. support throughout the code base (e.g. breakpoint opcodes)
- Test case updates to support the platform
This should provide complete support for debugging the SystemZ platform.
Not yet supported are optional features like transaction support (zEC12)
or SIMD vector support (z13).
There is no instruction emulation, since our ABI requires that all code
provide correct DWARF CFI at all PC locations in .eh_frame to support
unwinding (i.e. -fasynchronous-unwind-tables is on by default).
The implementation follows existing platforms in a mostly straightforward
manner. A couple of things that are different:
- We do not use PTRACE_PEEKUSER / PTRACE_POKEUSER to access single registers,
since some registers (access register) reside at offsets in the user area
that are multiples of 4, but the PTRACE_PEEKUSER interface only allows
accessing aligned 8-byte blocks in the user area. Instead, we use a s390
specific ptrace interface PTRACE_PEEKUSR_AREA / PTRACE_POKEUSR_AREA that
allows accessing a whole block of the user area in one go, so in effect
allowing to treat parts of the user area as register sets.
- SystemZ hardware does not provide any means to implement read watchpoints,
only write watchpoints. In fact, we can only support a *single* write
watchpoint (but this can span a range of arbitrary size). In LLDB this
means we support only a single watchpoint. I've set all test cases that
require read watchpoints (or multiple watchpoints) to expected failure
on the platform. [ Note that there were two test cases that install
a read/write watchpoint even though they nowhere rely on the "read"
property. I've changed those to simply use plain write watchpoints. ]
Differential Revision: http://reviews.llvm.org/D18978
llvm-svn: 266308
If the UnwindPlan did not identify how to unwind the stack pointer
register, LLDB currently assumes it can determine to caller's SP
from the current frame's CFA. This is true on most platforms
where CFA is by definition equal to the incoming SP at function
entry.
However, on the s390x target, we instead define the CFA to equal
the incoming SP plus an offset of 160 bytes. This is because
our ABI defines that the caller has to provide a register save
area of size 160 bytes. This area is allocated by the caller,
but is considered part of the callee's stack frame, and therefore
the CFA is defined as pointing to the top of this area.
In order to make this work on s390x, this patch introduces a new
ABI callback GetFallbackRegisterLocation that provides platform-
specific fallback register locations for unwinding. The existing
code to handle SP unwinding as well as volatile registers is moved
into the default implementation of that ABI callback, to allow
targets where that implementation is incorrect to override it.
This patch in itself is a no-op for all existing platforms.
But it is a pre-requisite for adding s390x support.
Differential Revision: http://reviews.llvm.org/D18977
llvm-svn: 266307
The structure definitions are not provided, but we perform a sizeof operation of
them which causes a build failure. Include `asm/ptrace.h` to get the structure
definitions.
llvm-svn: 266042
os to "ios" or "macosx" if it is unspecified. For environments
where there genuinely is no os, we don't want to errantly
convert that to ios/macosx, e.g. bare board debugging.
Change PlatformRemoteiOS, PlatformRemoteAppleWatch, and
PlatformRemoteAppleTV to not create themselves if we have
an unspecified OS. Same problem - these are not appropriate
platforms for bare board debugging environments.
Have Process::Attach's logging take place if either
process or target logging is enabled.
<rdar://problem/25592378>
llvm-svn: 265732
In turns out this does make a functional change, in case when the inferior hits an int3 that was
not placed by the debugger. Backing out for now.
llvm-svn: 265647
Summary:
SetThreadStopInfo was checking for a breakpoint at the current PC several times. This merges the
identical code into a separate function. I've left one breakpoint check alone, as it was doing
more complicated stuff, and it did not see a way to merge that without making the interface
complicated. NFC.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18819
llvm-svn: 265560
Summary:
This resolves a similar problem as D16720 (which handled the case when we single-step onto a
breakpoint), but this one deals with involutary stops: when we stop a thread (e.g. because
another thread has hit a breakpont and we are doing a full stop), we can end up stopping it right
before it executes a breakpoint instruction. In this case, the stop reason will be empty, but we
will still step over the breakpoint when do the next resume, thereby missing a breakpoint hit.
I have observed this happening in TestConcurrentEvents, but I have no idea how to reproduce this
behavior more reliably.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18692
llvm-svn: 265525
Summary:
The logic to read modules from memory was added to LoadModuleAtAddress
in the dynamic loader, but not in process gdb remote. This means that when
the remote uses svr4 packets to give library info, libraries only present
on the remote will not be loaded.
This patch therefore involves some code duplication from LoadModuleAtAddress
in the dynamic loader, but removing this would require some amount of code
refactoring.
Reviewers: ADodds, tberghammer, tfiala, deepak2427, ted
Subscribers: tfiala, lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D18531
Change by Francis Ricci <fjricci@fb.com>
llvm-svn: 265418
Summary:
There was a bug in linux core file handling, where if there was a running process with the same
process id as the id in the core file, the core file debugging would fail, as we would pull some
pieces of information (ProcessInfo structure) from the running process instead of the core file.
I fix this by routing the ProcessInfo requests through the Process class and overriding it in
ProcessElfCore to return correct data.
A (slightly convoluted) test is included.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18697
llvm-svn: 265391
rnb_err_t
RNBRemote::HandlePacket_stop_process (const char *p)
{
if (!DNBProcessInterrupt(m_ctx.ProcessID()))
HandlePacket_last_signal (NULL);
return rnb_success;
}
In the call to DNBProcessInterrupt we did:
nub_bool_t
DNBProcessInterrupt(nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->Interrupt();
return false;
}
This would always return false. It would cause HandlePacket_stop_process to always call "HandlePacket_last_signal (NULL);" which would send an extra stop reply packet _if_ the process is stopped. On a machine with enough cores, it would call DNBProcessInterrupt(...) and then HandlePacket_last_signal(NULL) so quickly that it will never send out an extra stop reply packet. But if the machine is slow enough or doesn't have enough cores, it could cause the call to HandlePacket_last_signal() to actually succeed and send an extra stop reply packet. This would cause problems up in GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse() where it would get the first stop reply packet and then possibly return or execute an async packet. If it returned, then the next packet that was sent will get the second stop reply as its response. If it executes an async packet, the async packet will get the wrong response.
To fix this I did the following:
1 - in debugserver, I fixed "bool MachProcess::Interrupt()" to return true if it sends the signal so we avoid sending the stop reply twice on slower machines
2 - Added a log line to RNBRemote::HandlePacket_stop_process() to say if we ever send an extra stop reply so we will see this in the darwin console output if this does happen
3 - Added response validators to StringExtractorGDBRemote so that we can verify some responses to some packets.
4 - Added validators to packets that often follow stop reply packets like the "m" packet for memory reads, JSON packets since "jThreadsInfo" is often sent immediately following a stop reply.
5 - Modified GDBRemoteCommunicationClient::SendPacketAndWaitForResponseNoLock() to validate responses. Any "StringExtractorGDBRemote &response" that contains a valid response verifier will verify the response and keep looking for correct responses up to 3 times. This will help us get back on track if we do get extra stop replies. If a StringExtractorGDBRemote does not have a response validator, it will accept any packet in response.
6 - In GDBRemoteCommunicationClient::SendPacketAndWaitForResponse we copy the response validator from the "response" argument over into m_async_response so that if we send the packet by interrupting the running process, we can validate the response we actually get in GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse()
7 - Modified GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse() to always check for an extra stop reply packet for 100ms when the process is interrupted. We were already doing this because we might interrupt a process with a \x03 packet, yet the process was in the process of stopping due to another reason. This race condition could cause an extra stop reply packet because the GDB remote protocol says if a \x03 packet is sent while the process is stopped, we should send a stop reply packet back. Now we always check for an extra stop reply packet when we manually interrupt a process.
The issue was showing up when our IDE would attempt to set a breakpoint while the process is running and this would happen:
--> \x03
<-- $T<stop reply 1>
--> z0,AAAAA,BB (set breakpoint)
<-- $T<stop reply 1> (incorrect extra stop reply packet)
--> c
<-- OK (response from z0 packet)
Now all packet traffic was off by one response. Since we now have a validator on the response for "z" packets, we do this:
--> \x03
<-- $T<stop reply 1>
--> z0,AAAAA,BB (set breakpoint)
<-- $T<stop reply 1> (Ignore this because this can't be the response to z0 packets)
<-- OK -- (we are back on track as this is a valid response to z0)
...
As time goes on we should add more packet validators.
<rdar://problem/22859505>
llvm-svn: 265086
Win32 API calls that are Unicode aware require wide character
strings, but LLDB uses UTF8 everywhere. This patch does conversions
wherever necessary when passing strings into and out of Win32 API
calls.
Patch by Cameron
Differential Revision: http://reviews.llvm.org/D17107
Reviewed By: zturner, amccarth
llvm-svn: 264074
We want to do a better job presenting errors that occur when evaluating
expressions. Key to this effort is getting away from a model where all
errors are spat out onto a stream where the client has to take or leave
all of them.
To this end, this patch adds a new class, DiagnosticManager, which
contains errors produced by the compiler or by LLDB as an expression
is created. The DiagnosticManager can dump itself to a log as well as
to a string. Clients will (in the future) be able to filter out the
errors they're interested in by ID or present subsets of these errors
to the user.
This patch is not intended to change the *users* of errors - only to
thread DiagnosticManagers to all the places where streams are used. I
also attempt to standardize our use of errors a bit, removing trailing
newlines and making clients omit 'error:', 'warning:' etc. and instead
pass the Severity flag.
The patch is testsuite-neutral, with modifications to one part of the
MI tests because it relied on "error: error:" being erroneously
printed. This patch fixes the MI variable handling and the testcase.
<rdar://problem/22864976>
llvm-svn: 263859
Summary:
This also adds a basic smoke test for linux core file reading. I'm checking in the core files as
well, so that the tests can run on all platforms. With some tricks I was able to produce
reasonably-sized core files (~40K).
This fixes the first part of pr26322.
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18176
llvm-svn: 263628
Turns out that most of the code that runs expressions (e.g. the ObjC runtime grubber) on
behalf of the expression parser was using the currently selected thread. But sometimes,
e.g. when we are evaluating breakpoint conditions/commands, we don't select the thread
we're running on, we instead set the context for the interpreter, and explicitly pass
that to other callers. That wasn't getting communicated to these utility expressions, so
they would run on some other thread instead, and that could cause a variety of subtle and
hard to reproduce problems.
I also went through the commands and cleaned up the use of GetSelectedThread. All those
uses should have been trying the thread in the m_exe_ctx belonging to the command object
first. It would actually have been pretty hard to get misbehavior in these cases, but for
correctness sake it is good to make this usage consistent.
<rdar://problem/24978569>
llvm-svn: 263326
to each other. This should remove some infrequent teardown crashes when the
listener is not the debugger's listener.
Processes now need to take a ListenerSP, not a Listener&.
This required changing over the Process plugin class constructors to take a ListenerSP, instead
of a Listener&. Other than that there should be no functional change.
<rdar://problem/24580184> CrashTracer: [USER] Xcode at …ework: lldb_private::Listener::BroadcasterWillDestruct + 39
llvm-svn: 262863
This is a mechanical refactor. There should be no functional changes in this commit.
Instead of encapsulating just the Windows-specific data, ProcessWinMiniDump now uses a private implementation class. This reduces indirections (in the source). It makes it easier to add private helper methods without touching the header and allows them to have platform-specific types as parameters. The only trick was that the pimpl class needed a back pointer in order to call a couple methods.
llvm-svn: 262256
Additionally fix the type of some dwarf expression where we had a
confusion between scalar and load address types after a dereference.
Differential revision: http://reviews.llvm.org/D17604
llvm-svn: 262014
32-bit processes on 64-bit Windows run in a layer called WoW64 (Windows-on-Windows64). If you capture a mini dump of such a process from a 32-bit debugger, you end up with a register context for the 64-bit WoW64 process rather than the 32-bit one you probably care about.
This detects WoW64 by looking to see if there's a module named wow64.dll loaded. For such processes, it then looks in the 64-bit Thread Environment Block (TEB) to locate a copy of the 32-bit CONTEXT record that the plugin needs for the register context.
Added some rudimentary tests. I'd like to improve these later once we figure out how to get the exception information from these mini dumps.
Differential Revision: http://reviews.llvm.org/D17465
llvm-svn: 261808
Summary:
On arm64, linux<=4.4 and Android<=M there is a bug, which prevents single-stepping from working when
the system comes back from suspend, because of incorrectly initialized CPUs. This did not really
affect Android<M, because it did not use software suspend, but it is a problem for M, which uses
suspend (doze) quite extensively. Fortunately, it seems that the first CPU is not affected by
this bug, so this commit implements a workaround by forcing the inferior to execute on the first
cpu whenever we are doing single stepping.
While inside, I have moved the implementations of Resume() and SingleStep() to the thread class
(instead of process).
Reviewers: tberghammer, ovyalov
Subscribers: aemerson, rengolin, tberghammer, danalbert, srhines, lldb-commits
Differential Revision: http://reviews.llvm.org/D17509
llvm-svn: 261636
Summary:
Signalfd is not used in the code anymore, and given that the same functionality can be achieved
with the new MainLoop class, it's unlikely we will need it in the future. Remove all traces of
it.
Reviewers: tberghammer, ovyalov
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: http://reviews.llvm.org/D17510
llvm-svn: 261631
on attach uses the architecture it has figured out, rather than the Target's
architecture, which may not have been updated to the correct value yet.
<rdar://problem/24632895>
llvm-svn: 261279
This reverts commit 293c18e067d663e0fe93e6f3d800c2a4bfada2b0.
The BKPT instruction generates SIGBUS instead of SIGTRAP in the Linux
kernel on Nexus 6 - 5.1.1 (kernel version 3.10.40). Revert the CL
until we can figure out how can we hanble the SIGBUS or how to get
back a SIGTRAP using the BKPT instruction.
llvm-svn: 260969
the xcode project file to catch switch statements that have a
case that falls through unintentionally.
Define LLVM_FALLTHROUGH to indicate instances where a case has code
and intends to fall through. This should be in llvm/Support/Compiler.h;
Peter Collingbourne originally checked in there (r237766), then
reverted (r237941) because he didn't have time to mark up all the
'case' statements that were intended to fall through. I put together
a patch to get this back in llvm http://reviews.llvm.org/D17063 but
it hasn't been approved in the past week. I added a new
lldb-private-defines.h to hold the definition for now.
Every place in lldb where there is a comment that the fall-through
is intentional, I added LLVM_FALLTHROUGH to silence the warning.
I haven't tried to identify whether the fallthrough is a bug or
not in the other places.
I haven't tried to add this to the cmake option build flags.
This warning will only work for clang.
This build cleanly (with some new warnings) on macosx with clang
under xcodebuild, but if this causes problems for people on other
configurations, I'll back it out.
llvm-svn: 260930
case where a core file has a kernel binary and a user
process dyld in the same one. Without this, we were
always picking the dyld and trying to process it as a
kernel.
<rdar://problem/24446112>
llvm-svn: 260803
In some circumstances (notably, certain minidumps), the thread CONTEXT does not have values for the
control registers (EIP, ESP, EBP, EFLAGS). There are flags in the CONTEXT which indicate which
portions are valid, but those flags weren't checked. The old code would not detect this and give a
garbage value for the register. The new code will log the problem and return an error.
I consolidated the error checking and logging into a helper function, which makes the big switch
statement easier to read and verify.
Ran tests to ensure this doesn't break anything. Manually verified that a minidump without info on
the control registers now indicates the problem instead of giving bad information.
Differential Review: http://reviews.llvm.org/D17152
llvm-svn: 260559
The UDF instruction is deprecated in armv7 and in case of thumb2
instructions set it don't work well together with the IT instruction.
Differential revision: http://reviews.llvm.org/D16853
llvm-svn: 260367
user process dyld binary and/or a mach kernel binary image. By
default, it prefers the kernel if it finds both.
But if it finds two kernel binary images (which can happen when
random things are mapped into memory), it may pick the wrong
kernel image.
DynamicLoaderDarwinKernel has heuristics to find a kernel in memory;
once we've established that there is a kernel binary in memory,
call over to that class to see if it can find a kernel address via
its search methods. If it does, use that.
Some minor cleanups to DynamicLoaderDarwinKernel while I was at it.
<rdar://problem/24446112>
llvm-svn: 259983