Summary:
The classes have no dependencies, and they are used both by lldb and
lldb-server, so it makes sense for them to live in the lowest layers.
Reviewers: zturner, jingham
Subscribers: emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D34746
llvm-svn: 306682
The function does not persist the callback, so using a lighter-weight
asbtraction seems appropriate.
Also tweak the signatures of the lambdas to match what the TaskMap
interface expects.
llvm-svn: 304924
The Timer destructor would grab a global mutex in order to update
execution time. Add a class to define a category once, statically; the
class adds itself to an atomic singly linked list, and thus subsequent
updates only need to use an atomic rather than grab a lock and perform a
hashtable lookup.
Differential Revision: https://reviews.llvm.org/D32823
Patch by Scott Smith <scott.smith@purestorage.com>.
llvm-svn: 303058
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
Templates can end in parameter packs, like this
template <class T...> struct MyStruct
{ /*...*/ };
LLDB does not currently support these parameter packs;
it does not emit them into the template argument list
at all. This causes problems when you specialize, e.g.:
template <> struct MyStruct<int>
{ /*...*/ };
template <> struct MyStruct<int, int> : MyStruct<int>
{ /*...*/ };
LLDB generates two template specializations, each with
no template arguments, and then when they are imported
by the ASTImporter into a parser's AST context we get a
single specialization that inherits from itself,
causing Clang's record layout mechanism to smash its
stack.
This patch fixes the problem for classes and adds
tests. The tests for functions fail because Clang's
ASTImporter can't import them at the moment, so I've
xfailed that test.
Differential Revision: https://reviews.llvm.org/D33025
llvm-svn: 302833
Summary:
Many parallel tasks just want to iterate over all the possible numbers from 0 to N-1. Rather than enqueue N work items, instead just "map" the function across the requested integer space.
Reviewers: clayborg, labath, tberghammer, zturner
Reviewed By: clayborg, zturner
Subscribers: zturner, lldb-commits
Differential Revision: https://reviews.llvm.org/D32757
Patch by Scott Smith <scott.smith@purestorage.com>.
llvm-svn: 302223
Summary:
UniqueCStringMap "sorts" the entries for fast lookup, but really it only cares about uniqueness. ConstString can be compared by pointer alone, rather than with strcmp, resulting in much faster comparisons. Change the interface to take ConstString instead, and propagate use of the type to the callers where appropriate.
Reviewers: #lldb, clayborg
Reviewed By: clayborg
Subscribers: labath, jasonmolenda, lldb-commits
Differential Revision: https://reviews.llvm.org/D32316
Patch by Scott Smith <scott.smith@purestorage.com>.
llvm-svn: 301908
Loading a shared library can require a large amount of work; rather than do that serially for each library,
this patch will allow parallelization of the symbols and debug info name indexes.
From scott.smith@purestorage.comhttps://reviews.llvm.org/D32598
llvm-svn: 301609
LLDB uses clang::DeclContexts for lookups, and variables get put into
the DeclContext for their abstract origin. (The abstract origin is a
DWARF pointer that indicates the unique definition of inlined code.)
When the expression parser is looking for variables, it locates the
DeclContext for the current context. This needs to be done carefully,
though, e.g.:
__attribute__ ((always_inline)) void f(int a) {
{
int b = a * 2;
}
}
void g() {
f(3);
}
Here, if we're stopped in the inlined copy of f, we have to find the
DeclContext corresponding to the definition of f – its abstract
origin. Clang doesn't allow multiple functions with the same name and
arguments to exist. It also means that any variables we see must be
placed in the appropriate DeclContext.
[Bug 1]: When stopped in an inline block, the function
GetDeclContextDIEContainingDIE for that block doesn't properly
construct a DeclContext for the abstract origin for inlined
subroutines. That means we get duplicated function DeclContexts, but
function arguments only get put in the abstract origin's DeclContext,
and as a result when we try to look for them in nested contexts they
aren't found.
[Bug 2]: When stopped in an inline block, the DWARF (for space
reasons) doesn't explicitly point to the abstract origin for that
block. This means that the function GetClangDeclContextForDIE returns
a different DeclContext for each place the block is inlined. However,
any variables defined in the block have abstract origins, so they
will only get placed in the DeclContext for their abstract origin.
In this fix, I've introduced a test covering both of these issues,
and fixed them.
Bug 1 could be resolved simply by making sure we look up the abstract
origin for inlined functions when looking up their DeclContexts on
behalf of nested blocks.
For Bug 2, I've implemented an algorithm that makes the DeclContext
for a block be the containing DeclContext for the closest entity we
would find during lookup that has an abstract origin pointer. That
means that in the following situation:
{ // block 1
int a;
{ // block 2
int b;
}
}
if we looked up the DeclContext for block 2, we'd find the block
containing the abstract origin of b, and lookup would proceed
correctly because we'd see b and a. However, in the situation
{ // block 1
int a;
{ // block 2
}
}
since there isn't anything to look up in block 2, we can't determine
its abstract origin (and there is no such pointer in the DWARF for
blocks). However, we can walk up the parent chain and find a, and its
abstract origin lives in the abstract origin of block 1. So we simply
say that the DeclContext for block 2 is the same as the DeclContext
for block 1, which contains a. Lookups will return the same results.
Thanks to Jim Ingham for review and suggestions.
Differential revision: https://reviews.llvm.org/D32375
llvm-svn: 301263
Summary:
previously we switched to llvm streams for log output, this completes
the switch for the error streams.
I also clean up the includes and remove the unused argument from
DisableAllLogChannels().
This required adding a bit of boiler plate to convert the output in the
command interpreter, but that should go away when we switch command
results to use llvm streams as well.
Reviewers: zturner, eugene
Subscribers: lldb-commits, emaste
Differential Revision: https://reviews.llvm.org/D30894
llvm-svn: 297812
about this more I realized I could make the change isolated to
whether we decide an empty accelerator table is valid or not.
<rdar://problem/30867462>
llvm-svn: 297496
HasContent. If we have a valid accelerator table which has no
content, we want to depend on that (empty) table as the authoritative
source instead of reading through all the debug info for lookups.
<rdar://problem/30867462>
llvm-svn: 297441
This was originall reverted due to some test failures in
ModuleCache and TestCompDirSymlink. These issues have all
been resolved and the code now passes all tests.
Differential Revision: https://reviews.llvm.org/D30698
llvm-svn: 297300
this reverts r297116 because it breaks the unittests and
TestCompDirSymlink. The ModuleCache unit test is trivially fixable, but
the CompDirSymlink failure is a symptom of a deeper problem: llvm's stat
functionality is not a drop-in replacement for lldb's. The former is
based on stat(2) (which does symlink resolution), while the latter is
based on lstat(2) (which does not).
This also reverts subsequent build fixes (r297128, r297120, 297117) and
r297119 (Remove FileSpec dependency on FileSystem) which builds on top
of this.
llvm-svn: 297139
This deletes LLDB's FileType enumeration and replaces all
users, and all calls to functions that check whether a file
exists etc with corresponding calls to LLVM.
Differential Revision: https://reviews.llvm.org/D30624
llvm-svn: 297116
In an effort to move the various DataBuffer / DataExtractor
classes from Core -> Utility, we have to separate the low-level
functionality from the higher level functionality. Only a
few functions required anything other than reading/writing
raw bytes, so those functions are separated out into a
more appropriate area. Specifically, Dump() and DumpHexBytes()
are moved into free functions in Core/DumpDataExtractor.cpp,
and GetGNUEHPointer is moved into a static function in the
only file that it's referenced from.
Differential Revision: https://reviews.llvm.org/D30560
llvm-svn: 296910
All references to Host and Core have been removed, so this
class can now safely be lowered into Utility.
Differential Revision: https://reviews.llvm.org/D30559
llvm-svn: 296909
This in turn triggered some fallout where other files had
been transitively picking up includes that they needed from
FileSpec.h, so I've fixed those up as well.
llvm-svn: 296855
Changes wrt. previous version:
- add #include <atomic>: fix build on windows
- add extra {} around the string literals used to initialize
llvm::StringLiteral: fix gcc build
llvm-svn: 295442
Summary:
We currently have two log channel registration mechanisms. One uses a
set of function pointers and the other one is based on the
PluginManager.
The PluginManager dependency is unfortunate, as logging
is also used in lldb-server, and the PluginManager pulls in a lot of
classes which are not used in lldb-server.
Both approach have the problem that they leave too much to do for the
user, and so the individual log channels end up reimplementing command
line argument parsing, category listing, etc.
Here, I replace the PluginManager-based approach with a one. The new API
is more declarative, so the user only needs to specify the list of list
of channels, their descriptions, etc., and all the common tasks like
enabling/disabling categories are hadled by common code. I migrate the
LogChannelDWARF (only user of the PluginManager method) to the new API.
In the follow-up commits I'll replace the other channels with something
similar.
Reviewers: clayborg, zturner, beanz
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D29895
llvm-svn: 295190
With this patch, the only dependency left is from Utility
to Host. After this is broken, Utility will finally be
standalone.
Differential Revision: https://reviews.llvm.org/D29909
llvm-svn: 295088
Summary:
This converts LLDB's logging to use llvm streams instead of
lldb_private::Stream and friends. The changes are mostly
straight-forward and amount to s/lldb_private::Stream/llvm::raw_ostream.
The part worth calling out is the rewrite of the StreamCallback class.
Previously this class contained a per-thread buffer of data written. I
assume this had something to do with it trying to make sure each log
line is delivered as a single event, instead of multiple (possibly
interleaved) events. However, this is no longer relevant as the Log
class already writes things to a temporary buffer and then delivers the
message as a single "write", so I have just removed the code in
question.
Reviewers: zturner, clayborg
Subscribers: emaste, lldb-commits, mgorny
Differential Revision: https://reviews.llvm.org/D29615
llvm-svn: 294736
Summary:
The std::call_once implementation in libstdc++ has problems on few systems: NetBSD, OpenBSD and Linux PPC. LLVM ships with a homegrown implementation llvm::call_once to help on these platforms.
This change is required in the NetBSD LLDB port. std::call_once with libstdc++ results with crashing the debugger.
Sponsored by <The NetBSD Foundation>
Reviewers: labath, joerg, emaste, mehdi_amini, clayborg
Reviewed By: labath, clayborg
Subscribers: #lldb
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D29288
llvm-svn: 294202
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
Summary:
I came across this while trying to understand what Log::Debug does. It turns out
it does not do anything, as there is no instance of someone setting a debug flag
on a stream. The same is true for the Verbose and AddPrefix flags. Removing
these will enable some cleanups in the Logging class, and it brings us closer
towards the long term goal of standardizing on llvm stream classes.
I have removed these flags and all code the code which tested for their
presence -- there wasn't much of it, mostly in SymbolFileDWARF, which is
probably going away at some point anyway.
The eBinary flag still has some users, so I am letting it life for the time
being.
Reviewers: clayborg, zturner
Subscribers: aprantl, beanz, lldb-commits
Differential Revision: https://reviews.llvm.org/D28616
llvm-svn: 291895
Also found/fixed one bug identified by this warning in
RenderScriptx86ABIFixups.cpp where a string literal was being used in an
effort to provide a name for an instruction/register, but was instead
being passed as the bool 'isVolatile' parameter.
llvm-svn: 291198
LLDB needs some minor changes to adopt PrettyStackTrace after https://reviews.llvm.org/D27683.
We remove our own SetCrashDescription() function and use LLVM-provided RAII objects instead.
We also make sure LLDB doesn't define __crashtracer_info__ which would collide with LLVM's definition.
Differential Revision: https://reviews.llvm.org/D27735
llvm-svn: 289711
This diff
1. Adds a comment to ObjectFileELF.cpp about the current
approach to determining the OS.
2. Replaces the check in SymbolFileDWARF.cpp with a more robust one.
Test plan:
Built (on Linux) a test binary linked to a c++ shared library
which contains just an implementation of a function TestFunction,
the library (the binary itself) doesn't contain ELF notes
and EI_OSABI is set to System V.
Checked in lldb that now "p TestFunction()" works fine
(and doesn't work without this patch).
Differential revision: https://reviews.llvm.org/D27380
llvm-svn: 288687
Summary:
Improve detection of global vs local variables.
Currently when a global variable is optimized out or otherwise has an unknown
location (DW_AT_location is empty) it gets reported as local.
I added two new heuristics:
- if a mangled name is present, the variable is global (or static)
- if DW_AT_location is present but invalid, the variable is global (or static)
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D26908
llvm-svn: 287636
This is a large API change that removes the two functions from
StreamString that return a std::string& and a const std::string&,
and instead provide one function which returns a StringRef.
Direct access to the underlying buffer violates the concept of
a "stream" which is intended to provide forward only access,
and makes porting to llvm::raw_ostream more difficult in the
future.
Differential Revision: https://reviews.llvm.org/D26698
llvm-svn: 287152
Summary:
The only interesting part here is that TimePoint and TimeValue have different
natural string representations, which affects "target modules list" output. It
is now "2016-07-09 04:02:21.000000000", whereas previously in was
"Sat Jul 9 04:02:21 2016". I wanted to check if we're OK with that.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D26275
llvm-svn: 286349
Summary:
The only usage there was in GetModificationTime(). I also took the opportunity
to move this function from FileSpec to the FileSystem class - since we are
using FileSpecs to also represent remote files for which we cannot (easily)
retrieve modification time, it makes sense to make the decision to get the
modification time more explicit.
The new function returns a llvm::sys::TimePoint<>. To aid the transition
from TimeValue, I have added a constructor to it which enables implicit
conversion from a time_point.
Reviewers: zturner, clayborg
Subscribers: mehdi_amini, tberghammer, danalbert, beanz, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D25392
llvm-svn: 285702
Summary:
The dependencies of our libraries (only liblldb, really) we marked as public, which caused all
their dependencies to be repeated when linking any executables to them. This is a problem because
then all the .a files could end up being linked twice, once to liblldb and once
again to to the executable linking against liblldb (lldb, lldb-mi). As it turns out,
our build actually depends on this behavior:
- on windows, lldb does not have getopt, so it pulls it from inside liblldb, even
though getopt is not a part of the exported interface of liblldb (maybe some of
the bsd variants have this problem as well)
- lldb-mi uses llvm, which again is not exported by liblldb
This change does not actually fix these problems (that is going to be a hard
one), but it does make them explicit by moving this magic from add_lldb_library
to the places the executable targets are defined. That way, I can link the
additional .a files only on targets that really need it, and the other targets
can build cleanly and make sure we don't regress further. It also fixes the
LLVM_LINK_LLVM_DYLIB build on linux.
Reviewers: zturner, beanz
Subscribers: ki.stfu, lldb-commits, mgorny
Differential Revision: https://reviews.llvm.org/D25680
llvm-svn: 284466