Since REG_ENHANCED is available on MacOSX, this allow the use of \d (digits) \b (word boundaries) and much more without affecting other systems.
<rdar://problem/12082562>
llvm-svn: 226704
The issue with Thumb IT (if/then) instructions is the IT instruction preceeds up to four instructions that are made conditional. If a breakpoint is placed on one of the conditional instructions, the instruction either needs to match the thumb opcode size (2 or 4 bytes) or a BKPT instruction needs to be used as these are always unconditional (even in a IT instruction). If BKPT instructions are used, then we might end up stopping on an instruction that won't get executed. So if we do stop at a BKPT instruction, we need to continue if the condition is not true.
When using the BKPT isntructions are easy in that you don't need to detect the size of the breakpoint that needs to be used when setting a breakpoint even in a thumb IT instruction. The bad part is you will now always stop at the opcode location and let LLDB determine if it should auto-continue. If the BKPT instruction is used, the BKPT that is used for ARM code should be something that also triggers the BKPT instruction in Thumb in case you set a breakpoint in the middle of code and the code is actually Thumb code. A value of 0xE120BE70 will work since the lower 16 bits being 0xBE70 happens to be a Thumb BKPT instruction.
The alternative is to use trap or illegal instructions that the kernel will translate into breakpoint hits. On Mac this was 0xE7FFDEFE for ARM and 0xDEFE for Thumb. The darwin kernel currently doesn't recognize any 32 bit Thumb instruction as a instruction that will get turned into a breakpoint exception (EXC_BREAKPOINT), so we had to use the BKPT instruction on Mac. The linux kernel recognizes a 16 and a 32 bit instruction as valid thumb breakpoint opcodes. The benefit of using 16 or 32 bit instructions is you don't stop on opcodes in a IT block when the condition doesn't match.
To further complicate things, single stepping on ARM is often implemented by modifying the BCR/BVR registers and setting the processor to stop when the PC is not equal to the current value. This means single stepping is another way the ARM target can stop on instructions that won't get executed.
This patch does the following:
1 - Fix the internal debugserver for Apple to use the BKPT instruction for ARM and Thumb
2 - Fix LLDB to catch when we stop in the middle of a Thumb IT instruction and continue if we stop at an instruction that won't execute
3 - Fixes this in a way that will work for any target on any platform as long as it is ARM/Thumb
4 - Adds a patch for ignoring conditions that don't match when in ARM mode (see below)
This patch also provides the code that implements the same thing for ARM instructions, though it is disabled for now. The ARM patch will check the condition of the instruction in ARM mode and continue if the condition isn't true (and therefore the instruction would not be executed). Again, this is not enable, but the code for it has been added.
<rdar://problem/19145455>
llvm-svn: 223851
Summary:
Ed Maste found some problems with the commit in D5988. Address most of these.
While here, also add floating point return handling. This doesn't handle
128-bit long double yet. Since I don't have any system that uses it, I don't
currently have plans to implement it.
Reviewers: emaste
Reviewed By: emaste
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D6049
llvm-svn: 220963
Summary:
This adds preliminary support for PowerPC/PowerPC64, for FreeBSD. There are
some issues still:
* Breakpoints don't work well on powerpc64.
* Shared libraries don't yet get loaded for a 32-bit process on powerpc64 host.
* Backtraces don't work. This is due to PowerPC ABI using a backchain pointer
in memory, instead of a dedicated frame pointer register for the backchain.
* Breakpoints on functions without debug info may not work correctly for 32-bit
powerpc.
Reviewers: emaste, tfiala, jingham, clayborg
Reviewed By: clayborg
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D5988
llvm-svn: 220944
Reviewed at http://reviews.llvm.org/D5592
This patch gives LLDB some ability to interact with AddressSanitizer runtime library, on top of what we already have (historical memory stack traces provided by ASan). Namely, that's the ability to stop on an error caught by ASan, and access the report information that are associated with it. The report information is also exposed into SB API.
More precisely this patch...
adds a new plugin type, InstrumentationRuntime, which should serve as a generic superclass for other instrumentation runtime libraries, these plugins get notified when modules are loaded, so they get a chance to "activate" when a specific dynamic library is loaded
an instance of this plugin type, AddressSanitizerRuntime, which activates itself when it sees the ASan dynamic library or founds ASan statically linked in the executable
adds a collection of these plugins into the Process class
AddressSanitizerRuntime sets an internal breakpoint on __asan::AsanDie(), and when this breakpoint gets hit, it retrieves the report information from ASan
this breakpoint is then exposed as a new StopReason, eStopReasonInstrumentation, with a new StopInfo subclass, InstrumentationRuntimeStopInfo
the StopInfo superclass is extended with a m_extended_info field (it's a StructuredData::ObjectSP), that can hold arbitrary JSON-like data, which is the way the new plugin provides the report data
the "thread info" command now accepts a "-s" flag that prints out the JSON data of a stop reason (same way the "-j" flag works now)
SBThread has a new API, GetStopReasonExtendedInfoAsJSON, which dumps the JSON string into a SBStream
adds a test case for all of this
I plan to also get rid of the original ASan plugin (memory history stack traces) and use an instance of AddressSanitizerRuntime for that purpose.
Kuba
llvm-svn: 219546
the user level. It adds the ability to invent new stepping modes implemented by python classes,
and to view the current thread plan stack and to some extent alter it.
I haven't gotten to documentation or tests yet. But this should not cause any behavior changes
if you don't use it, so its safe to check it in now and work on it incrementally.
llvm-svn: 218642
See http://reviews.llvm.org/D5495 for more details.
These are changes that are part of an effort to support building llgs, within the AOSP source tree, using the Android.mk
build system, when using the llvm/clang/lldb git repos from AOSP replaced with the experimental ones currently in
github.com/tfiala/aosp-{llvm,clang,lldb,compiler-rt}.
llvm-svn: 218568
See the following llvm change for details:
r213743 | tnorthover | 2014-07-23 05:32:47 -0700 (Wed, 23 Jul 2014) | 9 lines
AArch64: remove arm64 triple enumerator.
This change fixes build breaks on Linux and MacOSX lldb.
llvm-svn: 213755
Clean up this one specifically, as it has the effect of double-spacing
the list of thread stop reasons, and substantially bloats the log file
when opening a core with hundreds of threads.
There are other cases of extra newlines. Some of them do increase
readability, so avoid a general sweep for now.
llvm-svn: 211655
lldb support. I'll be doing more testing & cleanup but I wanted to
get the initial checkin done.
This adds a new SBExpressionOptions::SetLanguage API for selecting a
language of an expression.
I added adds a new SBThread::GetInfoItemByPathString for retriving
information about a thread from that thread's StructuredData.
I added a new StructuredData class for representing
key-value/array/dictionary information (e.g. JSON formatted data).
Helper functions to read JSON and create a StructuredData object,
and to print a StructuredData object in JSON format are included.
A few Cocoa / Cocoa Touch data formatters were updated by Enrico
to track changes in iOS 8 / Yosemite.
Before we query a thread's extended information, the system runtime may
provide hints to the remote debug stub that it will use to retrieve values
out of runtime structures. I added a new SystemRuntime method
AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add
key-value type data to the initial request that we send to the remote stub.
The thread-format formatter string can now retrieve values out of a thread's
extended info structured data. The default thread-format string picks up
two of these - thread.info.activity.name and thread.info.trace_messages.
I added a new "jThreadExtendedInfo" packet in debugserver; I will
add documentation to the lldb-gdb-remote.txt doc soon. It accepts
JSON formatted arguments (most importantly, "thread":threadnum) and
it returns a variety of information regarding the thread to lldb
in JSON format. This JSON return is scanned into a StructuredData
object that is associated with the thread; UI layers can query the
thread's StructuredData to see if key-values are present, and if
so, show them to the user. These key-values are likely to be
specific to different targets with some commonality among many
targets. For instance, many targets will be able to advertise the
pthread_t value for a thread.
I added an initial rough cut of "thread info" command which will print
the information about a thread from the jThreadExtendedInfo result.
I need to do more work to make this format reasonably.
Han Ming added calls into the pmenergy and pmsample libraries if
debugserver is run on Mac OS X Yosemite to get information about the
inferior's power use.
I added support to debugserver for gathering the Genealogy information
about threads, if it exists, and returning it in the jThreadExtendedInfo
JSON result.
llvm-svn: 210874
the SystemRuntime to check if a thread will have any problems
performing an inferior function call so the driver can skip
making that function call on that thread. Often the function
call can be executed on another thread instead.
<rdar://problem/16777874>
llvm-svn: 208732
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
This is a mechanical change addressing the various sign comparison warnings that
are identified by both clang and gcc. This helps cleanup some of the warning
spew that occurs during builds.
llvm-svn: 205390
These changes were written by Greg Clayton, Jim Ingham, Jason Molenda.
It builds cleanly against TOT llvm with xcodebuild. I updated the
cmake files by visual inspection but did not try a build. I haven't
built these sources on any non-Mac platforms - I don't think this
patch adds any code that requires darwin, but please let me know if
I missed something.
In debugserver, MachProcess.cpp and MachTask.cpp were renamed to
MachProcess.mm and MachTask.mm as they picked up some new Objective-C
code needed to launch processes when running on iOS.
llvm-svn: 205113
for customizing "step-in" behavior (e.g. step-in doesn't step into code with no debug info), but also
the behavior of step-in/step-out and step-over when they step out of the frame they started in.
I also added as a proof of concept of this reworking a mode for stepping where stepping out of a frame
into a frame with no debug information will continue stepping out till it arrives at a frame that does
have debug information. This is useful when you are debugging callback based code where the callbacks
are separated from the code that initiated them by some library glue you don't care about, among other
things.
llvm-svn: 203747
hold a strong pointer to that extended backtrace thread in the Process
just like we do for asking a thread's extended backtrace.
Also, give extended backtrace threads an invalid ThreadIndexID number.
We'll still give them valid thread_id's. Clients who want to know the
original thread's IndexID can call GetExtendedBacktraceOriginatingIndexID().
<rdar://problem/16126034>
llvm-svn: 203088
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
Added two new GDB server packets to debugserver: "QSaveRegisterState" and "QRestoreRegiterState".
"QSaveRegisterState" makes the remote GDB server save all register values and it returns a save identifier as an unsigned integer. This packet can be used prior to running expressions to save all registers.
All registers can them we later restored with "QRestoreRegiterState:SAVEID" what SAVEID is the integer identifier that was returned from the call to QSaveRegisterState.
Cleaned up redundant code in lldb_private::Thread, lldb_private::ThreadPlanCallFunction.
Moved the lldb_private::Thread::RegisterCheckpoint into its own header file and it is now in the lldb_private namespace. Trimmed down the RegisterCheckpoint class to omit stuff that wasn't used (the stack ID).
Added a few new virtual methods to lldb_private::RegisterContext that allow subclasses to efficiently save/restore register states and changed the RegisterContextGDBRemote to take advantage of these new calls.
llvm-svn: 194621
It completes the job of using EvaluateExpressionOptions consistently throughout
the inferior function calling mechanism in lldb begun in Greg's patch r194009.
It removes a handful of alternate calls into the ClangUserExpression/ClangFunction/ThreadPlanCallFunction which
were there for convenience. Using the EvaluateExpressionOptions removes the need for them.
Using that it gets the --debug option from Greg's patch to work cleanly.
It also adds another EvaluateExpressionOption to not trap exceptions when running expressions. You shouldn't
use this option unless you KNOW your expression can't throw beyond itself. This is:
<rdar://problem/15374885>
At present this is only available through the SB API's or python.
It fixes a bug where function calls would unset the ObjC & C++ exception breakpoints without checking whether
they were set by somebody else already.
llvm-svn: 194182
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
To make this work this patch extends LLDB to:
- Explicitly track the link_map address for each module. This is effectively the module handle, not sure why it wasn't already being stored off anywhere. As an extension later, it would be nice if someone were to add support for printing this as part of the modules list.
- Allow reading the per-thread data pointer via ptrace. I have added support for Linux here. I'll be happy to add support for FreeBSD once this is reviewed. OS X does not appear to have __thread variables, so maybe we don't need it there. Windows support should eventually be workable along the same lines.
- Make DWARF expressions track which module they originated from.
- Add support for the DW_OP_GNU_push_tls_address DWARF opcode, as generated by gcc and recent versions of clang. Earlier versions of clang (such as 3.2, which is default on Ubuntu right now) do not generate TLS debug info correctly so can not be supported here.
- Understand the format of the pthread DTV block. This is where it gets tricky. We have three basic options here:
1) Call "dlinfo" or "__tls_get_addr" on the inferior and ask it directly. However this won't work on core dumps, and generally speaking it's not a good idea for the debugger to call functions itself, as it has the potential to not work depending on the state of the target.
2) Use libthread_db. This is what GDB does. However this option requires having a version of libthread_db on the host cross-compiled for each potential target. This places a large burden on the user, and would make it very hard to cross-debug from Windows to Linux, for example. Trying to build a library intended exclusively for one OS on a different one is not pleasant. GDB sidesteps the problem and asks the user to figure it out.
3) Parse the DTV structure ourselves. On initial inspection this seems to be a bad option, as the DTV structure (the format used by the runtime to manage TLS data) is not in fact a kernel data structure, it is implemented entirely in useerland in libc. Therefore the layout of it's fields are version and OS dependent, and are not standardized.
However, it turns out not to be such a problem. All OSes use basically the same algorithm (a per-module lookup table) as detailed in Ulrich Drepper's TLS ELF ABI document, so we can easily write code to decode it ourselves. The only question therefore is the exact field layouts required. Happily, the implementors of libpthread expose the structure of the DTV via metadata exported as symbols from the .so itself, designed exactly for this kind of thing. So this patch simply reads that metadata in, and re-implements libthread_db's algorithm itself. We thereby get cross-platform TLS lookup without either requiring third-party libraries, while still being independent of the version of libpthread being used.
Test case included.
llvm-svn: 192922
Based on the POSIX x86_64 register context. This is sufficient for opening
a mips64 (big endian) core file. Subsequent changes will connect the
disassembler, dynamic loader support, ABI, etc.
Review: http://llvm-reviews.chandlerc.com/D1873
llvm-svn: 192335
This allows the PC to be directly changed to a different line.
It's similar to the example python script in examples/python/jump.py, except implemented as a builtin.
Also this version will track the current function correctly even if the target line resolves to multiple addresses. (e.g. debugging a templated function)
llvm-svn: 190572
Fixed a crasher when using memory threads where a thread is sticking around too long and was causing problems when it didn't have a thread plan.
llvm-svn: 187395
plan providers from a "ThreadPlan *" to a "lldb::ThreadPlanSP". That was needed to fix
a bug where the ThreadPlanStepInRange wasn't checking with its sub-plans to make sure they
succeed before trying to proceed further. If the sub-plan failed and as a result didn't make
any progress, you could end up retrying the same failing algorithm in an infinite loop.
<rdar://problem/14043602>
llvm-svn: 186618
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
settings set use-color [false|true]
settings set prompt "${ansi.bold}${ansi.fg.green}(lldb)${ansi.normal} "
also "--no-use-colors" on the command prompt
llvm-svn: 182609
- add IsVirtualStep() virtual function to ThreadPlan, and implement it for
ThreadPlanStepInRange
- make GetPrivateStopReason query the current thread plan for a virtual stop to
decide if the current stop reason needs to be preserved
- remove extra check for an existing process in GetPrivateStopReason
llvm-svn: 181795
This re-submission of this patch fixes a problem where the code sometimes caused a deadlock. The Process::SetPrivateState method was locking the Process::m_private_state variable and then later calling ThreadList::DidStop, which locks the ThreadList mutex. Other methods in ThreadList which were being called from other threads lock the ThreadList mutex and then call Process::GetPrivateState which locks the Process::m_private_state mutex. To avoid deadlocks, Process::SetPrivateState now locks the ThreadList mutex before locking the Process::m_private_state mutex.
llvm-svn: 181609
namespace lldb_private {
class Thread
{
virtual lldb::StopInfoSP
GetPrivateStopReason() = 0;
};
}
To not be virtual. The lldb_private::Thread now handles the correct caching and will call a new pure virtual function:
namespace lldb_private {
class Thread
{
virtual bool
CalculateStopInfo() = 0;
}
}
This function must be overridden by thead lldb_private::Thread subclass and the only thing it needs to do is to set the Thread::StopInfo() with the current stop reason and return true, or return false if there is no stop reason. The lldb_private::Thread class will take care of calling this function only when it is required. This allows lldb_private::Thread subclasses to be a bit simpler and not all need to duplicate the cache and invalidation settings.
Also renamed:
lldb::StopInfoSP
lldb_private::Thread::GetPrivateStopReason();
To:
lldb::StopInfoSP
lldb_private::Thread::GetPrivateStopInfo();
Also cleaned up a case where the ThreadPlanStepOverBreakpoint might not re-set its breakpoint if the thread disappears (which was happening due to a bug when using the OperatingSystem plug-ins with memory threads and real threads).
llvm-svn: 181501
value. This fixes problems, for instance, with the StepRange plans, where they know that
they explained the stop because they were at their "run to here" breakpoint, then deleted
that breakpoint, so when they got asked again, doh! I had done this for a couple of plans
in an ad hoc fashion, this just formalizes it.
Also add a "ResumeRequested" in Process so that the code in the completion handlers can
tell the ShouldStop logic they want to resume rather than just directly resuming. That allows
us to handle resuming in a more controlled fashion.
Also, SetPublicState can take a "restarted" flag, so that it doesn't drop the run lock when
the target was immediately restarted.
--This line, and those below , will be ignored--
M test/lang/objc/objc-dynamic-value/TestObjCDynamicValue.py
M include/lldb/Target/ThreadList.h
M include/lldb/Target/ThreadPlanStepOut.h
M include/lldb/Target/Thread.h
M include/lldb/Target/ThreadPlanBase.h
M include/lldb/Target/ThreadPlanStepThrough.h
M include/lldb/Target/ThreadPlanStepInstruction.h
M include/lldb/Target/ThreadPlanStepInRange.h
M include/lldb/Target/ThreadPlanStepOverBreakpoint.h
M include/lldb/Target/ThreadPlanStepUntil.h
M include/lldb/Target/StopInfo.h
M include/lldb/Target/Process.h
M include/lldb/Target/ThreadPlanRunToAddress.h
M include/lldb/Target/ThreadPlan.h
M include/lldb/Target/ThreadPlanCallFunction.h
M include/lldb/Target/ThreadPlanStepOverRange.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.cpp
M source/Target/StopInfo.cpp
M source/Target/Process.cpp
M source/Target/ThreadPlanRunToAddress.cpp
M source/Target/ThreadPlan.cpp
M source/Target/ThreadPlanCallFunction.cpp
M source/Target/ThreadPlanStepOverRange.cpp
M source/Target/ThreadList.cpp
M source/Target/ThreadPlanStepOut.cpp
M source/Target/Thread.cpp
M source/Target/ThreadPlanBase.cpp
M source/Target/ThreadPlanStepThrough.cpp
M source/Target/ThreadPlanStepInstruction.cpp
M source/Target/ThreadPlanStepInRange.cpp
M source/Target/ThreadPlanStepOverBreakpoint.cpp
M source/Target/ThreadPlanStepUntil.cpp
M lldb.xcodeproj/xcshareddata/xcschemes/Run Testsuite.xcscheme
llvm-svn: 181381
while we develop a better understanding of how to manage the thread lists in a platform-independant fashion.
Reviewed by: Daniel Malea
llvm-svn: 181323
This checkin aims to fix this. The process now has two thread lists: a real thread list for threads that are created by the lldb_private::Process subclass, and the user visible threads. The user visible threads are the same as the real threas when no OS plug-in in used. But when an OS plug-in is used, the user thread can be a combination of real and "memory" threads. Real threads can be placed inside of memory threads so that a thread appears to be different, but is still controlled by the actual real thread. When the thread list needs updating, the lldb_private::Process class will call the: lldb_private::Process::UpdateThreadList() function with the old real thread list, and the function is expected to fill in the new real thread list with the current state of the process. After this function, the process will check if there is an OS plug-in being used, and if so, it will give the old user thread list, the new real thread list and the OS plug-in will create the new user thread list from both of these lists. If there is no OS plug-in, the real thread list is the user thread list.
These changes keep the lldb_private::Process subclasses clean and no changes are required.
llvm-svn: 181091
<rdar://problem/13723772>
Modified the lldb_private::Thread to work much better with the OperatingSystem plug-ins. Operating system plug-ins can now return have a "core" key/value pair in each thread dictionary for the OperatingSystemPython plug-ins which allows the core threads to be contained with memory threads. It also allows these memory threads to be stepped, resumed, and controlled just as if they were the actual backing threads themselves.
A few things are introduced:
- lldb_private::Thread now has a GetProtocolID() method which returns the thread protocol ID for a given thread. The protocol ID (Thread::GetProtocolID()) is usually the same as the thread id (Thread::GetID()), but it can differ when a memory thread has its own id, but is backed by an actual API thread.
- Cleaned up the Thread::WillResume() code to do the mandatory parts in Thread::ShouldResume(), and let the thread subclasses override the Thread::WillResume() which is now just a notification.
- Cleaned up ClearStackFrames() implementations so that fewer thread subclasses needed to override them
- Changed the POSIXThread class a bit since it overrode Thread::WillResume(). It is doing the wrong thing by calling "Thread::SetResumeState()" on its own, this shouldn't be done by thread subclasses, but the current code might rely on it so I left it in with a TODO comment with an explanation.
llvm-svn: 180886
Fixed the GDB remote with the python OS plug-in to not show core threads when they aren't desired and also to have the threads "to the right thing" when continuing.
llvm-svn: 179912
Don't crash when there is no register context for a thread with kernel debugging. The kernel debugging uses the OperatingSystemPlugin that may behave badly when trying to get thread state, so be prepared to have invalid register contexts in threads.
llvm-svn: 178574
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
hitting auto-continue signals while running a thread plan would cause us to lose control of the debug
session.
<rdar://problem/12993641>
llvm-svn: 174793
Make the message when you hit an crash while evaluating an expression a little clearer, and mention "thread return -x".
rdar://problem/13110464
llvm-svn: 174095
controlled by the --unwind-on-error flag, and --ignore-breakpoint which separately controls behavior when a called
function hits a breakpoint. For breakpoints, we don't unwind, we either stop, or ignore the breakpoint, which makes
more sense.
Also make both these behaviors globally settable through "settings set".
Also handle the case where a breakpoint command calls code that ends up re-hitting the breakpoint. We were recursing
and crashing. Now we just stop without calling the second command.
<rdar://problem/12986644>
<rdar://problem/9119325>
llvm-svn: 172503
Added a "step-in-target" flag to "thread step-in" so if you have something like:
Process 28464 stopped
* thread #1: tid = 0x1c03, function: main , stop reason = breakpoint 1.1
frame #0: 0x0000000100000e08 a.out`main at main.c:62
61
-> 62 int A6 = complex (a(4), b(5), c(6)); // Stop here to step targetting b and hitting breakpoint.
63
and you want to get into "complex" skipping a, b and c, you can do:
(lldb) step -t complex
Process 28464 stopped
* thread #1: tid = 0x1c03, function: complex , stop reason = step in
frame #0: 0x0000000100000d0d a.out`complex at main.c:44
41
42 int complex (int first, int second, int third)
43 {
-> 44 return first + second + third; // Step in targetting complex should stop here
45 }
46
47 int main (int argc, char const *argv[])
llvm-svn: 170008
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
I tracked down a leak that could happen when detaching from a process where the lldb_private::Process objects would stay around forever. This was caused by a eStateDetached event that was queued up on the lldb_private::Process private state thread listener. Since process events contain shared pointers to the process, this is dangerous if they don't get consume or cleared as having the lldb_private::Process class contain a collection of things that have a shared pointer to yourself is obviously bad.
To fix this I modified the Process::Finalize() function to clear this list. The actual thing that was holding onto the ModuleSP and thus the static archive, was a stack frame. Since the process wasn't going away, it still had thread objects and they still had frames. I modified the Thread::Destroy() to clear the stack frames to ensure this further doesn't happen.
llvm-svn: 166964
Then make the Thread a Broadcaster, and get it to broadcast when the selected frame is changed (but only from the Command Line) and when Thread::ReturnFromFrame
changes the stack.
Made the Driver use this notification to print the new thread status rather than doing it in the command.
Fixed a few places where people were setting their broadcaster class by hand rather than using the static broadcaster class call.
<rdar://problem/12383087>
llvm-svn: 165640
If the stopped event comes in with the Restarted bit set, don't try to hand that to the plans, but just return ShouldStop = false. There's nothing useful the plans can do, since the target is already running.
llvm-svn: 163244
on, basic inlined stepping works, including step-over of inlined functions. But for some as yet mysterious reason i386 debugging gets an
assert and dies immediately. So for now its off.
llvm-svn: 163044
particularly in the SBThread & SBFrame interfaces. Instead of filling the whole context & then getting
the API mutex, we now get only the target, acquire the API mutex from it, then fill out the rest of the
context. This removes a race condition where you get a ThreadSP, then wait on the API mutex while another
command Destroy's the Thread you've just gotten.
Also fixed the ExecutionContextRef::Get*SP calls so they don't return invalid objects.
Also fixed the ExecutionContext::Has*Scope calls so they don't claim to have a scope if the object representing
that scope has been destroyed.
Also fixed a think-o in Thread::IsValid which was causing it to return the opposite of the desired value.
<rdar://problem/11995490>
llvm-svn: 162401
- no setting auto completion
- very manual and error prone way of getting/setting variables
- tons of code duplication
- useless instance names for processes, threads
Now settings can easily be defined like option values. The new settings makes use of the "OptionValue" classes so we can re-use the option value code that we use to set settings in command options. No more instances, just "does the right thing".
llvm-svn: 162366
<rdar://problem/11455913>
"target symbol add" should flush the cached frames
"register write" should flush the thread state in case registers modifications change stack
llvm-svn: 157042
Also changed the defaults for SBThread::Step* to not delete extant plans.
Also added some test cases to test more complex stepping scenarios.
llvm-svn: 156667
the controlling plans so that they don't lose control.
Also change "ThreadPlanStepThrough" to take the return StackID for its backstop breakpoint as an argument
to the constructor rather than having it try to figure it out itself, since it might get it wrong whereas
the caller always knows where it is coming from.
rdar://problem/11402287
llvm-svn: 156529
should be MasterPlans that want to stay on the plan stack. So make all plans NOT
MasterPlans by default and then have the SB API's and the CommandObjectThread step
commands set this explicitly.
Also added a "clean up" phase to the Thread::ShouldStop so that if plans get stranded
on the stack, we can remove them. This is done by adding an IsPlanStale method to the
thread plans, and if the plan can know that it is no longer relevant, it returns true,
and the plan and its sub-plans will get discarded.
llvm-svn: 156101
ask to continue that should short-circuit the thread plans for that thread. Also add a bit more explanation for
how this machinery is supposed to work.
Also pass eExecutionPolicyOnlyWhenNeeded, not eExecutionPolicyAlways when evaluating the expression for breakpoint
conditions.
llvm-svn: 155236