Add a unnamed_addr bit to global variables and functions. This will be used
to indicate that the address is not significant and therefore the constant
or function can be merged with others.
If an optimization pass can show that an address is not used, it can set this.
Examples of things that can have this set by the FE are globals created to
hold string literals and C++ constructors.
Adding unnamed_addr to a non-const global should have no effect unless
an optimization can transform that global into a constant.
Aliases are not allowed to have unnamed_addr since I couldn't figure
out any use for it.
llvm-svn: 123063
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121120
It's similar to "linker_private_weak", but it's known that the address of the
object is not taken. For instance, functions that had an inline definition, but
the compiler decided not to inline it. Note, unlike linker_private and
linker_private_weak, linker_private_weak_def_auto may have only default
visibility. The symbols are removed by the linker from the final linked image
(executable or dynamic library).
llvm-svn: 111684
not part of the IR, are not uniqued, and may be safely RAUW'd.
This replaces a variety of alternate mechanisms for achieving
the same effect.
llvm-svn: 111681
alloca instructions (constrained by their internal encoding),
and add error checking for it. Fix an instcombine bug which
generated huge alignment values (null is infinitely aligned).
This fixes undefined behavior noticed by John Regehr.
llvm-svn: 109643
Make MDNode::destroy private.
Fix the one thing that used MDNode::destroy, outside of MDNode itself.
One should never delete or destroy an MDNode explicitly. MDNodes
implicitly go away when there are no references to them (implementation
details aside).
llvm-svn: 109028
Objective-C metadata types which should be marked as "weak", but which the
linker will remove upon final linkage. However, this linkage isn't specific to
Objective-C.
For example, the "objc_msgSend_fixup_alloc" symbol is defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
Currently only supported on Darwin platforms.
llvm-svn: 107433
metadata types which should be marked as "weak", but which the linker will
remove upon final linkage. For example, the "objc_msgSend_fixup_alloc" symbol is
defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
llvm-svn: 107205
to fadd, fsub, and fmul, when used with a floating-point type. LLVM
has supported the new instructions since 2.6, so it's time to get
on board.
llvm-svn: 102971
We would return the error without inserting the new instruction
into the program, so it wouldn't get deallocated, and an abort
would trigger when the module was deleted.
llvm-svn: 100602
to used deferred resolution instead of creating a temporary
node + rauw. There is no reason to create the temporary
mdnode, then do rauw, then destroy it.
llvm-svn: 100086
This time it's for real! I am going to hook this up in the frontends as well.
The inliner has some experimental heuristics for dealing with the inline hint.
When given a -respect-inlinehint option, functions marked with the inline
keyword are given a threshold just above the default for -O3.
We need some experiments to determine if that is the right thing to do.
llvm-svn: 95466
Modules and ModuleProviders. Because the "ModuleProvider" simply materializes
GlobalValues now, and doesn't provide modules, it's renamed to
"GVMaterializer". Code that used to need a ModuleProvider to materialize
Functions can now materialize the Functions directly. Functions no longer use a
magic linkage to record that they're materializable; they simply ask the
GVMaterializer.
Because the C ABI must never change, we can't remove LLVMModuleProviderRef or
the functions that refer to it. Instead, because Module now exposes the same
functionality ModuleProvider used to, we store a Module* in any
LLVMModuleProviderRef and translate in the wrapper methods. The bindings to
other languages still use the ModuleProvider concept. It would probably be
worth some time to update them to follow the C++ more closely, but I don't
intend to do it.
Fixes http://llvm.org/PR5737 and http://llvm.org/PR5735.
llvm-svn: 94686
missing ones are libsupport, libsystem and libvmcore. libvmcore is
currently blocked on bugpoint, which uses EH. Once it stops using
EH, we can switch it off.
This #if 0's out 3 unit tests, because gtest requires RTTI information.
Suggestions welcome on how to fix this.
llvm-svn: 94164
parser-global MDsOnInst vector and make ParseInstructionMetadata return
its result by-ref through an argument like the entire rest of the parser.
llvm-svn: 92302
getMDKindID/getMDKindNames methods to LLVMContext (and add
convenience methods to Module), eliminating MetadataContext.
Move the state that it maintains out to LLVMContext.
llvm-svn: 92259
I asked Devang to do back on Sep 27. Instead of going through the
MetadataContext class with methods like getMD() and getMDs(), just
ask the instruction directly for its metadata with getMetadata()
and getAllMetadata().
This includes a variety of other fixes and improvements: previously
all Value*'s were bloated because the HasMetadata bit was thrown into
value, adding a 9th bit to a byte. Now this is properly sunk down to
the Instruction class (the only place where it makes sense) and it
will be folded away somewhere soon.
This also fixes some confusion in getMDs and its clients about
whether the returned list is indexed by the MDID or densely packed.
This is now returned sorted and densely packed and the comments make
this clear.
This introduces a number of fixme's which I'll follow up on.
llvm-svn: 92235
Here is the original commit message:
This commit updates malloc optimizations to operate on malloc calls that have constant int size arguments.
Update CreateMalloc so that its callers specify the size to allocate:
MallocInst-autoupgrade users use non-TargetData-computed allocation sizes.
Optimization uses use TargetData to compute the allocation size.
Now that malloc calls can have constant sizes, update isArrayMallocHelper() to use TargetData to determine the size of the malloced type and the size of malloced arrays.
Extend getMallocType() to support malloc calls that have non-bitcast uses.
Update OptimizeGlobalAddressOfMalloc() to optimize malloc calls that have non-bitcast uses. The bitcast use of a malloc call has to be treated specially here because the uses of the bitcast need to be replaced and the bitcast needs to be erased (just like the malloc call) for OptimizeGlobalAddressOfMalloc() to work correctly.
Update PerformHeapAllocSRoA() to optimize malloc calls that have non-bitcast uses. The bitcast use of the malloc is not handled specially here because ReplaceUsesOfMallocWithGlobal replaces through the bitcast use.
Update OptimizeOnceStoredGlobal() to not care about the malloc calls' bitcast use.
Update all globalopt malloc tests to not rely on autoupgraded-MallocInsts, but instead use explicit malloc calls with correct allocation sizes.
llvm-svn: 86311
MallocInst-autoupgrade users use non-TargetData-computed allocation sizes.
Optimization uses use TargetData to compute the allocation size.
Now that malloc calls can have constant sizes, update isArrayMallocHelper() to use TargetData to determine the size of the malloced type and the size of malloced arrays.
Extend getMallocType() to support malloc calls that have non-bitcast uses.
Update OptimizeGlobalAddressOfMalloc() to optimize malloc calls that have non-bitcast uses. The bitcast use of a malloc call has to be treated specially here because the uses of the bitcast need to be replaced and the bitcast needs to be erased (just like the malloc call) for OptimizeGlobalAddressOfMalloc() to work correctly.
Update PerformHeapAllocSRoA() to optimize malloc calls that have non-bitcast uses. The bitcast use of the malloc is not handled specially here because ReplaceUsesOfMallocWithGlobal replaces through the bitcast use.
Update OptimizeOnceStoredGlobal() to not care about the malloc calls' bitcast use.
Update all globalopt malloc tests to not rely on autoupgraded-MallocInsts, but instead use explicit malloc calls with correct allocation sizes.
llvm-svn: 86077
block with a blockaddress still referring to it' replace the invalid
blockaddress with a new blockaddress(@func, null) instead of a
inttoptr(1).
This changes the bitcode encoding format, and still needs codegen
support (this should produce a non-zero value, referring to the entry
block of the function would also be quite reasonable).
llvm-svn: 85678
$ llvm-as foo.ll -d -disable-output
which reads and prints the .ll file. BC encoding is the
next project. Testcase will go in once that works.
llvm-svn: 85368
Update all analysis passes and transforms to treat free calls just like FreeInst.
Remove RaiseAllocations and all its tests since FreeInst no longer needs to be raised.
llvm-svn: 84987
Most changes are cleanup, but there is 1 correctness fix:
I fixed InstCombine so that the icmp is removed only if the malloc call is removed (which requires explicit removal because the Worklist won't DCE any calls since they can have side-effects).
llvm-svn: 84772
Update testcases that rely on malloc insts being present.
Also prematurely remove MallocInst handling from IndMemRemoval and RaiseAllocations to help pass tests in this incremental step.
llvm-svn: 84292
the new predicates I added) instead of going through a context and doing a
pointer comparison. Besides being cheaper, this allows a smart compiler
to turn the if sequence into a switch.
llvm-svn: 83297
Constant uniquing tables. This allows distinct ConstantExpr objects
with the same operation and different flags.
Even though a ConstantExpr "a + b" is either always overflowing or
never overflowing (due to being a ConstantExpr), it's still necessary
to be able to represent it both with and without overflow flags at
the same time within the IR, because the safety of the flag may
depend on the context of the use. If the constant really does overflow,
it wouldn't ever be safe to use with the flag set, however the use
may be in code that is never actually executed.
This also makes it possible to merge all the flags tests into a single test.
llvm-svn: 80998
code hints that it would be a good idea to inline
a function ("inline" keyword). No functional change
yet; FEs do not emit this and inliner does not use it.
llvm-svn: 80063
"private" symbols which the assember shouldn't strip, but which the linker may
remove after evaluation. This is mostly useful for Objective-C metadata.
This is plumbing, so we don't have a use of it yet. More to come, etc.
llvm-svn: 76385
This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
llvm-svn: 75640
Make llvm_unreachable take an optional string, thus moving the cerr<< out of
line.
LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for
NDEBUG builds.
llvm-svn: 75379
U include/llvm/LLVMContext.h
U lib/VMCore/LLVMContext.cpp
U lib/AsmParser/LLParser.cpp
U lib/AsmParser/LLParser.h
Temporarily reverting r74648. It was causing massive failures in release mode.
llvm-svn: 74653
Also create isValidElementType for ArrayType, PointerType, StructType and
VectorType.
Make LLParser use them. This closes up some holes like an assertion failure on:
%x = type {label}
but largely doesn't change any semantics. The only thing we accept now which
we didn't before is vectors of opaque type such as "<4 x opaque>". The opaque
can be resolved to an int or float when linking.
llvm-svn: 73016
Update code generator to use this attribute and remove NoImplicitFloat target option.
Update llc to set this attribute when -no-implicit-float command line option is used.
llvm-svn: 72959
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
Update code generator to use this attribute and remove DisableRedZone target option.
Update llc to set this attribute when -disable-red-zone command line option is used.
llvm-svn: 72894
to support C99 inline, GNU extern inline, etc. Related bugzilla's
include PR3517, PR3100, & PR2933. Nothing uses this yet, but it
appears to work.
llvm-svn: 68940
Constant, MDString and MDNode which can only be used by globals with a name
that starts with "llvm." or as arguments to a function with the same naming
restriction.
llvm-svn: 68420
call, we should treat "i64 zext" as the start of a constant expr, but
"i64 0 zext" as an argument with an obsolete attribute on it (this form
is already tested by test/Assembler/2007-07-30-AutoUpgradeZextSext.ll).
Make the autoupgrade logic more discerning to avoid treating "i64 zext"
as an old-style attribute, causing us to reject a valid constant expr.
This fixes PR3876.
llvm-svn: 67682
same as a normal i80 {low64, high16} rather
than its own {high64, low16}. A depressing number
of places know about this; I think I got them all.
Bitcode readers and writers convert back to the old
form to avoid breaking compatibility.
llvm-svn: 67562
validate an invariant so that the asmparser rejects a bad construct
instead of the verifier. Before:
llvm-as: assembly parsed, but does not verify as correct!
Invalid struct return type!
i64 (%struct.Type*, %struct.Type*)* @foo
after:
llvm-as: t.ll:5:8: functions with 'sret' argument must return void
define i64 @foo(%struct.Type* noalias nocapture sret %agg.result, %struct.Type* nocapture byval %t) nounwind {
^
Second, check that void is only used where allowed (in function return types) not in
arbitrary places, fixing PR3747 - Crash in llvm-as with void field in struct. We
now reject that example with:
$ llvm-as t.ll
llvm-as: t.ll:1:12: struct element can not have void type
%x = type {void}
^
llvm-svn: 66394
and extern_weak_odr. These are the same as the non-odr versions,
except that they indicate that the global will only be overridden
by an *equivalent* global. In C, a function with weak linkage can
be overridden by a function which behaves completely differently.
This means that IP passes have to skip weak functions, since any
deductions made from the function definition might be wrong, since
the definition could be replaced by something completely different
at link time. This is not allowed in C++, thanks to the ODR
(One-Definition-Rule): if a function is replaced by another at
link-time, then the new function must be the same as the original
function. If a language knows that a function or other global can
only be overridden by an equivalent global, it can give it the
weak_odr linkage type, and the optimizers will understand that it
is alright to make deductions based on the function body. The
code generators on the other hand map weak and weak_odr linkage
to the same thing.
llvm-svn: 66339
target directories themselves. This also means that VMCore no longer
needs to know about every target's list of intrinsics. Future work
will include converting the PowerPC target to this interface as an
example implementation.
llvm-svn: 63765
just be removed. However, this fixes PR3281:crash04.ll, diagnosing it with:
lvm-as: crash04.ll:2:13: vfcmp requires vector floating point operands
vfcmp uno double* undef, undef
^
llvm-svn: 61680
and clean recursive descent parser.
This change has a couple of ramifications:
1. The parser code is about 400 lines shorter (in what we maintain, not
including what is autogenerated).
2. The code should be significantly faster than the old code because we
don't have to work around bison's poor handling of datatypes with
ctors/dtors. This also makes the code much more resistant to memory
leaks.
3. We now get caret diagnostics from the .ll parser, woo.
4. The actual diagnostics emited from the parser are completely different
so a bunch of testcases had to be updated.
5. I now disallow "%ty = type opaque %ty = type i32". There was no good
reason to support this, it was just an accident of the old
implementation. I have no reason to think that anyone is actually using
this.
6. The syntax for sticking a global variable has changed to make it
unambiguous. I don't think anyone is depending on this since only clang
supports this and it is not solid yet, so I'm not worried about anything
breaking.
7. This gets rid of the last use of bison, and along with it the .cvs files.
I'll prune this from the makefiles as a subsequent commit.
There are a few minor cleanups that can be done after this commit (suggestions
welcome!) but this passes dejagnu testing and is ready for its time in the
limelight.
llvm-svn: 61558
alignment attribute such that 0 means unaligned.
This will probably require a rebuild of llvm-gcc because of the change to
Attributes.h. If you see many test failures on "make check", please rebuild
your llvm-gcc.
llvm-svn: 61030
callee will not introduce any new aliases of that pointer.
The attributes had all bits allocated already, so I decided to collapse
alignment. Alignment was previously stored as a 16-bit integer from bits 16 to
32 of the attribute, but it was required to be a power of 2. Now it's stored in
log2 encoded form in five bits from 16 to 21. That gives us 11 more bits of
space.
You may have already noticed that you only need four bits to encode a 16-bit
power of two, so why five bits? Because the AsmParser accepted 32-bit
alignments, even though we couldn't store them (they were silently discarded).
Now we can store them in memory, but not in the bitcode.
The bitcode format was already storing these as 64-bit VBR integers. So, the
bitcode format stays the same, keeping the alignment values stored as 16 bit
raw values. There's some hideous code in the reader and writer that deals with
this, waiting to be ripped out the moment we run out of bits again and have to
replace the parameter attributes table encoding.
llvm-svn: 61019
indicate functions that allocate, such as operator new, or list::insert. The
actual definition is slightly less strict (for now).
No changes to the bitcode reader/writer, asm printer or verifier were needed.
llvm-svn: 59934
integer type. Invalid things like 'float 42' are now rejected by the
semantic analysis in the productions not the parser. This fixes PR2733.
llvm-svn: 57560
- return attributes - inreg, zext and sext
- parameter attributes
- function attributes - nounwind, readonly, readnone, noreturn
Return attributes use 0 as the index.
Function attributes use ~0U as the index.
This patch requires corresponding changes in llvm-gcc and clang.
llvm-svn: 56704
its size). Adjust various lowering functions to
pass this info through from CallInst. Use it to
implement sseregparm returns on X86. Remove
X86_ssecall calling convention.
llvm-svn: 56677
s/ParamAttr/Attribute/g
s/PAList/AttrList/g
s/FnAttributeWithIndex/AttributeWithIndex/g
s/FnAttr/Attribute/g
This sets the stage
- to implement function notes as function attributes and
- to distinguish between function attributes and return value attributes.
This requires corresponding changes in llvm-gcc and clang.
llvm-svn: 56622
and, if so, to return a vector of boolean as a result;
Extend the select LLVM IR instruction to allow you to specify a result
type which is a vector of boolean, in which case the result will be an
element-wise selection instead of choosing one vector or the other; and
Update LangRef.html to describe these changes.
This patch was contributed by Preston Gurd!
llvm-svn: 55969
In particular, Collector was confusing to implementors. Several
thought that this compile-time class was the place to implement
their runtime GC heap. Of course, it doesn't even exist at runtime.
Specifically, the renames are:
Collector -> GCStrategy
CollectorMetadata -> GCFunctionInfo
CollectorModuleMetadata -> GCModuleInfo
CollectorRegistry -> GCRegistry
Function::getCollector -> getGC (setGC, hasGC, clearGC)
Several accessors and nested types have also been renamed to be
consistent. These changes should be obvious.
llvm-svn: 54899
returning an std::string by value, it fills in a SmallString/SmallVector
passed in. This significantly reduces string thrashing in some cases.
More specifically, this:
- Adds an operator<< and a print method for APInt that allows you to
directly send them to an ostream.
- Reimplements APInt::toString to be much simpler and more efficient
algorithmically in addition to not thrashing strings quite as much.
This speeds up llvm-dis on kc++ by 7%, and may also slightly speed up the
asmprinter. This also fixes a bug I introduced into the asmwriter in a
previous patch w.r.t. alias printing.
llvm-svn: 54873
Remove the GetResultInst instruction. It is still accepted in LLVM assembly
and bitcode, where it is now auto-upgraded to ExtractValueInst. Also, remove
support for return instructions with multiple values. These are auto-upgraded
to use InsertValueInst instructions.
The IRBuilder still accepts multiple-value returns, and auto-upgrades them
to InsertValueInst instructions.
llvm-svn: 53941
Added abstract class MemSDNode for any Node that have an associated MemOperand
Changed atomic.lcs => atomic.cmp.swap, atomic.las => atomic.load.add, and
atomic.lss => atomic.load.sub
llvm-svn: 52706
insertvalue and extractvalue to use constant indices instead of
Value* indices. And begin updating LangRef.html.
There's definately more to come here, but I'm checking this
basic support in now to make it available to people who are
interested.
llvm-svn: 51806
and bitcode support for the extractvalue and insertvalue
instructions and constant expressions.
Note that this does not yet include CodeGen support.
llvm-svn: 51468
are represented as "weak", but there are subtle differences
in some cases on Darwin, so we need both. The intent
is that "common" will behave identically to "weak" unless
somebody changes their target to do something else.
No functional change as yet.
llvm-svn: 51118
start of a filename, not a filename+length. All clients can produce a
null terminated name, and the system api's require null terminated
strings anyway.
llvm-svn: 49041
1. There is now a "PAListPtr" class, which is a smart pointer around
the underlying uniqued parameter attribute list object, and manages
its refcount. It is now impossible to mess up the refcount.
2. PAListPtr is now the main interface to the underlying object, and
the underlying object is now completely opaque.
3. Implementation details like SmallVector and FoldingSet are now no
longer part of the interface.
4. You can create a PAListPtr with an arbitrary sequence of
ParamAttrsWithIndex's, no need to make a SmallVector of a specific
size (you can just use an array or scalar or vector if you wish).
5. All the client code that had to check for a null pointer before
dereferencing the pointer is simplified to just access the
PAListPtr directly.
6. The interfaces for adding attrs to a list and removing them is a
bit simpler.
Phase #2 will rename some stuff (e.g. PAListPtr) and do other less
invasive changes.
llvm-svn: 48289
- Expand tabs... (poss 80-col violations, will get them later...)
- Consolidate logic for SelectDFormAddr and SelectDForm2Addr into a single
function, simplifying maintenance. Also reduced custom instruction
generation for SPUvecinsert/INSERT_MASK.
llvm-svn: 46544
warning: suggest a space before ';' or explicit braces around empty
body in 'for' statement
Patch by Mike Stump (modified slightly by yours truly).
llvm-svn: 45071
regions of memory that have a target specific relationship, as described in the
Embedded C Technical Report.
This also implements the 2007-12-11-AddressSpaces test,
which demonstrates how address space attributes can be used in LLVM IR.
In addition, this patch changes the bitcode signature for stores (in a backwards
compatible manner), such that the pointer type, rather than the pointee type, is
encoded. This permits type information in the pointer (e.g. address space) to be
preserved for stores.
LangRef updates are forthcoming.
llvm-svn: 44858
methods are new to Function:
bool hasCollector() const;
const std::string &getCollector() const;
void setCollector(const std::string &);
void clearCollector();
The assembly representation is as such:
define void @f() gc "shadow-stack" { ...
The implementation uses an on-the-side table to map Functions to
collector names, such that there is no overhead. A StringPool is
further used to unique collector names, which are extremely
likely to be unique per process.
llvm-svn: 44769
the function type, instead they belong to functions
and function calls. This is an updated and slightly
corrected version of Reid Spencer's original patch.
The only known problem is that auto-upgrading of
bitcode files doesn't seem to work properly (see
test/Bitcode/AutoUpgradeIntrinsics.ll). Hopefully
a bitcode guru (who might that be? :) ) will fix it.
llvm-svn: 44359
No compile-time support for constant operations yet,
just format transformations. Make readers and
writers work. Split constants into 2 doubles in
Legalize.
llvm-svn: 42865
access to bits). Use them in place of float and
double interfaces where appropriate.
First bits of x86 long double constants handling
(untested, probably does not work).
llvm-svn: 41858
Use APFloat in UpgradeParser and AsmParser.
Change all references to ConstantFP to use the
APFloat interface rather than double. Remove
the ConstantFP double interfaces.
Use APFloat functions for constant folding arithmetic
and comparisons.
(There are still way too many places APFloat is
just a wrapper around host float/double, but we're
getting there.)
llvm-svn: 41747
This also changes the syntax for llvm.bswap, llvm.part.set, llvm.part.select, and llvm.ct* intrinsics. They are automatically upgraded by both the LLVM ASM reader and the bitcode reader. The test cases have been updated, with special tests added to ensure the automatic upgrading is supported.
llvm-svn: 40807
function result to be passed in a register. This implements the GCC regparm
function attribute for llvm by translation to the InReg parameter attribute
and fixes test/CFrontend/2002-07-30-SubregSetAssertion.c
llvm-svn: 40619
Change the keywords for the zext and sext parameter attributes to be
zeroext and signext so they don't conflict with the keywords for the
instructions of the same name. This gets around the ambiguity.
llvm-svn: 40069
Fix PR1358 and test/Assembler/2007-04-25-AssemblerFoldExternWeak.ll, by
creating forward decl globals with linkage extern_weak to defeat implicit
constant folding.
llvm-svn: 36469
Make ParamAttrsList objects unique. You can no longer directly create or
destroy them but instead must go through the ParamAttrsList::get()
interface.
llvm-svn: 36327
Use the new parameter on Function::getIntrinsicID to identify cases where
a function is being called with an "llvm." name but it isn't actually an
intrinsic. In such cases generate an error.
llvm-svn: 36121
Check at the end of the parse that there are no unresolved types and no
undefined values. Issue errors if there are. This gets rid of the need
for implementation or checkpoint by ensuring you can't finish a parse with
undefined things.
llvm-svn: 35499
describes its function as check against unresolved types and definitions.
This is handy for forcing error messages in assembly test cases or otherwise
ensuring that everything is resolved at that point in the assembly.
llvm-svn: 35410
Eliminate support for type planes in numbered values. This simplifies the
data structures involved in managing forward definitions, etc. Instead of
requiring maps from type to value, we can now just use a vector of values.
These changes also required rewrites of some support functions such as
InsertValue, getBBVal, and ResolveDefinitions. Some other cosmetic changes
were made as well.
llvm-svn: 35173
tokens: ESAPINTVAL and EUAPINTVAL and adding an APInt* as a semantic value.
This allows us to extend the definition of an integer constant to allow
arbitrary precision integer constant values.
llvm-svn: 34714
This patch replaces the SymbolTable class with ValueSymbolTable which does
not support types planes. This means that all symbol names in LLVM must now
be unique. The patch addresses the necessary changes to deal with this and
removes code no longer needed as a result. This completes the bulk of the
changes for this PR. Some cleanup patches will follow.
llvm-svn: 33918
This feature is needed in order to support shifts of more than 255 bits
on large integer types. This changes the syntax for llvm assembly to
make shl, ashr and lshr instructions look like a binary operator:
shl i32 %X, 1
instead of
shl i32 %X, i8 1
Additionally, this should help a few passes perform additional optimizations.
llvm-svn: 33776
1. New parameter attribute called 'inreg'. It has meaning "place this
parameter in registers, if possible". This is some generalization of
gcc's regparm(n) attribute. It's currently used only in X86-32 backend.
2. Completely rewritten CC handling/lowering code inside X86 backend.
Merged stdcall + c CCs and fastcall + fast CC.
3. Dropped CSRET CC. We cannot add struct return variant for each
target-specific CC (e.g. stdcall + csretcc and so on).
4. Instead of CSRET CC introduced 'sret' parameter attribute. Setting in
on first attribute has meaning 'This is hidden pointer to structure
return. Handle it gently'.
5. Fixed small bug in llvm-extract + add new feature to
FunctionExtraction pass, which relinks all internal-linkaged callees
from deleted function to external linkage. This will allow further
linking everything together.
NOTEs: 1. Documentation will be updated soon.
2. llvm-upgrade should be improved to translate csret => sret.
Before this, there will be some unexpected test fails.
llvm-svn: 33597
Implement separation of local and global symbols. Local symbols and types
now use % prefix. Global variables and functions now use @ prefix.
For PR761:
Replace:
target endian =
target pointersize =
With:
target datalayout =
llvm-svn: 33524
llvm[2]: Compiling llvmAsmParser.cpp for Debug build
/usr/home/jeffc/llvm/lib/AsmParser/llvmAsmParser.y: In function 'int llvmAsmparse()':
/usr/home/jeffc/llvm/lib/AsmParser/llvmAsmParser.y:1846: error: expected `;' before '}' token
llvm-svn: 33425
Make the assembler generate a nice error message if a bad cast instruction
is attempted instead of asserting out. This is made possible by the
recently exposed method CastInst::castIsValid() which checks the validity
of any cast instruction.
llvm-svn: 33283
rename Type::getIntegralTypeMask to Type::getIntegerTypeMask.
This makes naming much more consistent. For example, there are now no longer any
instances of IntegerType that are not considered isInteger! :)
llvm-svn: 33225
* PIC-aware internal structures in X86 Codegen have been refactored
* Visibility (default/weak) has been added
* Docs fixes (external weak linkage, visibility, formatting)
llvm-svn: 33136
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113