Most immediates are printed in Aarch64InstPrinter using 'formatImm' macro,
but not all of them.
Implementation contains following rules:
- floating point immediates are always printed as decimal
- signed integer immediates are printed depends on flag settings
(for negative values 'formatImm' macro prints the value as i.e -0x01
which may be convenient when imm is an address or offset)
- logical immediates are always printed as hex
- the 64-bit immediate for advSIMD, encoded in "a🅱️c:d:e:f:g:h" is always printed as hex
- the 64-bit immedaite in exception generation instructions like:
brk, dcps1, dcps2, dcps3, hlt, hvc, smc, svc is always printed as hex
- the rest of immediates is printed depends on availability
of -print-imm-hex
Signed-off-by: Maciej Gabka <maciej.gabka@arm.com>
Signed-off-by: Paul Osmialowski <pawel.osmialowski@arm.com>
Differential Revision: http://reviews.llvm.org/D16929
llvm-svn: 269446
The Statistical Profiling Extension is an optional extension to
ARMv8.2-A. Since it is an optional extension, I have added the
FeatureSPE subtarget feature to control it. The assembler-visible parts
of this extension are the new "psb csync" instruction, which is
equivalent to "hint #17", and a number of system registers.
Differential Revision: http://reviews.llvm.org/D15021
llvm-svn: 254401
ARMv8.2-A adds the "dc cvap" instruction, which is a system instruction
that cleans caches to the point of persistence (for systems that have
persistent memory). It is a required part of ARMv8.2-A, so no additional
subtarget features are required.
Differential Revision: http://reviews.llvm.org/D15016
llvm-svn: 254156
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
per-function subtarget.
Currently, code-gen passes the default or generic subtarget to the constructors
of MCInstPrinter subclasses (see LLVMTargetMachine::addPassesToEmitFile), which
enables some targets (AArch64, ARM, and X86) to change their instprinter's
behavior based on the subtarget feature bits. Since the backend can now use
different subtargets for each function, instprinter has to be changed to use the
per-function subtarget rather than the default subtarget.
This patch takes the first step towards enabling instprinter to change its
behavior based on the per-function subtarget. It adds a bit "PassSubtarget" to
AsmWriter which tells table-gen to pass a reference to MCSubtargetInfo to the
various print methods table-gen auto-generates.
I will follow up with changes to instprinters of AArch64, ARM, and X86.
llvm-svn: 233411
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
llvm-svn: 209576
Including following 14 instructions:
4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers.
ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4).
4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers.
st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4).
llvm-svn: 192361
Including following 14 instructions:
4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers.
ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4).
4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers.
st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4).
llvm-svn: 192352
Previously we modelled VPR128 and VPR64 as essentially identical
register-classes containing V0-V31 (which had Q0-Q31 as "sub_alias"
sub-registers). This model is starting to cause significant problems
for code generation, particularly writing EXTRACT/INSERT_SUBREG
patterns for converting between the two.
The change here switches to classifying VPR64 & VPR128 as
RegisterOperands, which are essentially aliases for RegisterClasses
with different parsing and printing behaviour. This fits almost
exactly with their real status (VPR128 == FPR128 printed strangely,
VPR64 == FPR64 printed strangely).
llvm-svn: 190665
Patch by Ana Pazos.
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
llvm-svn: 187567
This moves the bit twiddling and string fiddling functions required by other
parts of the backend into a separate library. Previously they resided in
AArch64Desc, which created a circular dependency between various components.
llvm-svn: 174369
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
llvm-svn: 174054