Since the result of a SETCC for AArch64 is 0 or -1 in each lane, we can
move unary operations, in this case [su]int_to_fp through the mask
operation and constant fold the operation away. Generally speaking:
UNARYOP(AND(VECTOR_CMP(x,y), constant))
--> AND(VECTOR_CMP(x,y), constant2)
where constant2 is UNARYOP(constant).
This implements the transform where UNARYOP is [su]int_to_fp.
For example, consider the simple function:
define <4 x float> @foo(<4 x float> %val, <4 x float> %test) nounwind {
%cmp = fcmp oeq <4 x float> %val, %test
%ext = zext <4 x i1> %cmp to <4 x i32>
%result = sitofp <4 x i32> %ext to <4 x float>
ret <4 x float> %result
}
Before this change, the code is generated as:
fcmeq.4s v0, v0, v1
movi.4s v1, #0x1 // Integer splat value.
and.16b v0, v0, v1 // Mask lanes based on the comparison.
scvtf.4s v0, v0 // Convert each lane to f32.
ret
After, the code is improved to:
fcmeq.4s v0, v0, v1
fmov.4s v1, #1.00000000 // f32 splat value.
and.16b v0, v0, v1 // Mask lanes based on the comparison.
ret
The svvtf.4s has been constant folded away and the floating point 1.0f
vector lanes are materialized directly via fmov.4s.
Rather than do the folding manually in the target code, teach getNode()
in the generic SelectionDAG to handle folding constant operands of
vector [su]int_to_fp nodes. It is reasonable (as noted in a FIXME) to do
additional constant folding there as well, but I don't have test cases
for those operations, so leaving them for another time when it becomes
appropriate.
rdar://17693791
llvm-svn: 213341
This makes the two intrinsics @llvm.convert.from.f16 and
@llvm.convert.to.f16 accept types other than simple "float". This is
only strictly needed for the truncate operation, since otherwise
double rounding occurs and there's no way to represent the strict IEEE
conversion. However, for symmetry we allow larger types in the extend
too.
During legalization, we can expand an "fp16_to_double" operation into
two extends for convenience, but abort when the truncate isn't legal. A new
libcall is probably needed here.
Even after this commit, various target tweaks are needed to actually use the
extended intrinsics. I've put these into separate commits for clarity, so there
are no actual tests of f64 conversion here.
llvm-svn: 213248
Memory barrier __builtin_arm_[dmb, dsb, isb] intrinsics are required to
implement their corresponding ACLE and MSVC intrinsics.
This patch ports ARM dmb, dsb, isb intrinsic to AArch64.
Differential Revision: http://reviews.llvm.org/D4520
llvm-svn: 213247
This adds a llvm.aarch64.hint intrinsic to mirror the llvm.arm.hint in order to
support the various hint intrinsic functions in the ACLE.
Add an optional pattern field that permits the subclass to specify the pattern
that matches the selection. The intrinsic pattern is set as mayLoad, mayStore,
so overload the value for the definition of the hint instruction.
llvm-svn: 212883
This patch teaches the AsmParser to accept some logical+immediate
instructions and convert them as shown:
bic Rd, Rn, #imm -> and Rd, Rn, #~imm
bics Rd, Rn, #imm -> ands Rd, Rn, #~imm
orn Rd, Rn, #imm -> orr Rd, Rn, #~imm
eon Rd, Rn, #imm -> eor Rd, Rn, #~imm
Those instructions are an alternate syntax available to assembly coders,
and are needed in order to support code already compiling with some other
assemblers. For example, the bic construct is used by the linux kernel.
llvm-svn: 212722
Storing will generally be immediately preceded by rounding from an f32
or f64, so make sure to match those patterns directly to convert into the
FPR16 register class directly rather than going through the integer GPRs.
This also eliminates an extra step in the convert-from-f64 path
which was first converting to f32 and then to f16 from there.
rdar://17594379
llvm-svn: 212638
This is a follow up to r212492. There should be no functional difference, but
this patch makes it clear that SrcVT must be an i1/i8/16/i32 and DestVT must be
an i8/i16/i32/i64.
rdar://17516686
llvm-svn: 212633
Loading will generally extend to an f32 or an 64, so make sure
to match those patterns directly to load into the FPR16 register
class directly rather than going through the integer GPRs.
This also eliminates an extra step in the convert-to-f64 path
which was first converting to f32 and then to f64 from there.
rdar://17594379
llvm-svn: 212573
Currently AArch64FastISel crashes if it tries to extend an integer into an
MVT::i128. This can happen by creating 128 bit integers like so:
typedef unsigned int uint128_t __attribute__((mode(TI)));
typedef int sint128_t __attribute__((mode(TI)));
This patch makes EmitIntExt check for their presence and then falls back to
SelectionDAG.
Tests included.
rdar://17516686
llvm-svn: 212492
vector type legalization strategies in a more fine grained manner, and
change the legalization of several v1iN types and v1f32 to be widening
rather than scalarization on AArch64.
This fixes an assertion failure caused by scalarizing nodes like "v1i32
trunc v1i64". As v1i64 is legal it will fail to scalarize v1i32.
This also provides a foundation for other targets to have more granular
control over how vector types are legalized.
Patch by Hao Liu, reviewed by Tim Northover. I'm committing it to allow
some work to start taking place on top of this patch as it adds some
really important hooks to the backend that I'd like to immediately start
using. =]
http://reviews.llvm.org/D4322
llvm-svn: 212242
This reverts commits r212189 and r212190.
While this pass was accidentally disabled (until r212073), r205437
slipped in a use of `auto` that should have been `auto&`.
This fixes PR20188.
llvm-svn: 212201
Based on the support for .req on ARM. The aarch64 variant has to keep track if
the alias register was a vector register (v0-31) or a general purpose or
VFP/Advanced SIMD ([bhsdq]0-31) register.
Patch by Janne Grunau!
llvm-svn: 212161
The argument list vector is never used after it has been passed to the
CallLoweringInfo and moving it to the CallLoweringInfo is cleaner and
pretty much as cheap as keeping a pointer to it.
llvm-svn: 212135
In r212073 I missed a call of `use_begin()` that assumed the wrong
semantics. It's not clear to me at all what this code does without the
fix, so I'm not sure how to write a testcase.
llvm-svn: 212075
AArch64AddressTypePromotion was doing nothing because it was using the
old semantics of `Use` and `uses()`, when it really wanted to get at the
`users()`.
llvm-svn: 212073
This patch is based on the changes from ARM target [1,2]
Based on ARM doc [3], if the literal value can be loaded with a valid MOV,
it can emit that instruction. This is implemented in this patch.
[1] Fix PR18345: ldr= pseudo instruction produces incorrect code when using in inline assembly
Author: David Peixotto <dpeixott@codeaurora.org>
commit b92cca222898d87bbc764fa22e805adb04ef7f13 (r200777)
[2] Implement the ldr-pseudo opcode for ARM assembly
Author: David Peixotto <dpeixott@codeaurora.org>
commit 0fa193b08627927ccaa0804a34d80480894614b8 (r197708)
[3] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0802a/CJAHAIBC.html
Differential Revision: http://reviews.llvm.org/D4163
llvm-svn: 211533
ReconstructShuffle() may wrongly creat a CONCAT_VECTOR trying to
concat 2 of v2i32 into v4i16. This commit is to fix this issue and
try to generate UZP1 instead of lots of MOV and INS.
Patch is initalized by Kevin Qin, and refactored by Tim Northover.
llvm-svn: 211144
To make sure branches are in range, we need to do a better job of estimating
the length of an inline assembly block than "it's probably 1 instruction, who'd
write asm with more than that?".
Fortunately there's already a (highly suspect, see how many ways you can think
of to break it!) callback for this purpose, which is used by the other targets.
rdar://problem/17277590
llvm-svn: 211095
There's probably no acatual change in behaviour here, just updating
the LowerFP_TO_INT function to be more similar to the reverse
implementation and updating costs to current CodeGen.
llvm-svn: 210985
inverted condition codes (CINC, CINV, CNEG, CSET, and CSETM).
Matching aliases based on "immediate classes", when disassembling,
wasn't previously supported, hence adding MCOperandPredicate
into class Operand, and implementing the support for it
in AsmWriterEmitter.
The parsing for those aliases was already custom, so just adding
the missing condition into AArch64AsmParser::parseCondCode.
llvm-svn: 210528
As Ana Pazos pointed out, these have to be restored to their incoming values
before a function returns; i.e. before the tail call. So they can't be used
correctly as the destination register.
llvm-svn: 210525
Previously we were abandonning the attempt, leading to some combination of
extra work (when selection of a load/store fails completely) and inferior code
(when this leads to a real memcpy call instead of inlining).
rdar://problem/17187463
llvm-svn: 210520
We were hitting an assert if FastISel couldn't create the load or store we
requested. Currently this happens for large frame-local addresses, though
CodeGen could be improved there.
rdar://problem/17187463
llvm-svn: 210519
I saw at least a memory leak or two from inspection (on probably
untested error paths) and r206991, which was the original inspiration
for this change.
I ran this idea by Jim Grosbach a few weeks ago & he was OK with it.
Since it's a basically mechanical patch that seemed sufficient - usual
post-commit review, revert, etc, as needed.
llvm-svn: 210427
This means the output of LowerFormalArguments returns a lowered
SDValue with the correct type (expected in SelectionDAGBuilder).
Without this, an assertion under a DEBUG macro triggers when those
types are passed on the stack.
llvm-svn: 210102
The C and C++ semantics for compare_exchange require it to return a bool
indicating success. This gets mapped to LLVM IR which follows each cmpxchg with
an icmp of the value loaded against the desired value.
When lowered to ldxr/stxr loops, this extra comparison is redundant: its
results are implicit in the control-flow of the function.
This commit makes two changes: it replaces that icmp with appropriate PHI
nodes, and then makes sure earlyCSE is called after expansion to actually make
use of the opportunities revealed.
I've also added -{arm,aarch64}-enable-atomic-tidy options, so that
existing fragile tests aren't perturbed too much by the change. Many
of them either rely on undef/unreachable too pervasively to be
restored to something well-defined (particularly while making sure
they test the same obscure assert from many years ago), or depend on a
particular CFG shape, which is disrupted by SimplifyCFG.
rdar://problem/16227836
llvm-svn: 209883
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
llvm-svn: 209759
A test in test/Generic creates a DAG where the NZCV output of an ADCS is used
by multiple nodes. This makes LLVM want to save a copy of NZCV for later, which
it couldn't do before.
This should be the last fix required for the aarch64 buildbot.
llvm-svn: 209651
These are tested by test/CodeGen/Generic, so we should probably know
how to deal with them. Fortunately generic code does it if asked.
llvm-svn: 209646
This commit is debatable. There are two possible approaches, neither
of which is really satisfactory:
1. Use "@foo(i1 zeroext)" to mean an extension to 32-bits on Darwin,
and 8 bits otherwise.
2. Redefine "@foo(i1)" to mean that the i1 is extended by the caller
to 8 bits. This goes against the spirit of "zeroext" I think, but
it's a bit of a vague construct anyway (by definition you're going
to extend to the amount required by the ABI, that's why it's the
ABI!).
This implements option 2. The DAG machinery really isn't setup for the
first (there's a fairly strong assumption that "zeroext" goes to at
least the smallest register size), and even if it was the resulting
DAG looks like it would be inferior in many cases.
Theoretically we could add AssertZext nodes in the consumers of
ABI-passed values too now, but this actually seems to make the code
worse in practice by making truncation proceed in two steps. The code
produced is equally valid if we continue to assume only the low bit is
defined.
Should fix PR19850
llvm-svn: 209637
We can eliminate the custom C++ code in favour of some TableGen to
check the same things. Functionality should be identical, except for a
buffer overrun that was present in the C++ code and meant webkit
failed if any small argument needed to be passed on the stack.
llvm-svn: 209636
The code emitted is what would be expected for the small model, so it
shouldn't be used when objects can be the full 64-bits away.
This fixes MCJIT tests on Linux.
llvm-svn: 209585
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
llvm-svn: 209576
- On ARM/ARM64 we get a vrev because the shuffle matching code is really smart. We still unroll anything that's not v4i32 though.
- On X86 we get a pshufb with SSSE3. Required more cleverness in isShuffleMaskLegal.
- On PPC we get a vperm for v8i16 and v4i32. v2i64 is unrolled.
llvm-svn: 209123
This is mostly a mechanical change changing all the call sites to the newer
chained-function construction pattern. This removes the horrible 15-parameter
constructor for the CallLoweringInfo in favour of setting properties of the call
via chained functions. No functional change beyond the removal of the old
constructors are intended.
llvm-svn: 209082
This reverts commit r208934.
The patch depends on aliases to GEPs with non zero offsets. That is not
supported and fairly broken.
The good news is that GlobalAlias is being redesigned and will have support
for offsets, so this patch should be a nice match for it.
llvm-svn: 208978
This alias appears not to have an appropriate PrintMethod. Normally, I'd look
into it, but since AArch64 is disappearing soon it's probably not worth it.
This will be tested when the TableGen "should I print this Alias" heuristic is
fixed (very soon).
llvm-svn: 208967
Actually, MOV sometimes is canonical, but for now this is a better
approximation than what's there.
This will be tested when the TableGen "should I print this Alias" heuristic is
fixed (very soon).
llvm-svn: 208962
This commit implements two command line switches -global-merge-on-external
and -global-merge-aligned, and both of them are false by default, so this
optimization is disabled by default for all targets.
For ARM64, some back-end behaviors need to be tuned to get this optimization
further enabled.
llvm-svn: 208934
We must validate the value type in TLI::getRegisterByName, because if we
don't and the wrong type was used with the IR intrinsic, then we'll assert
(because we won't be able to find a valid register class with which to
construct the requested copy operation). For PPC64, additionally, the type
information is necessary to decide between the 64-bit register and the 32-bit
subregister.
No functionality change.
llvm-svn: 208508
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).
So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.
llvm-svn: 208104
This is similar to the 'tail' marker, except that it guarantees that
tail call optimization will occur. It also comes with convervative IR
verification rules that ensure that tail call optimization is possible.
Reviewers: nicholas
Differential Revision: http://llvm-reviews.chandlerc.com/D3240
llvm-svn: 207143
This matches ARM64 behaviour, which I think is clearer. It also puts all the
churn from that difference into one easily ignored commit.
llvm-svn: 207116
For now it contains a single flag, SanitizeAddress, which enables
AddressSanitizer instrumentation of inline assembly.
Patch by Yuri Gorshenin.
llvm-svn: 206971
diagnostic that includes location information.
Currently if one has this assembly:
.quad (0x1234 + (4 * SOME_VALUE))
where SOME_VALUE is undefined ones gets the less than
useful error message with no location information:
% clang -c x.s
clang -cc1as: fatal error: error in backend: expected relocatable expression
With this fix one now gets a more useful error message
with location information:
% clang -c x.s
x.s:5:8: error: expected relocatable expression
.quad (0x1234 + (4 * SOME_VALUE))
^
To do this I plumbed the SMLoc through the MCObjectStreamer
EmitValue() and EmitValueImpl() interfaces so it could be used
when creating the MCFixup.
rdar://12391022
llvm-svn: 206906
system headers above the includes of generated '.inc' files that
actually contain code. In a few targets this was already done pretty
consistently, but it wasn't done *really* consistently anywhere. It is
strictly cleaner IMO and necessary in a bunch of places where the
DEBUG_TYPE is referenced from the generated code. Consistency with the
necessary places trumps. Hopefully the build bots are OK with the
movement of intrin.h...
llvm-svn: 206838
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
llvm-svn: 206822
This patch re-introduces the MCContext member that was removed from
MCDisassembler in r206063, and requires that an MCContext be passed in at
MCDisassembler construction time. (Previously the MCContext member had been
initialized in an ad-hoc fashion after construction). The MCCContext member
can be used by MCDisassembler sub-classes to construct constant or
target-specific MCExprs.
This patch updates disassemblers for in-tree targets, and provides the
MCRegisterInfo instance that some disassemblers were using through the
MCContext (previously those backends were constructing their own
MCRegisterInfo instances).
llvm-svn: 206241
In AArch64 i64 to i32 truncate operation is a subregister access.
This allows more opportunities for LSR optmization to eliminate
variables of different types (i32 and i64).
llvm-svn: 205925
There were several overlapping problems here, and this solution is
closely inspired by the one adopted in AArch64 in r201381.
Firstly, scalarisation of v1i1 setcc operations simply fails if the
input types are legal. This is fixed in LegalizeVectorTypes.cpp this
time, and allows AArch64 code to be simplified slightly.
Second, vselect with such a setcc feeding into it ends up in
ScalarizeVectorOperand, where it's not handled. I experimented with an
implementation, but found that whatever DAG came out was rather
horrific. I think Hao's DAG combine approach is a good one for
quality, though there are edge cases it won't catch (to be fixed
separately).
Should fix PR19335.
llvm-svn: 205625
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
llvm-svn: 205076
Previously, only regular AArch64 instructions were annotated with SchedRW lists.
This patch does the same for NEON enabling these instructions to be scheduled by
the MIScheduler. Additionally, store operations are now modeled and a few
SchedRW lists were updated for bug fixes (e.g. multiple def operands).
Reviewers: apazos, mcrosier, atrick
Patch by Dave Estes <cestes@codeaurora.org>!
llvm-svn: 204505
.data_region is only used in Darwin, so it shouldn't be generated
for other OS. Currently AArch64 doesn't support darwin yet, so
I removed it from AArch64. When Darwin is supported someday, we can
add it back and associate it with Darwin.
llvm-svn: 204424
Only one instruction pair needed changing: SMULH & UMULH. The previous
code worked, but MC was doing extra work treating Ra as a valid
operand (which then got completely overwritten in MCCodeEmitter).
No behaviour change, so no tests.
llvm-svn: 203772
The function was making too many assumptions about its input:
1. The NEON_VDUP optimisation was far too aggressive, assuming (I
think) that the input would always be BUILD_VECTOR.
2. We were treating most unknown concats as legal (by returning Op
rather than SDValue()). I think only concats of pairs of vectors are
actually legal.
http://llvm.org/PR19094
llvm-svn: 203450
the stack of the analysis group because they are all immutable passes.
This is made clear by Craig's recent work to use override
systematically -- we weren't overriding anything for 'finalizePass'
because there is no such thing.
This is kind of a lame restriction on the API -- we can no longer push
and pop things, we just set up the stack and run. However, I'm not
invested in building some better solution on top of the existing
(terrifying) immutable pass and legacy pass manager.
llvm-svn: 203437
Sequences of insertelement/extractelements are sometimes used to build
vectorsr; this code tries to put them back together into shuffles, but
could only produce a completely uniform shuffle types (<N x T> from two
<N x T> sources).
This should allow shuffles with different numbers of elements on the
input and output sides as well.
llvm-svn: 203229
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
llvm-svn: 203204
for the Cortex-A53 subtarget in the AArch64 backend.
This patch lays the ground work to annotate each AArch64 instruction
(no NEON yet) with a list of SchedReadWrite types. The patch also
provides the Cortex-A53 processor resources, maps those the the default
SchedReadWrites, and provides basic latency. NEON support will be added
in a subsequent patch with proper forwarding logic.
Verification was done by setting the pre-RA scheduler to linearize to
better gauge the effect of the MIScheduler. Even without modeling the
forward logic, the results show a modest improvement for Cortex-A53.
Reviewers: apazos, mcrosier, atrick
Patch by Dave Estes <cestes@codeaurora.org>!
llvm-svn: 203125
for the Cortex-A53 subtarget in the AArch64 backend.
This patch lays the ground work to annotate each AArch64 instruction
(no NEON yet) with a list of SchedReadWrite types. The patch also
provides the Cortex-A53 processor resources, maps those the the default
SchedReadWrites, and provides basic latency. NEON support will be added
in a subsequent patch with proper forwarding logic.
Verification was done by setting the pre-RA scheduler to linearize to
better gauge the effect of the MIScheduler. Even without modeling the
forward logic, the results show a modest improvement for Cortex-A53.
Reviewers: apazos, mcrosier, atrick
Patch by Dave Estes <cestes@codeaurora.org>!
llvm-svn: 202767
The va_start macro for AArch64 must set va_list.__stack to the address
following the last named argument on the stack, rounded up to an alignment
of 8 bytes.
llvm-svn: 201797
As v1i1 is illegal, the type legalizer tries to scalarize such node. But if the type operands of SETCC is legal, the scalarization algorithm will cause an assertion failure.
llvm-svn: 201381
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for
targets with mature MC support. Such targets will always parse the inline
assembly (even when emitting assembly). Targets without mature MC support
continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced
with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler
to parse inline assembly (even when emitting assembly output). UseIntegratedAs
is set to true for targets that consider any failure to parse valid assembly
to be a bug. Target specific subclasses generally enable the integrated
assembler in their constructor. The default value can be overridden with
-no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example,
those that use mnemonics such as 'foo' or 'hello world') have been updated to
disable the integrated assembler.
Changes since review (and last commit attempt):
- Fixed test failures that were missed due to configuration of local build.
(fixes crash.ll and a couple others).
- Fixed tests that happened to pass because the local build was on X86
(should fix 2007-12-17-InvokeAsm.ll)
- mature-mc-support.ll's should no longer require all targets to be compiled.
(should fix ARM and PPC buildbots)
- Object output (-filetype=obj and similar) now forces the integrated assembler
to be enabled regardless of default setting or -no-integrated-as.
(should fix SystemZ buildbots)
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201333
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201237
Generalize the AArch64 .td nodes for AssertZext and AssertSext. Use
them to match the relevant pextr store instructions.
The test widen_load-2.ll requires a slight change because with the
stores gone, the remaining instructions are scheduled in a different
order.
Add test cases for SSE4 and AVX variants.
Resolves rdar://13414672.
Patch by Adam Nemet <anemet@apple.com>.
llvm-svn: 200957
There was an extremely confusing proliferation of LLVM intrinsics to implement
the vacge & vacgt instructions. This combines them all into two polymorphic
intrinsics, shared across both backends.
llvm-svn: 200768
Some of the SHA instructions take a scalar i32 as one argument (largely because
they work on 160-bit hash fragments). This wasn't reflected in the IR
previously, with ARM and AArch64 choosing different types (<4 x i32> and <1 x
i32> respectively) which was ugly.
This makes all the affected intrinsics take a uniform "i32", allowing them to
become non-polymorphic at the same time.
llvm-svn: 200706
When the scalar compare is between floating point and operands are
vector, we custom lower SELECT_CC to use NEON SIMD compare for
generating less instructions.
llvm-svn: 200365
This has a few advantages:
* Only targets that use a MCTargetStreamer have to worry about it.
* There is never a MCTargetStreamer without a MCStreamer, so we can use a
reference.
* A MCTargetStreamer can talk to the MCStreamer in its constructor.
llvm-svn: 200129
The i8 type is not registered with any register class.
This causes a segmentation fault in MachineLICM::getRegisterClassIDAndCost.
The code selects the first type associated with register class FPR8,
which happens to be i8.
It uses this type (i8) to get the representative class pointer, which is 0.
It then uses this pointer to access a field, resulting in segmentation fault.
Since i8 type is not being used for printing any neon instruction
we can safely remove it.
llvm-svn: 200046
It was commited as r199628 but reverted in r199628 as causing
regression test failed. It's because of old vervsion of patch
I used to commit. Sorry for mistake.
llvm-svn: 199704
For FCMEQ, FCMGE, FCMGT, FCMLE and FCMLT, floating point zero will be
printed as #0.0 instead of #0. To support the history codes using #0,
we consider to let asm parser accept both #0.0 and #0.
llvm-svn: 199621
We should set them to expand for now since there are no patterns
dealing with them. Actually, there are no instructions either so I
doubt they'll ever be acceptable.
llvm-svn: 199265
promotion code, Tablegen will now select FPExt for floating point promotions
(previously it had returned AExt, which is not valid for floating point types).
Any out-of-tree targets that were relying on AExt being returned for FP
promotions will need to update their code check for FPExt instead.
llvm-svn: 199252
APInt only knows how to compare values with the same BitWidth and asserts
in all other cases.
With this fix, function PerformORCombine does not use the APInt equality
operator if the APInt values returned by 'isConstantSplat' differ in BitWidth.
In that case they are different and no comparison is needed.
llvm-svn: 199119
This patch covered 2 more scenarios:
1. Two operands of shuffle_vector are the same, like
%shuffle.i = shufflevector <8 x i8> %a, <8 x i8> %a, <8 x i32> <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14>
2. One of operands is undef, like
%shuffle.i = shufflevector <8 x i8> %a, <8 x i8> undef, <8 x i32> <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14>
After this patch, perm instructions will have chance to be emitted instead of lots of INS.
llvm-svn: 199069
The target specific parser should return `false' if the target AsmParser handles
the directive, and `true' if the generic parser should handle the directive.
Many of the target specific directive handlers would `return Error' which does
not follow these semantics. This change simply changes the target specific
routines to conform to the semantis of the ParseDirective correctly.
Conformance to the semantics improves diagnostics emitted for the invalid
directives. X86 is taken as a sample to ensure that multiple diagnostics are
not presented for a single error.
llvm-svn: 199068
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
This moves the check up into the parent class so that all targets can use it
without having to copy (and keep in sync) the same error message.
llvm-svn: 198579
__builtin_returnaddress requires that the value passed into is be a constant.
However, at -O0 even a constant expression may not be converted to a constant.
Emit an error message intead of crashing.
llvm-svn: 198531
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.
This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.
With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.
llvm-svn: 198438
During the years there have been some attempts at figuring out how to
align byval arguments. A look at the commit log suggests that they
were
* Use the ABI alignment.
* When that was not sufficient for x86-64, I added the 's' specification to
DataLayout.
* When that was not sufficient Evan added the virtual getByValTypeAlignment.
* When even that was not sufficient, we just got the FE to add the alignment
to the byval.
This patch is just a simple cleanup that removes my first attempt at fixing the
problem. I also added an AArch64 implementation of getByValTypeAlignment to
make sure this patch is a nop. I also left the 's' parsing for backward
compatibility.
I will send a short email to llvmdev about the change for anyone maintaining
an out of tree target.
llvm-svn: 198287
DAG.getVectorShuffle() doesn't always return a vector_shuffle node.
If mask is the exact sequence of it's operand(For example, operand_0
is v8i8, and the mask is 0, 1, 2, 3, 4, 5, 6, 7), it will directly
return that operand. So a check is added here.
llvm-svn: 197967
This failure caused by improper condition when lowering shuffle_vector
to scalar_to_vector. After this patch NEON_VDUP with v1i64 will not
be generated.
llvm-svn: 197966
Check for single use of fmul node in fused multiply patterns
to allow generation of fused multiply add/sub instructions.
Otherwise fmul operation ends up being repeated more than
once which does not help peformance on targets with
only one MAC unit, as for example cortex-a53.
llvm-svn: 197929
The correct pattern matching should be:
- fnmadd is (-Ra) + (-Rn)*Rm which should be matched as:
fma (fneg node:$Rn), node:$Rm, (fneg node:$Ra) and as
(f32 (fsub (f32 (fneg FPR32:$Ra)), (f32 (fmul FPR32:$Rn, FPR32:$Rm))))
- fnmsub is (-Ra) + Rn*Rm which should be matched as
fma node:$Rn, node:$Rm, (fneg node:$Ra) and as
(f32 (fsub (f32 (fmul FPR32:$Rn, FPR32:$Rm)), FPR32:$Ra))))
llvm-svn: 197928
Currently we have such types as legal vector types. The DAG combiner may generate some DAG nodes having such types but we don't have patterns to match them.
E.g. a load i32 and a bitcast i32 to v1i32 will be combined into a load v1i32:
bitcast (load i32) to v1i32 -> load v1i32.
So this patch fixes such problems for load/dup instructions.
If v1i8/v1i16/v1i32 are not legal any more, the code in this patch can be deleted. So I also add some FIXME.
llvm-svn: 197361
- Copy patterns with float/double types are enough.
- Fix typos in test case names that were using v1fx.
- There is no ACLE intrinsic that uses v1f32 type. And there is no conflict of
neon and non-neon ovelapped operations with this type, so there is no need to
support operations with this type.
- Remove v1f32 from FPR32 register and disallow v1f32 as a legal type for
operations.
Patch by Ana Pazos!
llvm-svn: 197159
point reciprocal exponent, and floating-point reciprocal square root estimate
LLVM AArch64 intrinsics to use f32/f64 types, rather than their vector
equivalents.
llvm-svn: 197066
Patch by Jiangning Liu.
With some test case changes:
- intrinsic test added to the existing /test/CodeGen/AArch64/neon-aba-abd.ll.
- New test cases to cover movi 1D scenario without using the intrinsic in
test/CodeGen/AArch64/neon-mov.ll.
llvm-svn: 196806
MO_JumpTableIndex and MO_ExternalSymbol don't show up on inline asm.
Keeping parts of the old asm printer just to print inline asm to a string that
we then parse back looks like a hack.
llvm-svn: 196111
add_public_tablegen_target adds *CommonTableGen to LLVM_COMMON_DEPENDS.
LLVM_COMMON_DEPENDS affects add_llvm_library (and other add_target stuff) within its scope.
llvm-svn: 195927
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 195064
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865
instructions. This patch does not include the shift right and accumulate
instructions. A number of non-overloaded intrinsics have been remove in favor
of their overloaded counterparts.
llvm-svn: 194598
Instructions taking a vector list (e.g. "ld2 {v0.2d, v1.d2}, [x0]") need a
special register-class to deal with the constraints, and C++ code to support
selection. However, that C++ code can be made reasonably uniform to simplify
the selection process. Hence this patch.
No functionality change, so no tests.
llvm-svn: 194361
If an inline assembly operand has multiple constraints (e.g. "Ir" for immediate
or register) and an operand modifier (E.g. "w" for "print register as wN") then
we need to decide behaviour when the modifier doesn't apply to the constraint.
Previousely produced some combination of an assertion failure and a fatal
error. GCC's behaviour appears to be to ignore the modifier and print the
operand in the default way. This patch should implement that.
llvm-svn: 194024
This adds a new subtarget feature called FPARMv8 (implied by NEON), and
predicates the support of the FP instructions and registers on this feature.
llvm-svn: 193739
This optimization is not SSE specific so I am moving it to DAGco.
The new scalar_to_vector dag node exposed a missing pattern in the AArch64 target that I needed to add.
llvm-svn: 193393
When generating the IfTrue basic block during the F128CSEL pseudo-instruction
handling, the NZCV live-in for the newly created BB wasn't being added. This
caused a fault during MI-sched/live range calculation when the predecessor
for the fall-through BB didn't have a live-in for phys-reg as expected.
llvm-svn: 193316
class. The instruction class includes the signed saturating doubling
multiply-add long, signed saturating doubling multiply-subtract long, and
the signed saturating doubling multiply long instructions.
llvm-svn: 192908
Including following 14 instructions:
4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers.
ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4).
4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers.
st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4).
llvm-svn: 192361
Including following 14 instructions:
4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers.
ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4).
4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers.
st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4).
llvm-svn: 192352
Substantial SelectionDAG scheduling is going away soon, and is
interfering with Hao's attempts to implement LDn/STn instructions, so
I say we make the leap first.
There were a few reorderings (inevitably) which broke some tests. I
tried to replace them with CHECK-DAG variants mostly, but some too
complex for that to be useful and I just reordered them.
llvm-svn: 192282
This patch fixes an old FIXME by creating a MCTargetStreamer interface
and moving the target specific functions for ARM, Mips and PPC to it.
The ARM streamer is still declared in a common place because it is
used from lib/CodeGen/ARMException.cpp, but the Mips and PPC are
completely hidden in the corresponding Target directories.
I will send an email to llvmdev with instructions on how to use this.
llvm-svn: 192181
Patch by Ana Pazos.
1.Added support for v1ix and v1fx types.
2.Added Scalar Pairwise Reduce instructions.
3.Added initial implementation of Scalar Arithmetic instructions.
llvm-svn: 191263
Previously, the DAGISel function WalkChainUsers was spotting that it
had entered already-selected territory by whether a node was a
MachineNode (amongst other things). Since it's fairly common practice
to insert MachineNodes during ISelLowering, this was not the correct
check.
Looking around, it seems that other nodes get their NodeId set to -1
upon selection, so this makes sure the same thing happens to all
MachineNodes and uses that characteristic to determine whether we
should stop looking for a loop during selection.
This should fix PR15840.
llvm-svn: 191165
Previously we modelled VPR128 and VPR64 as essentially identical
register-classes containing V0-V31 (which had Q0-Q31 as "sub_alias"
sub-registers). This model is starting to cause significant problems
for code generation, particularly writing EXTRACT/INSERT_SUBREG
patterns for converting between the two.
The change here switches to classifying VPR64 & VPR128 as
RegisterOperands, which are essentially aliases for RegisterClasses
with different parsing and printing behaviour. This fits almost
exactly with their real status (VPR128 == FPR128 printed strangely,
VPR64 == FPR64 printed strangely).
llvm-svn: 190665
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.
The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
ComplexDeprecationPredicate<"MCR">
would mean you would have to define the following function:
bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
std::string &Info)
Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.
The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.
llvm-svn: 190598
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
llvm-svn: 190290
def imm0_63 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 63;}]>{
As it seems Imm <63 should be Imm <= 63. ImmLeaf is used in pattern match, but there is already a function check the shift amount range, so just remove ImmLeaf. Also add a test to check 63.
llvm-svn: 188911
LowerCallTo returns a pair with the return value of the call as the first
element and the chain associated with the return value as the second element. If
we lower a call that has a void return value, LowerCallTo returns an SDValue
with a NULL SDNode and the chain for the call. Thus makeLibCall by just
returning the first value makes it impossible for you to set up the chain so
that the call is not eliminated as dead code.
I also updated all references to makeLibCall to reflect the new return type.
llvm-svn: 188300
Without explicit dependencies, both per-file action and in-CommonTableGen action could run in parallel.
It races to emit *.inc files simultaneously.
llvm-svn: 187780
Patch by Ana Pazos.
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
llvm-svn: 187567
in-tree implementations of TargetLoweringBase::isFMAFasterThanMulAndAdd in
order to resolve the following issues with fmuladd (i.e. optional FMA)
intrinsics:
1. On X86(-64) targets, ISD::FMA nodes are formed when lowering fmuladd
intrinsics even if the subtarget does not support FMA instructions, leading
to laughably bad code generation in some situations.
2. On AArch64 targets, ISD::FMA nodes are formed for operations on fp128,
resulting in a call to a software fp128 FMA implementation.
3. On PowerPC targets, FMAs are not generated from fmuladd intrinsics on types
like v2f32, v8f32, v4f64, etc., even though they promote, split, scalarize,
etc. to types that support hardware FMAs.
The function has also been slightly renamed for consistency and to force a
merge/build conflict for any out-of-tree target implementing it. To resolve,
see comments and fixed in-tree examples.
llvm-svn: 185956
This is dead code since PIC16 was removed in 2010. The result was an odd mix,
where some parts would carefully pass it along and others would assert it was
zero (most of the object streamer for example).
llvm-svn: 185436
According to the AArch64 ELF specification (4.6.8), it's the
assembler's responsibility to make sure the shift amount is correct in
relocated MOVZ/MOVK instructions.
This wasn't being obeyed by either the MCJIT CodeGen or RuntimeDyldELF
(which happened to work out well for JIT tests). This commit should
make us compliant in this area.
llvm-svn: 185360
Frame index handling is now target-agnostic, so delete the target hooks
for creation & asm printing of target-specific addressing in DBG_VALUEs
and any related functions.
llvm-svn: 184067
Fixes PR16146: gdb.base__call-ar-st.exp fails after
pre-RA-sched=source fixes.
Patch by Xiaoyi Guo!
This also fixes an unsupported dbg.value test case. Codegen was
previously incorrect but the test was passing by luck.
llvm-svn: 182885
There was exactly one caller using this API right, the others were relying on
specific behavior of the default implementation. Since it's too hard to use it
right just remove it and standardize on the default behavior.
Defines away PR16132.
llvm-svn: 182636
This patch builds on some existing code to do CFG reconstruction from
a disassembled binary:
- MCModule represents the binary, and has a list of MCAtoms.
- MCAtom represents either disassembled instructions (MCTextAtom), or
contiguous data (MCDataAtom), and covers a specific range of addresses.
- MCBasicBlock and MCFunction form the reconstructed CFG. An MCBB is
backed by an MCTextAtom, and has the usual successors/predecessors.
- MCObjectDisassembler creates a module from an ObjectFile using a
disassembler. It first builds an atom for each section. It can also
construct the CFG, and this splits the text atoms into basic blocks.
MCModule and MCAtom were only sketched out; MCFunction and MCBB were
implemented under the experimental "-cfg" llvm-objdump -macho option.
This cleans them up for further use; llvm-objdump -d -cfg now generates
graphviz files for each function found in the binary.
In the future, MCObjectDisassembler may be the right place to do
"intelligent" disassembly: for example, handling constant islands is just
a matter of splitting the atom, using information that may be available
in the ObjectFile. Also, better initial atom formation than just using
sections is possible using symbols (and things like Mach-O's
function_starts load command).
This brings two minor regressions in llvm-objdump -macho -cfg:
- The printing of a relocation's referenced symbol.
- An annotation on loop BBs, i.e., which are their own successor.
Relocation printing is replaced by the MCSymbolizer; the basic CFG
annotation will be superseded by more related functionality.
llvm-svn: 182628
It was just a less powerful and more confusing version of
MCCFIInstruction. A side effect is that, since MCCFIInstruction uses
dwarf register numbers, calls to getDwarfRegNum are pushed out, which
should allow further simplifications.
I left the MachineModuleInfo::addFrameMove interface unchanged since
this patch was already fairly big.
llvm-svn: 181680
R_AARCH64_PCREL32 is present in even trivial .eh_frame sections and so
is required to compile any function without the "nounwind" attribute.
This change implements very basic infrastructure in the RuntimeDyldELF
file and allows (for example) the test-shift.ll MCJIT test to pass
on AArch64.
llvm-svn: 181131
The MOVZ/MOVK instruction sequence may not be the most efficient (a
literal-pool load could be better) but adding that would require
reinstating the ConstantIslands pass.
For now the sequence is correct, and that's enough. Beware, as of
commit GNU ld does not appear to support the relocations needed for
this. Its primary purpose (for now) will be to support JITed code,
since in that case there is no guarantee of where your code will end
up in memory relative to external symbols it references.
llvm-svn: 181117
AArch64 always demands a register-scavenger, so the pointer should never be
NULL. However, in the spirit of paranoia, we'll assert it before use just in
case.
llvm-svn: 180080
I think it's almost impossible to fold atomic fences profitably under
LLVM/C++11 semantics. As a result, this is now unused and just
cluttering up the target interface.
llvm-svn: 179940
A64Imms::isLogicalImmBits and A64Imms::isLogicalImm will attempt to
execute shifts that perform undefined behavior. Instead of attempting
to perform the 64-bit rotation, treat it as a no-op.
llvm-svn: 179317
I've managed to convince myself that AArch64's acquire/release
instructions are sufficient to guarantee C++11's required semantics,
even in the sequentially-consistent case.
llvm-svn: 179005
This patch lets the register scavenger make use of multiple spill slots in
order to guarantee that it will be able to provide multiple registers
simultaneously.
To support this, the RS's API has changed slightly: setScavengingFrameIndex /
getScavengingFrameIndex have been replaced by addScavengingFrameIndex /
isScavengingFrameIndex / getScavengingFrameIndices.
In forthcoming commits, the PowerPC backend will use this capability in order
to implement the spilling of condition registers, and some special-purpose
registers, without relying on r0 being reserved. In some cases, spilling these
registers requires two GPRs: one for addressing and one to hold the value being
transferred.
llvm-svn: 177774
This is a generic function (derived from PEI); moving it into
MachineFrameInfo eliminates a current redundancy between the ARM and AArch64
backends, and will allow it to be used by the PowerPC target code.
No functionality change intended.
llvm-svn: 177111
The work done by the post-encoder (setting architecturally unused bits to 0 as
required) can be done by the existing operand that covers the "#0.0". This
removes at least one use of the discouraged PostEncoderMethod uses.
llvm-svn: 176261
If an otherwise weak var is actually defined in this unit, it can't be
undefined at runtime so we can use normal global variable sequences (ADRP/ADD)
to access it.
llvm-svn: 176259
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
llvm-svn: 175788
fields were only ever set in the constructor. The create method retains
its consistent interface so that these bits can be re-threaded through
the emitter if they're ever needed.
This was found by the -Wunused-private-field Clang warning.
llvm-svn: 175482
This is essentially a stripped-down version of the ConstandIslands pass (which
always had these two functions), providing just the features necessary for
correctness.
In particular there needs to be a way to resolve the situation where a
conditional branch's destination block ends up out of range.
This issue crops up when self-hosting for AArch64.
llvm-svn: 175269
This implements the review suggestion to simplify the AArch64 backend. If we
later discover that we *really* need the extra complexity of the
ConstantIslands pass for performance reasons it can be resurrected.
llvm-svn: 175258
In the near future litpools will be in a different section, which means that
any access to them is at least two instructions. This makes the case for a
movz/movk pair (if total offset <= 32-bits) even more compelling.
llvm-svn: 175257
If vector types have legal register classes, then LLVM bypasses LegalizeTypes
on them, which causes faults currently since the code to handle them isn't in
place.
This fixes test failures when AArch64 is the default target.
llvm-svn: 175172
This does two things:
It removes a call to abs() which may have "long long" parameter on Windows,
which is not necessarily available in C++03.
It also corrects the signedness of Amount, which was relying on
implementation-defined conversions previously.
Code was already tested (albeit in an implemnetation defined way) so no extra
tests.
llvm-svn: 174885
Previous code had a confusing comment which was mostly an implementation
detail. This condition corresponds to "lsb up to register width" and "width not
ridiculous".
llvm-svn: 174877
This gives a DiagnosticType to all AsmOperands in sight. This replaces all
"invalid operand" diagnostics with something more specific. The messages given
should still be sufficiently vague that they're not usually actively misleading
when LLVM guesses your instruction incorrectly.
llvm-svn: 174871
Weakly defined symbols should evaluate to 0 if they're undefined at
link-time. This is impossible to do with the usual address generation
patterns, so we should use a literal pool entry to materlialise the
address.
llvm-svn: 174518
These instructions are a late addition to the architecture, and may
yet end up behind an optional attribute, but for now they're available
at all times.
llvm-svn: 174496
This moves the bit twiddling and string fiddling functions required by other
parts of the backend into a separate library. Previously they resided in
AArch64Desc, which created a circular dependency between various components.
llvm-svn: 174369
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
llvm-svn: 174054