Summary:
Replace the matcher if-statements for each rule with a state-machine. This
significantly reduces compile time, memory allocations, and cumulative memory
allocation when compiling AArch64InstructionSelector.cpp.o after r303259 is
recommitted.
The following patches will expand on this further to fully fix the regressions.
Reviewers: rovka, ab, t.p.northover, qcolombet, aditya_nandakumar
Reviewed By: ab
Subscribers: vitalybuka, aemerson, javed.absar, igorb, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D33758
llvm-svn: 307079
Summary:
When broadcasting from the constant pool its useful to print out the final vector similar to what we do for normal moves from the constant pool.
I changed only a couple tests that were broadcast focused. One of them had been previously hand tweaked after running the script so that it could check the constant pool declaration. But I think this patch makes that unnecessary now since we can check the comment instead.
Reviewers: spatel, RKSimon, zvi
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34923
llvm-svn: 307062
Summary: I believe this should be supported on GLM since RDSEED is.
Reviewers: m_zuckerman, zvi, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34828
llvm-svn: 307060
Summary:
Add a combine for creating a truncate to replace a build_vector composed of extracts with
indices that form a stride-2^N series.
Example:
v8i32 V = ...
v4i32 build_vector((extract_elt V, 0), (extract_elt V, 2), (extract_elt V, 4), (extract_elt V, 6))
-->
v4i32 truncate (bitcast V to v4i64)
Related discussion in llvm-dev about canonicalizing shuffles to
truncates in LLVM IR:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/108936.html.
Reviewers: spatel, RKSimon, efriedma, igorb, craig.topper, wolfgangp, delena
Reviewed By: delena
Subscribers: guyblank, delena, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D34077
llvm-svn: 307036
We are combining shuffles to bit shifts before unary permutes, which means we can't fold loads plus the destination register is destructive
llvm-svn: 306978
We are combining shuffles to bit shifts before unary permutes, which means we can't fold loads plus the destination register is destructive
The 32-bit shuffles are a bit tricky and will be dealt with in a later patch
llvm-svn: 306977
this patch updates the cost of addq\subq (add\subtract of vectors of 64bits)
based on the performance numbers of SLM arch.
Differential Revision: https://reviews.llvm.org/D33983
llvm-svn: 306974
Summary: Support G_GLOBAL_VALUE operation. For now most of the PIC configurations not implemented yet.
Reviewers: zvi, guyblank
Reviewed By: guyblank
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D34738
Conflicts:
test/CodeGen/X86/GlobalISel/regbankselect-X86_64.mir
llvm-svn: 306972
Summary:
Support vector type G_UNMERGE_VALUES selection.
For now G_UNMERGE_VALUES marked as legal for any type, so nothing to do in legalizer.
Reviewers: t.p.northover, qcolombet, zvi, guyblank
Reviewed By: guyblank
Subscribers: rovka, kristof.beyls, guyblank, llvm-commits
Differential Revision: https://reviews.llvm.org/D33665
llvm-svn: 306971
Summary:
Support vector type G_MERGE_VALUES selection. For now G_MERGE_VALUES marked as legal for any type, so nothing to do in legalizer.
Split from https://reviews.llvm.org/D33665
Reviewers: qcolombet, t.p.northover, zvi, guyblank
Reviewed By: guyblank
Subscribers: rovka, kristof.beyls, guyblank, llvm-commits
Differential Revision: https://reviews.llvm.org/D33958
llvm-svn: 306665
CFI instructions that set appropriate cfa offset and cfa register are now
inserted in emitEpilogue() in X86FrameLowering.
Majority of the changes in this patch:
1. Ensure that CFI instructions do not affect code generation.
2. Enable maintaining correct information about cfa offset and cfa register
in a function when basic blocks are reordered, merged, split, duplicated.
These changes are target independent and described below.
Changed CFI instructions so that they:
1. are duplicable
2. are not counted as instructions when tail duplicating or tail merging
3. can be compared as equal
Add information to each MachineBasicBlock about cfa offset and cfa register
that are valid at its entry and exit (incoming and outgoing CFI info). Add
support for updating this information when basic blocks are merged, split,
duplicated, created. Add a verification pass (CFIInfoVerifier) that checks
that outgoing cfa offset and register of predecessor blocks match incoming
values of their successors.
Incoming and outgoing CFI information is used by a late pass
(CFIInstrInserter) that corrects CFA calculation rule for a basic block if
needed. That means that additional CFI instructions get inserted at basic
block beginning to correct the rule for calculating CFA. Having CFI
instructions in function epilogue can cause incorrect CFA calculation rule
for some basic blocks. This can happen if, due to basic block reordering,
or the existence of multiple epilogue blocks, some of the blocks have wrong
cfa offset and register values set by the epilogue block above them.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D18046
llvm-svn: 306529
•static latency
•number of uOps from which the instructions consists
•all ports used by the instruction
Reviewers:
RKSimon
zvi
aymanmus
m_zuckerman
Differential Revision: https://reviews.llvm.org/D33897
llvm-svn: 306414
[X86][AVX512] Improve lowering of AVX512 compare intrinsics (remove redundant shift left+right instructions).
AVX512 compare instructions return v*i1 types.
In cases where the number of elements in the returned value are less than 8, clang adds zeroes to get a mask of v8i1 type.
Later on it's replaced with CONCAT_VECTORS, which then is lowered to many DAG nodes including insert/extract element and shift right/left nodes.
The fact that AVX512 compare instructions put the result in a k register and zeroes all its upper bits allows us to remove the extra nodes simply by copying the result to the required register class.
When lowering, identify these cases and transform them into an INSERT_SUBVECTOR node (marked legal), then catch this pattern in instructions selection phase and transform it into one avx512 cmp instruction.
Differential Revision: https://reviews.llvm.org/D33188
llvm-svn: 306402
The non-AVX-512 behavior was changed in r248266 to match N1778
(C bindings for IEEE-754 (2008)), which defined the four functions
to not raise the inexact exception ("rint" is still defined as raising
it).
Update the AVX-512 lowering of these functions to match that: it should
not be different.
llvm-svn: 306299
Convert vector increment or decrement to sub/add with an all-ones constant:
add X, <1, 1...> --> sub X, <-1, -1...>
sub X, <1, 1...> --> add X, <-1, -1...>
The all-ones vector constant can be materialized using a pcmpeq instruction that is
commonly recognized as an idiom (has no register dependency), so that's better than
loading a splat 1 constant.
AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better
way to produce 512 one-bits.
The general advantages of this lowering are:
1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables,
so in theory, this could be better for perf, but...
2. That seems unlikely to affect any OOO implementation, and I can't measure any real
perf difference from this transform on Haswell or Jaguar, but...
3. It doesn't look like it from the diffs, but this is an overall size win because we
eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting
a scalar load (which might itself be a bug), then we're replacing a scalar constant
load + broadcast with a single cheap op, so that should always be smaller/better too.
4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1
and psub x, -1, so we should use that form for +1 too because we can. If there's some
reason to favor a constant load on some CPU, let's make the reverse transform for all
of these cases (either here in the DAG or in a later machine pass).
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=33483
Differential Revision: https://reviews.llvm.org/D34336
llvm-svn: 306289
Summary:
Support vector type G_EXTRACT selection. For now G_EXTRACT marked as legal for any type, so nothing to do in legalizer.
Split from https://reviews.llvm.org/D33665
Reviewers: qcolombet, t.p.northover, zvi, guyblank
Reviewed By: guyblank
Subscribers: guyblank, rovka, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D33957
llvm-svn: 306240
The cost of an interleaved access was only implemented for AVX512. For other
X86 targets an overly conservative Base cost was returned, resulting in
avoiding vectorization where it is actually profitable to vectorize.
This patch starts to add costs for AVX2 for most prominent cases of
interleaved accesses (stride 3,4 chars, for now).
Note1: Improvements of up to ~4x were observed in some of EEMBC's rgb
workloads; There is also a known issue of 15-30% degradations on some of these
workloads, associated with an interleaved access followed by type
promotion/widening; the resulting shuffle sequence is currently inefficient and
will be improved by a series of patches that extend the X86InterleavedAccess pass
(such as D34601 and more to follow).
Note 2: The costs in this patch do not reflect port pressure penalties which can
be very dominant in the case of interleaved accesses since most of the shuffle
operations are restricted to a single port. Further tuning, that may incorporate
these considerations, will be done on top of the upcoming improved shuffle
sequences (that is, along with the abovementioned work to extend
X86InterleavedAccess pass).
Differential Revision: https://reviews.llvm.org/D34023
llvm-svn: 306238
processFixupValue is called on every relaxation iteration. applyFixup
is only called once at the very end. applyFixup is then the correct
place to do last minute changes and value checks.
While here, do proper range checks again for fixup_arm_thumb_bl. We
used to do it, but dropped because of thumb2. We now do it again, but
use the thumb2 range.
llvm-svn: 306177