Long ago (2010 according to svn blame), combineShuffle probably needed to prevent the accidental creation of illegal i64 types but there doesn't appear to be any combines that can cause this any more as they all have their own legality checks.
Differential Revision: https://reviews.llvm.org/D30213
llvm-svn: 296966
As i64 isn't a value type on 32-bit targets, we fail to fold the VZEXT_LOAD into VPBROADCASTQ.
Also shows that we're not decoding VPERMIV3 shuffles very well....
llvm-svn: 295729
Initial 256-bit vector support - 512-bit support requires extra checks for AVX512BW support (PMOVZXBW) that will be handled in a future patch.
llvm-svn: 294896
Currently we only combine shuffle nodes if they have a single user to prevent us from causing code bloat by splitting the shuffles into several different combines.
We don't take into account that in some cases we will already have combined all the users during recursively calling up the shuffle tree.
This patch keeps a list of all the shuffle nodes that have been combined so far and permits combining of further shuffle nodes if all its users are in that list.
Differential Revision: https://reviews.llvm.org/D29399
llvm-svn: 294183
Initial support for target shuffle constant folding in cases where all shuffle inputs are constant. We may be able to relax this and merge shuffles with only some constant inputs in the future.
I've added the helper function getTargetConstantBitsFromNode (based off a similar function in X86ShuffleDecodeConstantPool.cpp) that could be reused for other cases requiring constant vector extraction.
Differential Revision: https://reviews.llvm.org/D27220
llvm-svn: 288250
Bit-shifts by a whole number of bytes can be represented as a shuffle mask suitable for combining.
Added a 'getFauxShuffleMask' function to allow us to create shuffle masks from other suitable operations.
llvm-svn: 288040
This doesn't change tests codegen as we already combined to blend+zero which is what we lower VZEXT_MOVL to on SSE41+ targets, but it does put us in a better position when we improve shuffling for optsize.
llvm-svn: 279273
Primarily this is to allow blend with zero instead of having to use vperm2f128, but we can use this in the future to deal with AVX512 cases where we need to keep the original element size to correctly fold masked operations.
llvm-svn: 275406
An identity COPY like this:
%AL = COPY %AL, %EAX<imp-def>
has no semantic effect, but encodes liveness information: Further users
of %EAX only depend on this instruction even though it does not define
the full register.
Replace the COPY with a KILL instruction in those cases to maintain this
liveness information. (This reverts a small part of r238588 but this
time adds a comment explaining why a KILL instruction is useful).
llvm-svn: 274952
This patch allows target shuffles to be combined to single input immediate permute instructions - (V)PSHUFD/VPERMILPD/VPERMILPS - allowing more general pattern matching than what we current do and improves the likelihood of memory folding compared to existing patterns which tend to reuse the input in multiple arguments.
Further permute instructions (V)PSHUFLW/(V)PSHUFHW/(V)PERMQ/(V)PERMPD may be added in the future but its proven tricky to create tests cases for them so far. (V)PSHUFLW/(V)PSHUFHW is already handled quite well in combineTargetShuffle so it may be that removing some of that code may allow us to perform more of the combining in one place without duplication.
Differential Revision: http://reviews.llvm.org/D21148
llvm-svn: 273999
That's not the case for VPERMV/VPERMV3, which cover all possible
combinations (the C intrinsics use a different order; the AVX vs
AVX512 intrinsics are different still).
Since:
r246981 AVX-512: Lowering for 512-bit vector shuffles.
VPERMV is recognized in getTargetShuffleMask.
This breaks assumptions in most callers, as they expect
the non-mask operands to start at index 0.
VPERMV has the mask as operand #0; VPERMV3 has it in the middle.
Instead of the faulty assumption, have getTargetShuffleMask return
its operands as well.
One alternative we considered was to change the operand order of
VPERMV, but we agreed to stick to the instruction order, as there
are more AVX512 weirdness to cover (vpermt2/vpermi2 in particular).
Differential Revision: http://reviews.llvm.org/D17041
llvm-svn: 262627