Originally committed as r191661, but reverted because it changed the matching
order of comparisons on some hosts. That should have been fixed by r191735.
llvm-svn: 191738
For some reason, adding definitions for these load and store
instructions changed whether some of the build bots matched
comparisons as signed or unsigned.
llvm-svn: 191663
Add VEX_LIG to scalar FMA4 instructions.
Use VEX_LIG in some of the inheriting checks in disassembler table generator.
Make use of VEX_L_W, VEX_L_W_XS, VEX_L_W_XD contexts.
Don't let VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE inherit from their non-L forms unless VEX_LIG is set.
Let VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE inherit from all of their non-L or non-W cases.
Increase ranking on VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE so they get chosen over non-L/non-W forms.
llvm-svn: 191649
For some reason I never got around to adding these at the same time as
the signed versions. No idea why.
I'm not sure whether this SystemZII::BranchC* stuff is useful, or whether
it should just be replaced with an "is normal" flag. I'll leave that
for later though.
There are some boundary conditions that can be tweaked, such as preferring
unsigned comparisons for equality with [128, 256), and "<= 255" over "< 256",
but again I'll leave those for a separate patch.
llvm-svn: 190930
Previously we modelled VPR128 and VPR64 as essentially identical
register-classes containing V0-V31 (which had Q0-Q31 as "sub_alias"
sub-registers). This model is starting to cause significant problems
for code generation, particularly writing EXTRACT/INSERT_SUBREG
patterns for converting between the two.
The change here switches to classifying VPR64 & VPR128 as
RegisterOperands, which are essentially aliases for RegisterClasses
with different parsing and printing behaviour. This fits almost
exactly with their real status (VPR128 == FPR128 printed strangely,
VPR64 == FPR64 printed strangely).
llvm-svn: 190665
Add basic assembly/disassembly support for the first Intel SHA
instruction 'sha1rnds4'. Also includes feature flag, and test cases.
Support for the remaining instructions will follow in a separate patch.
llvm-svn: 190611
The main complication here is that TM and TMY (the memory forms) set
CC differently from the register forms. When the tested bits contain
some 0s and some 1s, the register forms set CC to 1 or 2 based on the
value the uppermost bit. The memory forms instead set CC to 1
regardless of the uppermost bit.
Until now, I've tried to make it so that a branch never tests for an
impossible CC value. E.g. NR only sets CC to 0 or 1, so branches on the
result will only test for 0 or 1. Originally I'd tried to do the same
thing for TM and TMY by using custom matching code in ISelDAGToDAG.
That ended up being very ugly though, and would have meant duplicating
some of the chain checks that the common isel code does.
I've therefore gone for the simpler alternative of adding an extra
operand to the TM DAG opcode to say whether a memory form would be OK.
This means that the inverse of a "TM;JE" is "TM;JNE" rather than the
more precise "TM;JNLE", just like the inverse of "TMLL;JE" is "TMLL;JNE".
I suppose that's arguably less confusing though...
llvm-svn: 190400
These were pretty straightforward instructions, with some assembly support
required for HLT.
The ARM assembler is keen to split the instruction mnemonic into a
(non-existent) 'H' instruction with the LT condition code. An exception for
HLT is needed.
HLT follows the same rules as BKPT when in IT blocks, so the special BKPT
hadling code has been adapted to handle HLT also.
Regression tests added including diagnostic tests for out of range immediates
and illegal condition codes, as well as negative tests for pre-ARMv8.
llvm-svn: 190053
For now just handles simple comparisons of an ANDed value with zero.
The CC value provides enough information to do any comparison for a
2-bit mask, and some nonzero comparisons with more populated masks,
but that's all future work.
llvm-svn: 189469
-Assembly parser now properly check the size of the memory operation specified in intel syntax. So 'mov word ptr [5], al' is no longer accepted.
-x86-32 disassembly of these instructions no longer sign extends the 32-bit address immediate based on size.
-Intel syntax printing prints the ptr size and places brackets around the address immediate.
Known remaining issues with these instructions:
-Segment override prefix is not supported. PR16962 and PR16961.
-Immediate size should be changed by address size prefix.
llvm-svn: 189201
For now this matches the equivalent of (neg (abs ...)), which did hit a few
times in projects/test-suite. We should probably also match cases where
absolute-like selects are used with reversed arguments.
llvm-svn: 188671
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
In Thumb1, only one variant is supported: CPS{effect} {flags}
Thumb2 supports three:
CPS{effect}.W {flags}
CPS{effect} {flags} {mode}
CPS {mode}
Canonically, .W should be used only when ambiguity is present between encodings of different width.
The wide suffix is still accepted for the latter two forms via aliases.
llvm-svn: 188071
Patch by Ana Pazos.
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
llvm-svn: 187567
While the .td entry is nice and all, it takes a pretty gross hack in
ARMAsmParser::ParseInstruction() because of handling of other "subs"
instructions to get it to match. Ran it by Jim Grosbach and he said it was
about what he expected to make this work given the existing code.
rdar://14214063
llvm-svn: 187530
These instructions are allowed to trap even if the condition is false,
so for now they are only used for "*ptr = (cond ? x : *ptr)"-style
constructs.
llvm-svn: 187111
The atomic tests assume the two-operand forms, so I've restricted them to z10.
Running and-01.ll, or-01.ll and xor-01.ll for z196 as well as z10 shows why
using convertToThreeAddress() is better than exposing the three-operand forms
first and then converting back to two operands where possible (which is what
I'd originally tried). Using the three-operand form first stops us from
taking advantage of NG, OG and XG for spills.
llvm-svn: 186683
This first step just adds definitions for SLLK, SRLK and SRAK.
The next patch will actually make use of them during codegen.
insn-bad.s tests that some form of error is reported when using these
instructions on z10. More work is needed to get the "instruction requires:
distinct-ops" that we'd ideally like, so I've stubbed that part out for now.
I'll come back and make it mandatory once the necessary changes are in.
llvm-svn: 186680
Somehow forgot to git rm these two files. I believe I left the remaining
invalid* tests intentionally, though whether my reasons were sound is a
different matter.
llvm-svn: 186663
The tests were checking for barriers which the ARM ARM says they must execute
as a full system DMB/DSB, rather than that they're UNDEFINED and LLVM does in
fact represent them.
The tests happened to be passing because they were using a non-versioned ARM
triple which didn't have *any* DMB/DSB instructions.
llvm-svn: 186662
This allows "llvm-mc -disassemble" to accept two new features:
+ Using comma as a byte separator
+ Grouping bytes with '[' and ']' pairs.
The behaviour outside a [...] group is unchanged. But within the group once
llvm-mc encounters a true error, it stops rather than trying to resynchronise
the stream at the next byte. This is more useful for disassembly tests, where
we have an almost-instruction in mind and don't care what the misaligned
interpretation would be. Particularly if it means llvm-mc won't actually see
the next intended almost-instruction.
As a side effect, this means llvm-mc can disassemble its own -show-encoding
output if copy-pasted.
llvm-svn: 186661
RISBG has three 8-bit operands (I3, I4 and I5). I'd originally
restricted all three to 6 bits, since that's the only range we intended
to use at the time. However, the top bit of I4 acts as a "zero" flag for
RISBG, while the top bit of I3 acts as a "test" flag for RNSBG & co.
This patch therefore allows them to have the full 8-bit range.
I've left the fifth operand as a 6-bit value for now since the
upper 2 bits have no defined meaning.
llvm-svn: 186070
This adds a new decoder table/namespace 'VFPV8', as these instructions have their
top 4 bits as 0b1111, while other Thumb instructions have 0b1110.
llvm-svn: 185642
1. it should accept only 4-byte aligned addresses
2. the maximum offset should be 1020
3. it should be encoded with the offset scaled by two bits
llvm-svn: 185528
Create a dedicated register class for floating point condition code registers and
move FCC0 from register class CCR to the new register class.
llvm-svn: 185373
This is a bit tricky as the xacquire and xrelease hints use the same bytes,
0xf2 and 0xf3, as the repne and rep prefixes.
Fortunately llvm has different llvm MCInst Opcode enums for rep/xrelease
and repne/xacquire. So to make this work a boolean was added the
InternalInstruction struct as part of the Prefix state which is set with the
added logic in readPrefixes() when decoding an instruction to determine
if these prefix bytes are to be disassembled as xacquire or xrelease. Then
we let the matcher pick the normal prefix instructionID and we change the
Opcode after that when it is set into the MCInst being created.
rdar://11019859
llvm-svn: 184490
The cdp2 instruction should have the same restrictions as cdp on the
co-processor registers.
VFP instructions on v8/AArch32 share the same encoding space as cdp2.
llvm-svn: 184445
Handle the case when the disassembler table can't tell
the difference between some encodings of QADD and CPS.
Add some necessary safe guards in CPS decoding as well.
llvm-svn: 183610
These instructions are deprecated oddities, but we still need to be able to
disassemble (and reassemble) them if and when they're encountered.
Patch by Amaury de la Vieuville.
llvm-svn: 183011
The disassembly of VEXT instructions was too lax in the bits checked. This
fixes the case where the instruction affects Q-registers but a misaligned lane
was specified (should be UNDEFINED).
Patch by Amaury de la Vieuville
llvm-svn: 183003
This patch adds support for the CRJ and CGRJ instructions. Support for
the immediate forms will be a separate patch.
The architecture has a large number of comparison instructions. I think
it's generally better to concentrate on using the "best" comparison
instruction first and foremost, then only use something like CRJ if
CR really was the natual choice of comparison instruction. The patch
therefore opportunistically converts separate CR and BRC instructions
into a single CRJ while emitting instructions in ISelLowering.
llvm-svn: 182764
"hint" space for Thumb actually overlaps the encoding space of the CPS
instruction. In actuality, hints can be defined as CPS instructions where imod
and M bits are all nil.
Handle decoding of permitted nop-compatible hints (i.e. nop, yield, wfi, wfe,
sev) in DecodeT2CPSInstruction.
This commit adds a proper diagnostic message for Imm0_4 and updates all tests.
Patch by Mihail Popa <Mihail.Popa@arm.com>.
llvm-svn: 180617
According to the ARM reference manual, constant offsets are mandatory for pre-indexed addressing modes.
The MC disassembler was not obeying this when the offset is 0.
It was producing instructions like: str r0, [r1]!.
Correct syntax is: str r0, [r1, #0]!.
This change modifies the dumping of operands so that the offset is always printed, regardless of its value, when pre-indexed addressing mode is used.
Patch by Mihail Popa <Mihail.Popa@arm.com>
llvm-svn: 179398
As these two instructions in AVX extension are privileged instructions for
special purpose, it's only expected to be used in inlined assembly.
llvm-svn: 179266
These instructions aren't universally available, but depend on a specific
extension to the normal ARM architecture (rather than, say, v6/v7/...) so a new
feature is appropriate.
This also enables the feature by default on A-class cores which usually have
these extensions, to avoid breaking existing code and act as a sensible
default.
llvm-svn: 179171
At the time when the XCore backend was added there were some issues with
with overlapping register classes but these all seem to be fixed now.
Describing the register classes correctly allow us to get rid of a
codegen only instruction (LDAWSP_lru6_RRegs) and it means we can
disassemble ru6 instructions that use registers above r11.
llvm-svn: 178782
If PC or SP is the destination, the disassembler erroneously failed with the
invalid encoding, despite the manual saying that both are fine.
This patch addresses failure to decode encoding T4 of LDR (A8.8.62) which is a
postindexed load, where the offset 0xc is applied to SP after the load occurs.
llvm-svn: 178017
The work done by the post-encoder (setting architecturally unused bits to 0 as
required) can be done by the existing operand that covers the "#0.0". This
removes at least one use of the discouraged PostEncoderMethod uses.
llvm-svn: 176261
The parser will now accept instructions with alignment specifiers written like
vld1.8 {d16}, [r0:64]
, while also still accepting the incorrect syntax
vld1.8 {d16}, [r0, :64]
llvm-svn: 175164
These instructions are a late addition to the architecture, and may
yet end up behind an optional attribute, but for now they're available
at all times.
llvm-svn: 174496
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
llvm-svn: 174054
It is not possible to distinguish 3r instructions from 2r / rus instructions
using only the fixed bits. Therefore if an instruction doesn't match the
2r / rus format try to decode it as a 3r instruction before returning Fail.
llvm-svn: 172984
but I cannot reproduce the problem and have scrubed my sources and
even tested with llvm-lit -v --vg.
The Mips RDHWR (Read Hardware Register) instruction was not
tested for assembler or dissassembler consumption. This patch
adds that functionality.
Contributer: Vladimir Medic
llvm-svn: 172685
Hope you are feeling better.
The Mips RDHWR (Read Hardware Register) instruction was not
tested for assembler or dissassembler consumption. This patch
adds that functionality.
Contributer: Vladimir Medic
llvm-svn: 172579
cvtsi2* should parse with an 'l' or 'q' suffix or no suffix at all. No suffix should be treated the same as 'l' suffix. Printing should always print a suffix. Previously we didn't parse or print an 'l' suffix.
cvtt*2si/cvt*2si should parse with an 'l' or 'q' suffix or not suffix at all. No suffix should use the destination register size to choose encoding. Printing should not print a suffix.
Original 'l' suffix issue with cvtsi2* pointed out by Michael Kuperstein.
llvm-svn: 171668
This is for the lldb team so most of but not all of the values are
to be printed as hex with this option. Some small values like the
scale in an X86 address were requested to printed in decimal
without the leading 0x.
There may be some tweaks need to places that may still be in
decimal that they want in hex. Specially for arm. I made my best
guess. Any tweaks from here should be simple.
I also did the best I know now with help from the C++ gurus
creating the cleanest formatImm() utility function and containing
the changes. But if someone has a better idea to make something
cleaner I'm all ears and game for changing the implementation.
rdar://8109283
llvm-svn: 169393
It currently assumes register numbering and any harmless change in the X86
register naming makes it fail. It's enough to match the register names.
llvm-svn: 168632
When the operand is a plain immediate rather than a label, print it
as [pc, #imm] like we do for the Thumb2 wide encoding variant.
rdar://12154503
llvm-svn: 166991
is 24 bits not 20 and the decoding needed to correctly handle converting the
J1 and J2 bits to their I1 and I2 values to reconstruct the displacement.
llvm-svn: 166982
Per the October 12, 2012 Proposal for annotated disassembly output sent out by
Jim Grosbach this set of changes implements this for X86 and arm. The llvm-mc
tool now has a -mdis option to produced the marked up disassembly and a couple
of small example test cases have been added.
rdar://11764962
llvm-svn: 166445
Access mips register classes via MCRegisterInfo's functions instead of via the
TargetRegisterClasses defined in MipsGenRegisterInfo.inc.
llvm-svn: 159953
another mechanical change accomplished though the power of terrible Perl
scripts.
I have manually switched some "s to 's to make escaping simpler.
While I started this to fix tests that aren't run in all configurations,
the massive number of tests is due to a really frustrating fragility of
our testing infrastructure: things like 'grep -v', 'not grep', and
'expected failures' can mask broken tests all too easily.
Essentially, I'm deeply disturbed that I can change the testsuite so
radically without causing any change in results for most platforms. =/
llvm-svn: 159547
versions of Bash. In addition, I can back out the change to the lit
built-in shell test runner to support this.
This should fix the majority of fallout on Darwin, but I suspect there
will be a few straggling issues.
llvm-svn: 159544
This was done through the aid of a terrible Perl creation. I will not
paste any of the horrors here. Suffice to say, it require multiple
staged rounds of replacements, state carried between, and a few
nested-construct-parsing hacks that I'm not proud of. It happens, by
luck, to be able to deal with all the TCL-quoting patterns in evidence
in the LLVM test suite.
If anyone is maintaining large out-of-tree test trees, feel free to poke
me and I'll send you the steps I used to convert things, as well as
answer any painful questions etc. IRC works best for this type of thing
I find.
Once converted, switch the LLVM lit config to use ShTests the same as
Clang. In addition to being able to delete large amounts of Python code
from 'lit', this will also simplify the entire test suite and some of
lit's architecture.
Finally, the test suite runs 33% faster on Linux now. ;]
For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s
llvm-svn: 159525
Corrected type for index of llvm.x86.avx2.gather.d.pd.256
from 256-bit to 128-bit.
Corrected types for src|dst|mask of llvm.x86.avx2.gather.q.ps.256
from 256-bit to 128-bit.
Support the following intrinsics:
llvm.x86.avx2.gather.d.q, llvm.x86.avx2.gather.q.q
llvm.x86.avx2.gather.d.q.256, llvm.x86.avx2.gather.q.q.256
llvm.x86.avx2.gather.d.d, llvm.x86.avx2.gather.q.d
llvm.x86.avx2.gather.d.d.256, llvm.x86.avx2.gather.q.d.256
llvm-svn: 159402
that are generated by TableGen and are already available in
MipsGenRegisterInfo.inc. Suggested by Jakob Stoklund Olesen.
Also, fix bug in function DecodeAFGR64RegisterClass.
Patch by Vladimir Medic.
llvm-svn: 158846
This required light surgery on the assembler and disassembler
because the instructions use an uncommon encoding. They are
the only two instructions in x86 that use register operands
and two immediates.
llvm-svn: 157634
for the assembler and disassembler. Which were not being set/read correctly
for offsets greater than 22 bits in some cases.
Changes to lib/Target/ARM/ARMAsmBackend.cpp from Gideon Myles!
llvm-svn: 156118
The test change is to account for the fact that the default disassembler behaviour has changed with regards to specifying the assembly syntax to use.
llvm-svn: 154809
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
llvm-svn: 154456
* Removed test/lib/llvm.exp - it is no longer needed
* Deleted the dg.exp reading code from test/lit.cfg. There are no dg.exp files
left in the test suite so this code is no longer required. test/lit.cfg is
now much shorter and clearer
* Removed a lot of duplicate code in lit.local.cfg files that need access to
the root configuration, by adding a "root" attribute to the TestingConfig
object. This attribute is dynamically computed to provide the same
information as was previously provided by the custom getRoot functions.
* Documented the config.root attribute in docs/CommandGuide/lit.pod
llvm-svn: 153408
Work in progress. Parsing for non-writeback, single spaced register lists
works now. The rest have the representations better factored, but still
need more to be able to parse properly.
llvm-svn: 146579
http://lab.llvm.org:8011/builders/llvm-x86_64-linux/builds/101
--- Reverse-merging r141854 into '.':
U test/MC/Disassembler/X86/x86-32.txt
U test/MC/Disassembler/X86/simple-tests.txt
D test/CodeGen/X86/bmi.ll
U lib/Target/X86/X86InstrInfo.td
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86.td
U lib/Target/X86/X86Subtarget.h
llvm-svn: 141857
The table is indexed by opcode, so simply removing pseudo-instructions
creates a wrong mapping from opcode to table entry.
Add a test case for xorps which has a very high opcode that exposes this
problem.
llvm-svn: 141562
Build on previous patches to successfully distinguish between an M-series and A/R-series MSR and MRS instruction. These take different mask names and have a *slightly* different opcode format.
Add decoder and disassembler tests.
Improvement on the previous patch - successfully distinguish between valid v6m and v7m masks (one is a subset of the other). The patch had to be edited slightly to apply to ToT.
llvm-svn: 140696
Fix base register type and canonicallize to the "ldm" spelling rather than
"ldmia." Add diagnostics for incorrect writeback token and out-of-range
registers.
llvm-svn: 137986
This new disassembler can correctly decode all the testcases that the old one did, though
some "expected failure" testcases are XFAIL'd for now because it is not (yet) as strict in
operand checking as the old one was.
llvm-svn: 137144
Memory operand parsing is a bit haphazzard at the moment, in no small part
due to the even more haphazzard representations of memory operands in the .td
files. Start cleaning that all up, at least a bit.
The addressing modes in the .td files will be being simplified to not be
so monolithic, especially with regards to immediate vs. register offsets
and post-indexed addressing. addrmode3 is on its way with this patch, for
example.
This patch is foundational to enable going back to smaller incremental patches
for the individual memory referencing instructions themselves. It does just
enough to get the basics in place and handle the "make check" regression tests
we already have.
Follow-up work will be fleshing out the details and adding more robust test
cases for the individual instructions, starting with ARM mode and moving from
there into Thumb and Thumb2.
llvm-svn: 136845
Fix the instruction encoding for operands. Refactor mode to use explicit
instruction definitions per FIXME to be more consistent with loads/stores.
Fix disassembler accordingly. Add tests.
llvm-svn: 136509
The system register spec should be case insensitive. The preferred form for
output with mask values of 4, 8, and 12 references APSR rather than CPSR.
Update and tidy up tests accordingly.
llvm-svn: 135532
Print shifted immediate values directly rather than as a payload+shifter
value pair. This makes for more readable output assembly code, simplifies
the instruction printer, and is consistent with how Thumb immediates are
displayed.
llvm-svn: 134902
Since these "Advanced SIMD and VFP" instructions have more specfic encoding bits
specified, if coproc == 10 or 11, we should reject the insn as invalid.
rdar://problem/9239922
rdar://problem/9239596
llvm-svn: 129027
Add more complete sanity check for LdStFrm instructions where if IBit (Inst{25})
is 1, Inst{4} should be 0. Otherwise, we should reject the insn as invalid.
rdar://problem/9239347
rdar://problem/9239467
llvm-svn: 128977
Qd -> bit[12] == 0
Qn -> bit[16] == 0
Qm -> bit[0] == 0
If one of these bits is 1, the instruction is UNDEFINED.
rdar://problem/9238399
rdar://problem/9238445
llvm-svn: 128949
For register-controlled shifts, we should check that the encoding constraint
Inst{7} = 0 and Inst{4} = 1 is satisfied.
rdar://problem/9237693
llvm-svn: 128941
An alternative syntax is available for a modified immediate constant that permits the programmer to specify
the encoding directly. In this syntax, #<const> is instead written as #<byte>,#<rot>, where:
<byte> is the numeric value of abcdefgh, in the range 0-255
<rot> is twice the numeric value of rotation, an even number in the range 0-30.
llvm-svn: 128897
According to A8.6.189 STM/STMIA/STMEA (Encoding T1), there's only tSTMIA_UPD available.
Ignore tSTMIA for the decoder emitter and add a test case for that.
llvm-svn: 128246
These instructions were changed to not embed the addressing mode within the MC instructions
We also need to update the corresponding assert stmt. Also add a test case.
llvm-svn: 128240
Set the encoding bits to {0,?,?,0}, not 0. Plus delegate the disassembly of ADR to
the more generic ADDri/SUBri instructions, and add a test case for that.
llvm-svn: 128234
These instructions were changed to not embed the addressing mode within the MC instructions
We also need to update the corresponding assert stmt. Also add two test cases.
llvm-svn: 128191
were incomplete. The assert stmt needs to be updated and the operand index incrment is wrong.
Fix the bad logic and add some sanity checking to detect bad instruction encoding;
and add a test case.
llvm-svn: 128186
VFP Load/Store Multiple Instructions used to embed the IA/DB addressing mode within the
MC instruction; that has been changed so that now, for example, VSTMDDB_UPD and VSTMDIA_UPD
are two instructions. Update the ARMDisassemblerCore.cpp's DisassembleVFPLdStMulFrm()
to reflect the change.
Also add a test case.
llvm-svn: 128103
The relevant instruction table entries were changed sometime ago to no longer take
<Rt2> as an operand. Modify ARMDisassemblerCore.cpp to accomodate the change and
add a test case.
llvm-svn: 127935
o A8.6.195 STR (register) -- Encoding T1
o A8.6.193 STR (immediate, Thumb) -- Encoding T1
It has been changed so that now they use different addressing modes
and thus different MC representation (Operand Infos). Modify the
disassembler to reflect the change, and add relevant tests.
llvm-svn: 127833
1. The ARM Darwin *r9 call instructions were pseudo-ized recently.
Modify the ARMDisassemblerCore.cpp file to accomodate the change.
2. The disassembler was unnecessarily adding 8 to the sign-extended imm24:
imm32 = SignExtend(imm24:'00', 32); // A8.6.23 BL, BLX (immediate)
// Encoding A1
It has no business doing such. Removed the offending logic.
Add test cases to arm-tests.txt.
llvm-svn: 127707
The insufficient encoding information of the combined instruction confuses the decoder wrt
UQADD16. Add extra logic to recover from that.
Fixed an assert reported by Sean Callanan
llvm-svn: 127354
- Add custom operand matching for imod and iflags.
- Rename SplitMnemonicAndCC to SplitMnemonic since it splits more than CC
from mnemonic.
- While adding ".w" as an operand, don't change "Head" to avoid passing the
wrong mnemonic to ParseOperand.
- Add asm parser tests.
- Add disassembler tests just to make sure it can catch all cps versions.
llvm-svn: 125489
weren't properly reflecting the OperandSize attribute
of the instruction leading to improper decoding of
certain instructions with the 66H prefix. Also added
a test case for this.
llvm-svn: 117084
have been printed with the "S" modifier after the predicate. With ARM's
unified syntax, they are supposed to go in the other order. We fixed this
for Thumb when we switched to unified syntax but missed changing it for
ARM. Apparently we don't generate these instructions often because no one
noticed until now. Thanks to Bill Wendling for the testcase!
llvm-svn: 116563
"The register specified for a dregpair is the corresponding Q register, so to
get the pair, we need to look up the sub-regs based on the qreg. Create a
lookup function since we don't have access to TargetRegisterInfo here to
be able to use getSubReg(ARM::dsub_[01])."
Additionaly, fix the NEON VLD1* and VST1* instruction patterns not to use
the dregpair modifier for the 2xdreg versions. Explicitly specifying the two
registers as operands is more correct and more consistent with the other
instruction patterns. This enables further cleanup of special case code in the
disassembler as a nice side-effect.
llvm-svn: 113903
entry for ARM STRBT is actually a super-instruction for A8.6.199 STRBT A1 & A2.
Recover by looking for ARM:USAT encoding pattern before delegating to the auto-
gened decoder.
Added a "usat" test case to arm-tests.txt.
llvm-svn: 110894
and %rcr_, leaving just %cr_ which is what people expect.
Updated the disassembler to support this unified register set.
Added a testcase to verify that the registers continue to be
decoded correctly.
llvm-svn: 103196
before reglist were not properly handled with respect to IT Block. Fix that by
creating a new method ARMBasicMCBuilder::DoPredicateOperands() used by those
instructions for disassembly. Add a test case.
llvm-svn: 101974
Pseudocode details of conditional, Condition bits '111x' indicate the
instruction is always executed. That is, '1111' is a leagl condition field
value, which is now mapped to ARMCC::AL.
Also add a test case for condition field '1111'.
llvm-svn: 101817
case. Also, the 0xFF hex literal involved in the shift for ESize64 should be
suffixed "ul" to preserve the shift result.
Implemented printHex*ImmOperand() by copying from ARMAsmPrinter.cpp and added a
test case for DisassembleN1RegModImmFrm()/printHex64ImmOperand().
llvm-svn: 101557
to the UAL syntax of LDCL<c>, instead.
Add a test case for this change which also tests the removal of assert() from
printAddrMode2OffsetOperand().
llvm-svn: 101527
ARM_AM::getSoImmVal(V) with a legitimate so_imm value: #245 rotate right by 2.
Introduce ARM_AM::getSOImmValOneOrNoRotate(unsigned Arg) which is called from
ARMInstPrinter.cpp's printSOImm() function, replacing ARM_AM::getSOImmVal(V).
[12:44:43] johnny:/Volumes/data/llvm/git/trunk (local-trunk) $ gdb Debug/bin/llvm-mc
GNU gdb 6.3.50-20050815 (Apple version gdb-1346) (Fri Sep 18 20:40:51 UTC 2009)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin"...Reading symbols for shared libraries ... done
(gdb) set args -triple=arm-apple-darwin9 -debug-only=arm-disassembler --disassemble
(gdb) r
Starting program: /Volumes/data/llvm/git/trunk/Debug/bin/llvm-mc -triple=arm-apple-darwin9 -debug-only=arm-disassembler --disassemble
Reading symbols for shared libraries ++. done
0xf5 0x71 0xf0 0x53
Opcode=201 Name=MVNi Format=ARM_FORMAT_DPFRM(4)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
-------------------------------------------------------------------------------------------------
| 0: 1: 0: 1| 0: 0: 1: 1| 1: 1: 1: 1| 0: 0: 0: 0| 0: 1: 1: 1| 0: 0: 0: 1| 1: 1: 1: 1| 0: 1: 0: 1|
-------------------------------------------------------------------------------------------------
mvnpls r7, Assertion failed: (V != -1 && "Not a valid so_imm value!"), function printSOImm, file ARMInstPrinter.cpp, line 229.
Program received signal SIGABRT, Aborted.
0x00007fff88c65886 in __kill ()
(gdb) bt
#0 0x00007fff88c65886 in __kill ()
#1 0x00007fff88d05eae in abort ()
#2 0x00007fff88cf2ef0 in __assert_rtn ()
#3 0x000000010020e422 in printSOImm (O=@0x1010bdf80, V=-1, VerboseAsm=false, MAI=0x1020106d0) at ARMInstPrinter.cpp:229
#4 0x000000010020e5fe in llvm::ARMInstPrinter::printSOImmOperand (this=0x1020107e0, MI=0x7fff5fbfee70, OpNum=1, O=@0x1010bdf80) at ARMInstPrinter.cpp:254
#5 0x00000001001ffbc0 in llvm::ARMInstPrinter::printInstruction (this=0x1020107e0, MI=0x7fff5fbfee70, O=@0x1010bdf80) at ARMGenAsmWriter.inc:3236
#6 0x000000010020c27c in llvm::ARMInstPrinter::printInst (this=0x1020107e0, MI=0x7fff5fbfee70, O=@0x1010bdf80) at ARMInstPrinter.cpp:182
#7 0x000000010003cbff in PrintInsts (DisAsm=@0x10200f4e0, Printer=@0x1020107e0, Bytes=@0x7fff5fbff060, SM=@0x7fff5fbff078) at Disassembler.cpp:65
#8 0x000000010003c8b4 in llvm::Disassembler::disassemble (T=@0x1010c13c0, Triple=@0x1010b6798, Buffer=@0x102010690) at Disassembler.cpp:153
#9 0x000000010004095c in DisassembleInput (ProgName=0x7fff5fbff3f0 "/Volumes/data/llvm/git/trunk/Debug/bin/llvm-mc") at llvm-mc.cpp:347
#10 0x000000010003eefb in main (argc=4, argv=0x7fff5fbff298) at llvm-mc.cpp:374
(gdb) q
The program is running. Exit anyway? (y or n) y
[13:36:26] johnny:/Volumes/data/llvm/git/trunk (local-trunk) $
llvm-svn: 101053
backend (ARMDecoderEmitter) which emits the decoder functions for ARM and Thumb,
and the disassembler core which invokes the decoder function and builds up the
MCInst based on the decoded Opcode.
Reviewed by Chris Latter and Bob Wilson.
llvm-svn: 100233