and also "clang-format GenericDomTreeConstruction.h, since the current
formatting makes it look like their is a bug in the loop indentation, and there
is not"
This reverts commit r296535.
There are still some open design questions which I would like to discuss. I
revert this for Daniel (who gave the OK), as he is on vacation.
llvm-svn: 296812
Summary:
Currently, our post-dom tree tries to ignore and remove the effects of
infinite loops. It fails miserably at this, because it tries to do it
ahead of time, and thus can only detect self-loops, and any other type
of infinite loop, it pretends doesn't exist at all.
This can, in a bunch of cases, lead to wrong answers and a completely
empty post-dom tree.
Wrong answer:
```
declare void foo()
define internal void @f() {
entry:
br i1 undef, label %bb35, label %bb3.i
bb3.i:
call void @foo()
br label %bb3.i
bb35.loopexit3:
br label %bb35
bb35:
ret void
}
```
We get:
```
Inorder PostDominator Tree:
[1] <<exit node>> {0,7}
[2] %bb35 {1,6}
[3] %bb35.loopexit3 {2,3}
[3] %entry {4,5}
```
This is a trivial modification of the testcase for PR 6047
Note that we pretend bb3.i doesn't exist.
We also pretend that bb35 post-dominates entry.
While it's true that it does not exit in a theoretical sense, it's not
really helpful to try to ignore the effect and pretend that bb35
post-dominates entry. Worse, we pretend the infinite loop does
nothing (it's usually considered a side-effect), and doesn't even
exist, even when it calls a function. Sadly, this makes it impossible
to use when you are trying to move code safely. All compilers also
create virtual or real single exit nodes (including us), and connect
infinite loops there (which this patch does). In fact, others have
worked around our behavior here, to the point of building their own
post-dom trees:
https://zneak.github.io/fcd/2016/02/17/structuring.html and pointing
out the region infrastructure is near-useless for them with postdom in
this state :(
Completely empty post-dom tree:
```
define void @spam() #0 {
bb:
br label %bb1
bb1: ; preds = %bb1, %bb
br label %bb1
bb2: ; No predecessors!
ret void
}
```
Printing analysis 'Post-Dominator Tree Construction' for function 'foo':
=============================--------------------------------
Inorder PostDominator Tree:
[1] <<exit node>> {0,1}
:(
(note that even if you ignore the effects of infinite loops, bb2
should be present as an exit node that post-dominates nothing).
This patch changes post-dom to properly handle infinite loops and does
root finding during calculation to prevent empty tress in such cases.
We match gcc's (and the canonical theoretical) behavior for infinite
loops (find the backedge, connect it to the exit block).
Testcases coming as soon as i finish running this on a ton of random graphs :)
Reviewers: chandlerc, davide
Subscribers: bryant, llvm-commits
Differential Revision: https://reviews.llvm.org/D29705
llvm-svn: 296535
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786