Switch from Euclid's algorithm to Stein's algorithm for computing GCD. This
avoids the (expensive) APInt division operation in favour of bit operations.
Remove all memory allocation from within the GCD loop by tweaking our `lshr`
implementation so it can operate in-place.
Differential Revision: https://reviews.llvm.org/D31968
llvm-svn: 300252
Summary:
Bug noticed by inspection.
Extend the test to handle invokes as well as calls, and rewrite it to
not depend on the inliner and other passes.
Also simplify the call site replacement code with CallSite, similar to
what I did to dead arg elimination and arg promotion (rL300235 and
rL300229).
Reviewers: danielcdh, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32041
llvm-svn: 300251
Summary: For iterative SamplePGO, an indirect call can be speculatively promoted to multiple direct calls and get inlined. All these promoted direct calls will share the same callsite location (offset+discriminator). With the current implementation, we cannot distinguish between different promotion candidates and its inlined instance. This patch adds callee_name to the key of the callsite sample map. And added helper functions to get all inlined callee samples for a given callsite location. This helps the profile annotator promote correct targets and inline it before annotation, and ensures all indirect call targets to be annotated correctly.
Reviewers: davidxl, dnovillo
Reviewed By: davidxl
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31950
llvm-svn: 300240
Summary:
In first order recurrences where phi's are used outside the loop,
we should generate an additional vector.extract of the second last element from
the vectorized phi update.
This is because we require the phi itself (which is the value at the second last
iteration of the vector loop) and not the phi's update within the loop.
Also fix the code gen when we just unroll, but don't vectorize.
Fixes PR32396.
Reviewers: mssimpso, mkuper, anemet
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D31979
llvm-svn: 300238
This is effectively a retry of:
https://reviews.llvm.org/rL299851
but now we have tests and an assert to make sure the bug
that was exposed with that attempt will not happen again.
I'll fix the code duplication and missing sibling fold next,
but I want to make this change as small as possible to reduce
risk since I messed it up last time.
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=32524
llvm-svn: 300236
Noticed by inspection while doing attribute work. DAE, InstCombineCalls,
and ArgPromotion have a fair amount of duplicated code for hacking on
call sites, and you can find bugs by comparing them.
Add a test case for this.
llvm-svn: 300229
Summary:
* Add a bitreverse case in the demanded bits analysis pass.
* Add tests for the bitreverse (and bswap) intrinsic in the
demanded bits pass.
* Add a test case to the BDCE tests: that manipulations to
high-order bits are eliminated once the bits are reversed
and then right-shifted.
Reviewers: mkuper, jmolloy, hfinkel, trentxintong
Reviewed By: jmolloy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31857
llvm-svn: 300215
If we had these tests, the bug caused by https://reviews.llvm.org/rL299851 would have been caught sooner.
There's also an assert in the code that should have caught that bug, but the assert line itself has a bug.
llvm-svn: 300201
As discussed in:
https://bugs.llvm.org/show_bug.cgi?id=32486
...the canonicalization of vector select to shufflevector does not hold up
when undef elements are present in the condition vector.
Try to make the undef handling clear in the code and the LangRef.
Differential Revision: https://reviews.llvm.org/D31980
llvm-svn: 300092
Currently if we reach an instruction with multiples uses we know we can't do any optimizations to that instruction itself since we only have the demanded bits for one of the users. But if we know all of the bits are zero/one for that one user we can still go ahead and create a constant to give to that user.
This might then reduce the instruction to having a single use and allow additional optimizations on the other path.
This picks up an additional case that r300075 didn't catch.
Differential Revision: https://reviews.llvm.org/D31552
llvm-svn: 300084
If we are adding/subtractings 0s below the highest demanded bit we can just use the other operand and remove the operation.
My primary motivation is observing that we can call ShrinkDemandedConstant for the add/sub and create a 0 constant, rather than removing the add completely. In the case I saw, we modified the constant on an add instruction to a 0, but the add is not put into the worklist. So we didn't revisit it until the next InstCombine iteration. This caused an IR modification to remove add and a subsequent iteration to be ran.
With this change we get bypass the add in the first iteration and prevent the second iteration from changing anything.
Differential Revision: https://reviews.llvm.org/D31120
llvm-svn: 300075
One potential way to make InstCombine (very slightly?) faster is to recycle instructions
when possible instead of creating new ones. It's not explicitly stated AFAIK, but we don't
consider this an "InstSimplify". We could, however, make a new layer to house transforms
like this if that makes InstCombine more manageable (just throwing out an idea; not sure
how much opportunity is actually here).
Differential Revision: https://reviews.llvm.org/D31863
llvm-svn: 300067
Use '2>&1 |' and not '|&' to pipe debug output to FileCheck
Hopefully handles a "shell parser error" on
llvm-clang-x86_64-expensive-checks-win
test/Transforms/SLPVectorizer/SystemZ/SLP-cmp-cost-query.ll
llvm-svn: 300064
In getEntryCost(), make the scalar type for a compare instruction that of the
operands, not i1. This is needed in order to call getCmpSelInstrCost() for a
compare in a sensible way, the same way as the LoopVectorizer does.
New test: test/Transforms/SLPVectorizer/SystemZ/SLP-cmp-cost-query.ll
Review: Matthew Simpson
https://reviews.llvm.org/D31601
llvm-svn: 300061
The cost for a branch after vectorization is very different depending on if
the vectorizer will if-convert the block (branch is eliminated), or if
scalarized and predicated blocks will be produced (branch duplicated before
each block). There is also the case of remaining scalar branches, such as the
back-edge branch.
This patch handles these cases differently with TTI based cost estimates.
Review: Matthew Simpson
https://reviews.llvm.org/D31175
llvm-svn: 300058
Since SystemZ supports vector element load/store instructions, there is no
need for extracts/inserts if a vector load/store gets scalarized.
This patch lets Target specify that it supports such instructions by means of
a new TTI hook that defaults to false.
The use for this is in the LoopVectorizer getScalarizationOverhead() method,
which will with this patch produce a smaller sum for a vector load/store on
SystemZ.
New test: test/Transforms/LoopVectorize/SystemZ/load-store-scalarization-cost.ll
Review: Adam Nemet
https://reviews.llvm.org/D30680
llvm-svn: 300056
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.
Interleaved access vectorization enabled.
BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.
Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631
llvm-svn: 300052
Summary:
Dead basic blocks may be forming a loop, for which SSA form is
fulfilled, but with a circular def-use chain. LoadCombine could
enter an infinite loop when analysing such dead code. This patch
solves the problem by simply avoiding to analyse all basic blocks
that aren't forward reachable, from function entry, in LoadCombine.
Fixes https://bugs.llvm.org/show_bug.cgi?id=27065
Reviewers: mehdi_amini, chandlerc, grosser, Bigcheese, davide
Reviewed By: davide
Subscribers: dberlin, zzheng, bjope, grandinj, Ka-Ka, materi, jholewinski, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D31032
llvm-svn: 300034
Summary:
COFF requires that every comdat contain a symbol with the same name as
the comdat. ThinLTOBitcodeWriter renames symbols, which may cause this
requirement to be violated. This change avoids such violations by
renaming comdats if their leaders are renamed. It also keeps comdats
together when splitting modules.
Reviewers: pcc, mehdi_amini, tejohnson
Reviewed By: pcc
Subscribers: rnk, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31963
llvm-svn: 300019
In the vectorization of first order recurrence, we vectorize such
that the last element in the vector will be the one extracted to pass into the
scalar remainder loop. However, this is not true when there is a phi (other
than the primary induction variable) is used outside the loop.
In such a case, we need the value from the second last iteration (i.e.
the phi value), not the last iteration (which would be the phi update).
I've added a test case for this. Also see PR32396.
A follow up patch would generate the correct code gen for such cases,
and turn this vectorization on.
Differential Revision: https://reviews.llvm.org/D31910
Reviewers: mssimpso
llvm-svn: 299985
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.
llvm-svn: 299980
Before this patch, pass AddDiscriminators always avoided to assign
discriminators to intrinsic calls. This was done mainly for two reasons:
1) We wanted to minimize the number of based discriminators used.
2) We wanted to avoid non-deterministic discriminator assignment for
different debug levels.
Unfortunately, that approach was problematic for MemIntrinsic calls.
MemIntrinsic calls can be split by SROA into loads and stores, and each new
load/store instruction would obtain the debug location from the original
intrinsic call.
If we don't assign a discriminator to MemIntrinsic calls, then we cannot
correctly set the discriminator for the newly created loads and stores.
This may have a negative impact on the basic block weight computation
performed by the SampleLoader.
This patch fixes the issue by letting MemIntrinsic calls have a discriminator.
Differential Revision: https://reviews.llvm.org/D31900
llvm-svn: 299972
Summary:
In rL299692 I improved strip-dead-debug-info's ability to drop CUs that are not
referenced from the current module. However, in doing so I neglected to realize
that some SPs could be referenced entirely from inlined functions. It appears
I was not the only one to make this mistake, because DebugInfoFinder, doesn't
find those SPs either. Fix this in DebugInfoFinder and then use that to make
sure not to drop those CUs in strip-dead-debug-info.
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31904
llvm-svn: 299936
(h/t to Chandler for pointing this out)
The test in question was not at all testing what it was supposed to
test. We do not //care// about placing `!make.implicit` in inner
constant branch (since it will be folded away anyway). We care about
placing `!make.implicit` in the outer branch that switches between
either version of the loop.
Having said that, it is _correct_ to leave behind the `!make.implicit`
in the inner branch, but there is no need to do so.
llvm-svn: 299912
When allowed, we can hoist a division out of a loop in favor of a
multiplication by the reciprocal. Fixes PR32157.
Patch by vit9696!
Differential Revision: https://reviews.llvm.org/D30819
llvm-svn: 299911
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
Summary: Now the SamplePGO support is more stable, we do not need so many verbose optimization remarks emitted.
Reviewers: dnovillo, davidxl
Reviewed By: davidxl
Subscribers: fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D31826
llvm-svn: 299883
Summary:
While we don't want them aliasing with other pointers, there seems to
be no point in not having them clobber must-aliased'd pointers.
If some day, we split the aliasing and ordering chains, we'd make this
not aliasing but an ordering barrier (IE it doesn't affect it's
memory, but we can't hoist it above it).
Reviewers: hfinkel, george.burgess.iv
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31865
llvm-svn: 299865
This patch refactors and strengthens the type checks performed for interleaved
accesses. The primary functional change is to ensure that the interleaved
accesses have valid element types. The added test cases previously failed
because the element type is f128.
Differential Revision: https://reviews.llvm.org/D31817
llvm-svn: 299864
Also, make the same change in and-of-icmps and remove a hack for detecting that case.
Finally, add some FIXME comments because the code duplication here is awful.
This should fix the remaining IR problem noted in:
https://bugs.llvm.org/show_bug.cgi?id=32524
llvm-svn: 299851
We currently only fold scalar add of constants into selects. This improves this to support vectors too.
Differential Revision: https://reviews.llvm.org/D31683
llvm-svn: 299847
Summary: I noticed in the select folding code that we copied fast math flags, but did not do the same for the similar handling in phi nodes. This patch fixes that to do the same thing as select
Reviewers: spatel, davide, majnemer, hfinkel
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31690
llvm-svn: 299838
Summary:
Resolve indirect branch target when possible.
This potentially eliminates more basicblocks and result in better evaluation for phi and other things.
Reviewers: davide, efriedma, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30322
llvm-svn: 299830
In isUseTriviallyOptimizableToLiveOnEntry, pointsToConstantMemory needs to be
called on the load's pointer operand, not on the result of the load (which
might not even be a pointer).
llvm-svn: 299823
coro-split-after-phi.ll test was flaky due to non-determinism in
the coroutine frame construction that was sorting the spill
vector using a pointer to a def as a part of the key.
The sorting was intended to make sure that spills for the same def
are kept together, however, we populate the vector by processing
defs in order, so the spill entires will end up together anyways.
This change removes spill sorting and restores the determinism
in the test.
llvm-svn: 299809
Summary:
Fix a bug where we were inserting a spill in between the PHIs in the beginning of the block.
Consider this fragment:
```
begin:
%phi1 = phi i32 [ 0, %entry ], [ 2, %alt ]
%phi2 = phi i32 [ 1, %entry ], [ 3, %alt ]
%sp1 = call i8 @llvm.coro.suspend(token none, i1 false)
switch i8 %sp1, label %suspend [i8 0, label %resume
i8 1, label %cleanup]
resume:
call i32 @print(i32 %phi1)
```
Unless we are spilling the argument or result of the invoke, we were always inserting the spill immediately following the instruction.
The fix adds a check that if the spilled instruction is a PHI Node, select an appropriate insert point with `getFirstInsertionPt()` that
skips all the PHI Nodes and EH pads.
Reviewers: majnemer, rnk
Reviewed By: rnk
Subscribers: qcolombet, EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D31799
llvm-svn: 299771
This patch reapplies r298620. The original patch was reverted because of two
issues. First, the patch exposed a bug in InstCombine that caused the Chromium
builds to fail (PR32414). This issue was fixed in r299017. Second, the patch
introduced a bug in the vectorizer's scalars analysis that caused test suite
builds to fail on SystemZ. The scalars analysis was too aggressive and marked a
memory instruction scalar, even though it was going to be vectorized. This
issue has been fixed in the current patch and several new test cases for the
scalars analysis have been added.
llvm-svn: 299770
Summary:
getModRefInfo is meant to answer the question "what impact does this
instruction have on a given memory location" (not even another
instruction).
Long debate on this on IRC comes to the conclusion the answer should be "nothing special".
That is, a noalias volatile store does not affect a memory location
just by being volatile. Note: DSE and GVN and memdep currently
believe this, because memdep just goes behind AA's back after it says
"modref" right now.
see line 635 of memdep. Prior to this patch we would get modref there, then check aliasing,
and if it said noalias, we would continue.
getModRefInfo *already* has this same AA check, it just wasn't being used because volatile was
lumped in with ordering.
(I am separately testing whether this code in memdep is now dead except for the invariant load case)
Reviewers: jyknight, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31726
llvm-svn: 299741
The new codepath has been in the tree for years, and there isn't any
reason to use two codepaths here.
Differential Revision: https://reviews.llvm.org/D30596
llvm-svn: 299723
Summary:
Prior to this while it would delete the dead DIGlobalVariables, it would
leave dead DICompileUnits and everything referenced therefrom. For a bit
bitcode file with thousands of compile units those dead nodes easily
outnumbered the real ones. Clean that up.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D31720
llvm-svn: 299692
memorydefs, not just stores. Along the way, we audit and fixup issues
about how we were tracking memory leaders, and improve the verifier
to notice more memory congruency issues.
llvm-svn: 299682
Summary:
LSV wants to know the maximum size that can be loaded to a vector register.
On X86, this always matches the maximum register width. Implement this
accordingly and add a test to make sure that LSV can vectorize up to the
maximum permissible width on X86.
Reviewers: delena, arsenm
Reviewed By: arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D31504
llvm-svn: 299589
This test case depends on the loop being vectorized without forcing the
vectorization factor. If the profitability ever changes in the future (due to
cost model improvements), the test may no longer work as intended. Instead of
checking the resulting IR, we should just check the instruction costs. The
costs will be computed regardless if vectorization is profitable.
llvm-svn: 299545
This is a latent bug that's been hanging around for a while. For a loop-invariant
pointer, expandBounds would return the range {Ptr, Ptr}, but this was interpreted
as a half-open range, not a closed range. So we ended up planting incorrect
bounds checks. Even worse, they were tautological, so we ended up incorrectly
executing the optimized loop.
llvm-svn: 299526
Fix a bug in ARC contract pass where an iterator that pointed to a
deleted instruction was dereferenced.
It appears that tryToContractReleaseIntoStoreStrong was incorrectly
assuming that a call to objc_retain would not immediately follow a call
to objc_release.
rdar://problem/25276306
llvm-svn: 299507
Currently we only fold with ConstantInt RHS. This generalizes to any Constant RHS.
Differential Revision: https://reviews.llvm.org/D31610
llvm-svn: 299466
This patch optimizes two memory intrinsic operations: memset and memcpy based
on the profiled size of the operation. The high level transformation is like:
mem_op(..., size)
==>
switch (size) {
case s1:
mem_op(..., s1);
goto merge_bb;
case s2:
mem_op(..., s2);
goto merge_bb;
...
default:
mem_op(..., size);
goto merge_bb;
}
merge_bb:
Differential Revision: http://reviews.llvm.org/D28966
llvm-svn: 299446
Otherwise, yamlize in YAMLTraits.h might be wrongly defined.
This makes some AMDGPU tests fail when LLVM_LINK_LLVM_DYLIB is set.
Differential Revision: https://reviews.llvm.org/D30508
llvm-svn: 299415
Summary:
Add a hook for simplification of shufflevector's with the following rules:
- Constant folding - NFC, as it was already being done by the default handler.
- If only one of the operands is constant, constant fold the shuffle if the
mask does not select elements from the variable operand - to show the hook is firing and affecting the test-cases.
Reviewers: RKSimon, craig.topper, spatel, sanjoy, nlopes, majnemer
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31525
llvm-svn: 299393
Summary:
Depends on D30928.
This adds support for coercion of stores and memory instructions that do not require insertion to process.
Another few tests down.
I added the relevant tests from rle.ll
Reviewers: davide
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30929
llvm-svn: 299330
Disable bypassing if one of the operands looks like a hash value. Slow
division often occurs in hashtable implementations and fast division is
never taken there because a hash value is extremely unlikely to have
enough upper bits set to zero.
A value is considered to be hash-like if it is produced by
1) XOR operation
2) Multiplication by a constant wider than the shorter type
3) PHI node with all incoming values being hash-like
Differential Revision: https://reviews.llvm.org/D28200
llvm-svn: 299329
A common way to implement nearbyint is by fiddling with the floating
point environment and calling rint. This is used at least by the BSD
libm and musl. As such, canonicalizing the latter to the former will
create infinite loops for libm and generally pessimize performance, at
least when the generic C versions are used.
This change preserves the rint in the libcall translation and also
handles the domain truncation logic, so that rint with float argument
will be reduced to rintf etc.
llvm-svn: 299247
Summary: Currently the VP metadata was dropped when InstCombine converts a call to direct call. This patch converts the VP metadata to branch_weights so that its hotness is recorded.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31344
llvm-svn: 299228
Summary:
Triggered by commit r298620: "[LV] Vectorize GEPs".
If we encounter a vector GEP with scalar arguments, we splat the scalar
into a vector of appropriate size before we scatter the argument.
Reviewers: arsenm, mehdi_amini, bkramer
Reviewed By: arsenm
Subscribers: bjope, mssimpso, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D31416
llvm-svn: 299186
Since there is no sdiv in SCEV, an 'udiv' is a better canonical form than an 'sdiv' as the user of induction variable
Differential Revision: https://reviews.llvm.org/D31488
llvm-svn: 299118
Some of the GEP combines (e.g., descaling) can't handle vector GEPs. We have an
existing check that attempts to bail out if given a vector GEP. However, the
check only tests the GEP's pointer operand. A GEP results in a vector of
pointers if at least one of its operands is vector-typed (e.g., its pointer
operand could be a scalar, but its index could be a vector). We should just
check the type of the GEP itself. This should fix PR32414.
Reference: https://bugs.llvm.org/show_bug.cgi?id=32414
Differential Revision: https://reviews.llvm.org/D31470
llvm-svn: 299017
The vectorizer tries to replace truncations of induction variables with new
induction variables having the smaller type. After r295063, this optimization
was applied to all integer induction variables, including non-primary ones.
When optimizing the truncation of a non-primary induction variable, we still
need to transform the new induction so that it has the correct start value.
This should fix PR32419.
Reference: https://bugs.llvm.org/show_bug.cgi?id=32419
llvm-svn: 298882
Summary:
We are incorrectly folding selects into phi nodes when the incoming value of a phi
node is a constant vector. This optimization is done in `FoldOpIntoPhi` when the
select condition is a phi node with constant incoming values.
Without the fix, we are miscompiling (i.e. incorrectly folding the
select into the phi node) when the vector contains non-zero
elements.
This patch fixes the miscompile and we will correctly fold based on the
select vector operand (see added test cases).
Reviewers: majnemer, sanjoy, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31189
llvm-svn: 298845
The first variant contains all current transformations except
transforming switches into lookup tables. The second variant
contains all current transformations.
The switch-to-lookup-table conversion results in code that is more
difficult to analyze and optimize by other passes. Most importantly,
it can inhibit Dead Code Elimination. As such it is often beneficial to
only apply this transformation very late. A common example is inlining,
which can often result in range restrictions for the switch expression.
Changes in execution time according to LNT:
SingleSource/Benchmarks/Misc/fp-convert +3.03%
MultiSource/Benchmarks/ASC_Sequoia/CrystalMk/CrystalMk -11.20%
MultiSource/Benchmarks/Olden/perimeter/perimeter -10.43%
and a couple of smaller changes. For perimeter it also results 2.6%
a smaller binary.
Differential Revision: https://reviews.llvm.org/D30333
llvm-svn: 298799
This moves it to the iterator facade utilities giving it full random
access semantics, etc. It can also now be used with standard algorithms
like std::all_of and std::any_of and range adaptors like llvm::reverse.
Also make the semantics of iterating match what every other iterator
uses and forbid decrementing past the begin iterator. This was used as
a hacky way to work around iterator invalidation. However, every
instance trying to do this failed to actually avoid touching invalid
iterators despite the clear documentation that the removed and all
subsequent iterators become invalid including the end iterator. So I've
added a return of the next iterator to removeCase and rewritten the
loops that were doing this to correctly follow the iterator pattern of
either incremneting or removing and assigning fresh values to the
iterator and the end.
In one case we were trying to go backwards to make this cleaner but it
doesn't actually work. I've made that code match the code we use
everywhere else to remove cases as we iterate. This changes the order of
cases in one test output and I moved that test to CHECK-DAG so it
wouldn't care -- the order isn't semantically meaningful anyways.
llvm-svn: 298791
Reason: breaks linking Chromium with LLD + ThinLTO (a pass crashes)
LLVM bug: https://bugs.llvm.org//show_bug.cgi?id=32413
Original change description:
[LV] Vectorize GEPs
This patch adds support for vectorizing GEPs. Previously, we only generated
vector GEPs on-demand when creating gather or scatter operations. All GEPs from
the original loop were scalarized by default, and if a pointer was to be stored
to memory, we would have to build up the pointer vector with insertelement
instructions.
With this patch, we will vectorize all GEPs that haven't already been marked
for scalarization.
The patch refines collectLoopScalars to more exactly identify the scalar GEPs.
The function now more closely resembles collectLoopUniforms. And the patch
moves vector GEP creation out of vectorizeMemoryInstruction and into the main
vectorization loop. The vector GEPs needed for gather and scatter operations
will have already been generated before vectoring the memory accesses.
Original Differential Revision: https://reviews.llvm.org/D30710
llvm-svn: 298735
Summary: Declarations need to be filtered out when counting functions.
Reviewers: eraman
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31336
llvm-svn: 298720
Summary: In DeadArgumentElimination, the call instructions will be replaced. We also need to set the prof weights so that function inlining can find the correct profile.
Reviewers: eraman
Reviewed By: eraman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31143
llvm-svn: 298660
Library functions can have specific semantics that affect the behavior of
certain passes. DSE, for instance, gives special treatment to malloc-ed pointers
but not to pointers returned from an equivalently typed (but differently named)
function.
MetaRenamer ought not to alter program semantics, so library functions must
remain untouched.
Reviewers: mehdi_amini, majnemer, chandlerc, davide
Reviewed By: davide
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D31304
llvm-svn: 298659
Summary: The current prefix based function layout algorithm only looks at function's entry count, which is not sufficient. A function should be grouped together if its entry count or any call edge count is hot.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31225
llvm-svn: 298656
The new test asserts that scalarized memory operations get memcheck metadata
added even if the loop is only unrolled.
Differential Revision: https://reviews.llvm.org/D30972
llvm-svn: 298641
Summary:
The cumulative size of the bitcode files for a very large application
can be huge, particularly with -g. In a distributed build environment,
all of these files must be sent to the remote build node that performs
the thin link step, and this can exceed size limits.
The thin link actually only needs the summary along with a bitcode
symbol table. Until we have a proper bitcode symbol table, simply
stripping the debug metadata results in significant size reduction.
Add support for an option to additionally emit minimized bitcode
modules, just for use in the thin link step, which for now just strips
all debug metadata. I plan to add a cc1 option so this can be invoked
easily during the compile step.
However, care must be taken to ensure that these minimized thin link
bitcode files produce the same index as with the original bitcode files,
as these original bitcode files will be used in the backends.
Specifically:
1) The module hash used for caching is typically produced by hashing the
written bitcode, and we want to include the hash that would correspond
to the original bitcode file. This is because we want to ensure that
changes in the stripped portions affect caching. Added plumbing to emit
the same module hash in the minimized thin link bitcode file.
2) The module paths in the index are constructed from the module ID of
each thin linked bitcode, and typically is automatically generated from
the input file path. This is the path used for finding the modules to
import from, and obviously we need this to point to the original bitcode
files. Added gold-plugin support to take a suffix replacement during the
thin link that is used to override the identifier on the MemoryBufferRef
constructed from the loaded thin link bitcode file. The assumption is
that the build system can specify that the minimized bitcode file has a
name that is similar but uses a different suffix (e.g. out.thinlink.bc
instead of out.o).
Added various tests to ensure that we get identical index files out of
the thin link step.
Reviewers: mehdi_amini, pcc
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31027
llvm-svn: 298638
This patch adds support for vectorizing GEPs. Previously, we only generated
vector GEPs on-demand when creating gather or scatter operations. All GEPs from
the original loop were scalarized by default, and if a pointer was to be stored
to memory, we would have to build up the pointer vector with insertelement
instructions.
With this patch, we will vectorize all GEPs that haven't already been marked
for scalarization.
The patch refines collectLoopScalars to more exactly identify the scalar GEPs.
The function now more closely resembles collectLoopUniforms. And the patch
moves vector GEP creation out of vectorizeMemoryInstruction and into the main
vectorization loop. The vector GEPs needed for gather and scatter operations
will have already been generated before vectoring the memory accesses.
Differential Revision: https://reviews.llvm.org/D30710
llvm-svn: 298620
The code for generating scalar base pointers in vectorizeMemoryInstruction is
not needed. We currently scalarize all GEPs and maintain the scalarized values
in VectorLoopValueMap. The GEP cloning in this unneeded code is the same as
that in scalarizeInstruction. The test cases that changed as a result of this
patch changed because we were able to reuse the scalarized GEP that we
previously generated instead of cloning a new one.
Differential Revision: https://reviews.llvm.org/D30587
llvm-svn: 298615
Summary: ThinLTO will annotate the CFG twice. If the branch weight is set by the first annotation, we should not set the branch weight again in the second annotation because the first annotation is more accurate as there is less optimization that could affect debug info accuracy.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: mehdi_amini, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D31228
llvm-svn: 298602
insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
As noted in the code comment and seen in the test changes, the motivation is that by pulling
constant insertion up, we may be able to constant fold some insertelement instructions.
Differential Revision: https://reviews.llvm.org/D31196
llvm-svn: 298520
Summary: Subtracts can have constants on the left side, but we don't shrink them based on demanded bits. This patch fixes that to match the right hand side.
Reviewers: davide, majnemer, spatel, sanjoy, hfinkel
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31119
llvm-svn: 298478
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
This adds a parameter to @llvm.objectsize that makes it return
conservative values if it's given null.
This fixes PR23277.
Differential Revision: https://reviews.llvm.org/D28494
llvm-svn: 298430
Summary: Inliner should update the branch_weights annotation to scale it to proper value.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D30767
llvm-svn: 298270
Summary:
In case we are loading on a phi-load in SimplifyPartiallyRedundantLoad.
Try to phi translate it into incoming values in the predecessors before
we search for available loads.
This needs https://reviews.llvm.org/D30524
Reviewers: davide, sanjoy, efriedma, dberlin, rengolin
Reviewed By: dberlin
Subscribers: junbuml, llvm-commits
Differential Revision: https://reviews.llvm.org/D30543
llvm-svn: 298217
Summary:
The reverse of an artbitrary bitpattern is also an arbitrary
bitpattern.
Reviewers: trentxintong, arsenm, majnemer
Reviewed By: majnemer
Subscribers: majnemer, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D31118
llvm-svn: 298201
Loop unswitching can be extremely harmful for a SIMT target. In case
if hoisted condition is not uniform a SIMT machine will execute both
clones of a loop sequentially. Therefor LoopUnswitch checks if the
condition is non-divergent.
Since DivergenceAnalysis adds an expensive PostDominatorTree analysis
not needed for non-SIMT targets a new option is added to avoid unneded
analysis initialization. The method getAnalysisUsage is called when
TargetTransformInfo is not yet available and we cannot use it here.
For that reason a new field DivergentTarget is added to PassManagerBuilder
to control the behavior and set this field from a target.
Differential Revision: https://reviews.llvm.org/D30796
llvm-svn: 298104
We were not handling getelemenptr instructions of vector type before.
Since getelemenptr instructions for vector types follow the same rule as
getelementptr instructions for non-vector types, we can just handle them
in the same way.
llvm-svn: 298028
[Reapplies r297971 and punting on finding a better API for findDbgValues()]
This patch improves debug info quality in InstCombine by looking at
values that are about to be deleted, checking whether there are any
dbg.value instrinsics referring to them, and potentially encoding the
semantics of the deleted instruction into the dbg.value's
DIExpression.
In the example in the testcase (which was extracted from XNU) there is a sequence of
%4 = load %struct.entry*, %struct.entry** %next2, align 8, !dbg !41
%5 = bitcast %struct.entry* %4 to i8*, !dbg !42
%add.ptr4 = getelementptr inbounds i8, i8* %5, i64 -8, !dbg !43
%6 = bitcast i8* %add.ptr4 to %struct.entry*, !dbg !44
call void @llvm.dbg.value(metadata %struct.entry* %6, i64 0, metadata !20, metadata !21), !dbg 34
When these instructions are eliminated by instcombine one after
another, we can still salvage the otherwise dead debug info:
- Bitcasts have no effect, so have the dbg.value point to operand(0)
- Loads can be expressed via a DW_OP_deref
- Constant gep instructions can be replaced by DWARF expression arithmetic
The API introduced by this patch is not specific to instcombine and
can be useful in other places, too.
rdar://problem/30725338
Differential Revision: https://reviews.llvm.org/D30919
llvm-svn: 297994
As the related tests show, we're not canonicalizing to this form for scalars or vectors yet,
but this solves the immediate problem in:
https://bugs.llvm.org/show_bug.cgi?id=32306
llvm-svn: 297989
This patch improves debug info quality in InstCombine by looking at
values that are about to be deleted, checking whether there are any
dbg.value instrinsics referring to them, and potentially encoding the
semantics of the deleted instruction into the dbg.value's
DIExpression.
In the example in the testcase (which was extracted from XNU) there is a sequence of
%4 = load %struct.entry*, %struct.entry** %next2, align 8, !dbg !41
%5 = bitcast %struct.entry* %4 to i8*, !dbg !42
%add.ptr4 = getelementptr inbounds i8, i8* %5, i64 -8, !dbg !43
%6 = bitcast i8* %add.ptr4 to %struct.entry*, !dbg !44
call void @llvm.dbg.value(metadata %struct.entry* %6, i64 0, metadata !20, metadata !21), !dbg 34
When these instructions are eliminated by instcombine one after
another, we can still salvage the otherwise dead debug info:
- Bitcasts have no effect, so have the dbg.value point to operand(0)
- Loads can be expressed via a DW_OP_deref
- Constant gep instructions can be replaced by DWARF expression arithmetic
The API introduced by this patch is not specific to instcombine and
can be useful in other places, too.
rdar://problem/30725338
Differential Revision: https://reviews.llvm.org/D30919
llvm-svn: 297971
in r297374.
I've extracted a small version of this from the C++ metaprogram Richard
came up with to exercise these kinds of issues and written comments to
describe both how to reproduce a fresh version of the test case and what
likely failure modes are.
The test case is still a bit brittle as it depends on the particular
inline cost modeling and SCC visitation order, but it definitely would
have caught the bug right away when developing things so it seems
a really valuable test case to have.
llvm-svn: 297935
This patch adds the value profile support to profile the size parameter of
memory intrinsic calls: memcpy, memcmp, and memmov.
Differential Revision: http://reviews.llvm.org/D28965
llvm-svn: 297897
Summary:
In SamplePGO, if the profile is collected from non-LTO binary, and used to drive ThinLTO, the indirect call promotion may fail because ThinLTO adjusts local function names to avoid conflicts. There are two places of where the mismatch can happen:
1. thin-link prepends SourceFileName to front of FuncName to build the GUID (GlobalValue::getGlobalIdentifier). Unlike instrumentation FDO, SamplePGO does not use the PGOFuncName scheme and therefore the indirect call target profile data contains a hash of the OriginalName.
2. backend compiler promotes some local functions to global and appends .llvm.{$ModuleHash} to the end of the FuncName to derive PromotedFunctionName
This patch tries at the best effort to find the GUID from the original local function name (in profile), and use that in ICP promotion, and in SamplePGO matching that happens in the backend after importing/inlining:
1. in thin-link, it builds the map from OriginalName to GUID so that when thin-link reads in indirect call target profile (represented by OriginalName), it knows which GUID to import.
2. in backend compiler, if sample profile reader cannot find a profile match for PromotedFunctionName, it will try to find if there is a match for OriginalFunctionName.
3. in backend compiler, we build symbol table entry for OriginalFunctionName and pointer to the same symbol of PromotedFunctionName, so that ICP can find the correct target to promote.
Reviewers: mehdi_amini, tejohnson
Reviewed By: tejohnson
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30754
llvm-svn: 297757
If it is possible for the RHS of a shift operation to be greater than or equal
to the bit-width, then the result might be undef, and we can't report any known
bits.
In some cases, this was allowing a transformation in instcombine which widened
an undef value from i1 to i32, increasing the range of values that a function
could return.
Differential revision: https://reviews.llvm.org/D30781
llvm-svn: 297724
getIntrinsicInstrCost() used to only compute scalarization cost based on types.
This patch improves this so that the actual arguments are checked when they are
available, in order to handle only unique non-constant operands.
Tests updates:
Analysis/CostModel/X86/arith-fp.ll
Transforms/LoopVectorize/AArch64/interleaved_cost.ll
Transforms/LoopVectorize/ARM/interleaved_cost.ll
The improvement in getOperandsScalarizationOverhead() to differentiate on
constants made it necessary to update the interleaved_cost.ll tests even
though they do not relate to intrinsics.
Review: Hal Finkel
https://reviews.llvm.org/D29540
llvm-svn: 297705
Summary:
This change solves the same problem as D30726, except that this only
throws out the bathwater.
AST was not correctly tracking and deleting UnknownInstructions via
handles. The existing code only tracks "pointers" in its
`ASTCallbackVH`, so an UnknownInstruction (that isn't also def'ing a
pointer used by another memory instruction) never gets a
`ASTCallbackVH`.
There are two other ways to solve this problem:
- Use the `PointerRec` scheme for both known and unknown instructions.
- Use a `CallbackVH` that erases the offending Instruction from the
UnknownInstruction list.
Both of the above changes seemed to be significantly (and unnecessarily
IMO) more complex than this.
Reviewers: chandlerc, dberlin, hfinkel, reames
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D30849
llvm-svn: 297539
This reverts r293386, r294027, r294029 and r296411.
Turns out the SLP tree isn't actually a "tree" and we don't handle
accessing the same packet of loads in several different orders well,
causing miscompiles.
Revert until we can fix this properly.
llvm-svn: 297493
entire SCC before iterating on newly-introduced call edges resulting
from any inlined function bodies.
This more closely matches the behavior of the old PM's inliner. While it
wasn't really clear to me initially, this behavior is actually essential
to the inliner behaving reasonably in its current design.
Because the inliner is fundamentally a bottom-up inliner and all of its
cost modeling is designed around that it often runs into trouble within
an SCC where we don't have any meaningful bottom-up ordering to use. In
addition to potentially cyclic, infinite inlining that we block with the
inline history mechanism, it can also take seemingly simple call graph
patterns within an SCC and turn them into *insanely* large functions by
accidentally working top-down across the SCC without any of the
threshold limitations that traditional top-down inliners use.
Consider this diabolical monster.cpp file that Richard Smith came up
with to help demonstrate this issue:
```
template <int N> extern const char *str;
void g(const char *);
template <bool K, int N> void f(bool *B, bool *E) {
if (K)
g(str<N>);
if (B == E)
return;
if (*B)
f<true, N + 1>(B + 1, E);
else
f<false, N + 1>(B + 1, E);
}
template <> void f<false, MAX>(bool *B, bool *E) { return f<false, 0>(B, E); }
template <> void f<true, MAX>(bool *B, bool *E) { return f<true, 0>(B, E); }
extern bool *arr, *end;
void test() { f<false, 0>(arr, end); }
```
When compiled with '-DMAX=N' for various values of N, this will create an SCC
with a reasonably large number of functions. Previously, the inliner would try
to exhaust the inlining candidates in a single function before moving on. This,
unfortunately, turns it into a top-down inliner within the SCC. Because our
thresholds were never built for that, we will incrementally decide that it is
always worth inlining and proceed to flatten the entire SCC into that one
function.
What's worse, we'll then proceed to the next function, and do the exact same
thing except we'll skip the first function, and so on. And at each step, we'll
also make some of the constant factors larger, which is awesome.
The fix in this patch is the obvious one which makes the new PM's inliner use
the same technique used by the old PM: consider all the call edges across the
entire SCC before beginning to process call edges introduced by inlining. The
result of this is essentially to distribute the inlining across the SCC so that
every function incrementally grows toward the inline thresholds rather than
allowing the inliner to grow one of the functions vastly beyond the threshold.
The code for this is a bit awkward, but it works out OK.
We could consider in the future doing something more powerful here such as
prioritized order (via lowest cost and/or profile info) and/or a code-growth
budget per SCC. However, both of those would require really substantial work
both to design the system in a way that wouldn't break really useful
abstraction decomposition properties of the current inliner and to be tuned
across a reasonably diverse set of code and workloads. It also seems really
risky in many ways. I have only found a single real-world file that triggers
the bad behavior here and it is generated code that has a pretty pathological
pattern. I'm not worried about the inliner not doing an *awesome* job here as
long as it does *ok*. On the other hand, the cases that will be tricky to get
right in a prioritized scheme with a budget will be more common and idiomatic
for at least some frontends (C++ and Rust at least). So while these approaches
are still really interesting, I'm not in a huge rush to go after them. Staying
even closer to the existing PM's behavior, especially when this easy to do,
seems like the right short to medium term approach.
I don't really have a test case that makes sense yet... I'll try to find a
variant of the IR produced by the monster template metaprogram that is both
small enough to be sane and large enough to clearly show when we get this wrong
in the future. But I'm not confident this exists. And the behavior change here
*should* be unobservable without snooping on debug logging. So there isn't
really much to test.
The test case updates come from two incidental changes:
1) We now visit functions in an SCC in the opposite order. I don't think there
really is a "right" order here, so I just update the test cases.
2) We no longer compute some analyses when an SCC has no call instructions that
we consider for inlining.
llvm-svn: 297374
!type metadata can not be dropped. An alternative to this is adding
!type metadata from the replaced globals to the replacement, but that
may weaken type tests and make them slower at the same time.
The merged global gets !dbg metadata from replaced globals, and can
end up with multiple debug locations.
llvm-svn: 297327
Because IRBuilder performs constant-folding, it's not guaranteed that an
instruction in the original loop map to an instruction in the vector loop. It
could map to a constant vector instead. The handling of first-order recurrences
was incorrectly making this assumption when setting the IRBuilder's insert
point.
llvm-svn: 297302
This patch also renames the PR number the test points to. The previous
reference was PR29559, but that bug was somehow deleted and recreated under
PR30183.
llvm-svn: 297295
Summary: Use AA when scanning to find an available load value.
Reviewers: rengolin, mcrosier, hfinkel, trentxintong, dberlin
Reviewed By: rengolin, dberlin
Subscribers: aemerson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D30352
llvm-svn: 297284
Recommitting patch which was previously reverted in r297159. These
changes should address the casting issues.
The original patch enables dbg.value intrinsics to be attached to
newly inserted PHI nodes.
Differential Review: https://reviews.llvm.org/D30701
llvm-svn: 297269
A block with an UnreachableInst does not transfer execution to a successor.
The problem was exposed by GVN-hoist. This patch fixes bug 32153.
Patch by Aditya Kumar.
Differential Revision: https://reviews.llvm.org/D30667
llvm-svn: 297254
Itanium ABI may have an address point one byte after the end of a
vtable. When such vtable global is split, the !type metadata needs to
follow the right vtable.
Differential Revision: https://reviews.llvm.org/D30716
llvm-svn: 297236
This was committed at r297155 and reverted at r297166 because of an
over-reaching clang test. That should be fixed with r297189.
This is one part of solving a recent bug report:
http://lists.llvm.org/pipermail/llvm-dev/2017-February/110293.html
This keeps with our general approach: changing arbitrary shuffles is off-limts,
but changing splat is ok. The transform is very similar to the existing
shrinkBitwiseLogic() canonicalization.
Differential Revision: https://reviews.llvm.org/D30123
llvm-svn: 297232
Summary:
The purpose of coro.end intrinsic is to allow frontends to mark the cleanup and
other code that is only relevant during the initial invocation of the coroutine
and should not be present in resume and destroy parts.
In landing pads coro.end is replaced with an appropriate instruction to unwind to
caller. The handling of coro.end differs depending on whether the target is
using landingpad or WinEH exception model.
For landingpad based exception model, it is expected that frontend uses the
`coro.end`_ intrinsic as follows:
```
ehcleanup:
%InResumePart = call i1 @llvm.coro.end(i8* null, i1 true)
br i1 %InResumePart, label %eh.resume, label %cleanup.cont
cleanup.cont:
; rest of the cleanup
eh.resume:
%exn = load i8*, i8** %exn.slot, align 8
%sel = load i32, i32* %ehselector.slot, align 4
%lpad.val = insertvalue { i8*, i32 } undef, i8* %exn, 0
%lpad.val29 = insertvalue { i8*, i32 } %lpad.val, i32 %sel, 1
resume { i8*, i32 } %lpad.val29
```
The `CoroSpit` pass replaces `coro.end` with ``True`` in the resume functions,
thus leading to immediate unwind to the caller, whereas in start function it
is replaced with ``False``, thus allowing to proceed to the rest of the cleanup
code that is only needed during initial invocation of the coroutine.
For Windows Exception handling model, a frontend should attach a funclet bundle
referring to an enclosing cleanuppad as follows:
```
ehcleanup:
%tok = cleanuppad within none []
%unused = call i1 @llvm.coro.end(i8* null, i1 true) [ "funclet"(token %tok) ]
cleanupret from %tok unwind label %RestOfTheCleanup
```
The `CoroSplit` pass, if the funclet bundle is present, will insert
``cleanupret from %tok unwind to caller`` before
the `coro.end`_ intrinsic and will remove the rest of the block.
Reviewers: majnemer
Reviewed By: majnemer
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D25543
llvm-svn: 297223
When expanding the set of uniform instructions beyond the seed instructions
(e.g., consecutive pointers), we mark a new instruction uniform if all its
loop-varying users are uniform. We should also allow users that are consecutive
or interleaved memory accesses. This fixes cases where we have an instruction
that is used as the pointer operand of a consecutive access but also used by a
non-memory instruction that later becomes uniform as part of the expansion.
llvm-svn: 297179
This reverts commit r296488.
As noted by David Blaikie on llvm-commits, I overlooked the case of a
debug function being inlined into a nodebug function being inlined
into a debug function.
llvm-svn: 297163
Summary:
We should check if loop size allows us to peel at least one iteration
before we do so.
Patch by Max Kazantsev!
Reviewers: sanjoy, mkuper, efriedma
Reviewed By: mkuper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30632
llvm-svn: 297122
Summary: We do not need that special handling because the debug info is more accurate now. Performance testing shows no regression on google internal benchmarks.
Reviewers: davidxl, aprantl
Reviewed By: aprantl
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D30658
llvm-svn: 297038
Any unsuccessful llvm.type.checked.load devirtualizations will be translated
into uses of llvm.type.test, so we need to add the resulting llvm.type.test
intrinsics to the function summaries so that the LowerTypeTests pass will
export them.
Differential Revision: https://reviews.llvm.org/D29808
llvm-svn: 296939
Summary:
If a loop contains a Phi node which has an invariant input from back
edge, it is profitable to peel such loops (rather than unroll them) to
use the advantage that this Phi is always invariant starting from 2nd
iteration. After the 1st iteration is peeled, other optimizations can
potentially simplify calculations with this invariant.
Patch by Max Kazantsev!
Reviewers: sanjoy, apilipenko, igor-laevsky, anna, mkuper, reames
Reviewed By: mkuper
Subscribers: mkuper, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D30161
llvm-svn: 296898
for VectorizeTree() API.This API uses it for proper mask computation to be used in shufflevector IR.
The fix is to compute the mask for out of order memory accesses while building the vectorizable tree
instead of actual vectorization of vectorizable tree.It also needs to recompute the proper Lane for
external use of vectorizable scalars based on shuffle mask.
Reviewers: mkuper
Differential Revision: https://reviews.llvm.org/D30159
Change-Id: Ide8773ce0ad3562f3cf4d1a0ad0f487e2f60ce5d
llvm-svn: 296863
Such edges may otherwise result in infinite recursion if a pointer to a vtable
is reachable from the vtable itself. This can happen in practice if a TU
defines the ABI types used to implement RTTI, and is itself compiled with RTTI.
Fixes PR32121.
llvm-svn: 296839
ValueTracking is used for more thorough analysis of operands. Based on the
analysis, either run-time checks can be simplified (e.g. check only one operand
instead of two) or the transformation can be avoided. For example, it is quite
often the case that a divisor is promoted from a shorter type and run-time
checks for it are redundant.
With additional compile-time analysis of values, two special cases naturally
arise and are addressed by the patch:
1) Both operands are known to be short enough. Then, the long division can be
simply replaced with a short one without CFG modification.
2) If a division is unsigned and the dividend is known to be short then the
long division is not needed at all. Because if the divisor is too big for
short division then the quotient is obviously zero (and the remainder is
equal to the dividend). Actually, the division is not needed when
(divisor > dividend).
Differential Revision: https://reviews.llvm.org/D29897
llvm-svn: 296832
and also "clang-format GenericDomTreeConstruction.h, since the current
formatting makes it look like their is a bug in the loop indentation, and there
is not"
This reverts commit r296535.
There are still some open design questions which I would like to discuss. I
revert this for Daniel (who gave the OK), as he is on vacation.
llvm-svn: 296812
Summary:
Extend -unroll-partial-threshold to 200 for runtime-loop3.ll test
as epilogue unroll initially add 1 more IV to the loop.
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 296803
This re-applies r289696, which caused TSan perf regression, which has
since been addressed in separate changes (see PR for details).
See PR31382.
llvm-svn: 296759
Summary:
When InstCombine is optimizing certain select-cmp-br patterns
it replaces the result of the select in uses outside of the
basic block containing the select. This is only legal if the
path from the select to the outside use is disjoint from all
other paths out from the originating basic block.
The problem found was that InstCombiner::replacedSelectWithOperand
did not consider the case when both edges out from the br pointed
to the same label. In that case the paths aren't disjoint and the
transformation is illegal. This patch avoids the faulty rewrites
by verifying that there is a single flow to the successor where
we want to replace uses.
Reviewers: llvm-commits, spatel, majnemer
Differential Revision: https://reviews.llvm.org/D30455
llvm-svn: 296752
After r296750, we're able to match interleaved accesses having types wider than
128 bits. This patch updates the associated TTI costs.
Differential Revision: https://reviews.llvm.org/D29675
llvm-svn: 296751
This patch teaches (ARM|AArch64)ISelLowering.cpp to match illegal vector types
to interleaved access intrinsics as long as the types are multiples of the
vector register width. A "wide" access will now be mapped to multiple
interleave intrinsics similar to the way in which non-interleaved accesses with
illegal types are legalized into multiple accesses. I'll update the associated
TTI costs (in getInterleavedMemoryOpCost) as a follow-on.
Differential Revision: https://reviews.llvm.org/D29466
llvm-svn: 296750
When computing the smallest and largest types for selecting the maximum
vectorization factor, we currently ignore loads and stores of pointer types if
the memory access is non-consecutive. We do this because such accesses must be
scalarized regardless of vectorization factor, and thus shouldn't be considered
when determining the factor. This patch makes this check less aggressive by
also considering non-consecutive accesses that may be vectorized, such as
interleaved accesses. Because we don't know at the time of the check if an
accesses will certainly be vectorized (this is a cost model decision given a
particular VF), we consider all accesses that can potentially be vectorized.
Differential Revision: https://reviews.llvm.org/D30305
llvm-svn: 296747
Now that terminators can be EH pads, this code needs to iterate over the
immediate dominators of the EH pad to find a valid insertion point.
Fix for PR32107
Patch by Robert Olliff!
Differential Revision: https://reviews.llvm.org/D30511
llvm-svn: 296698
Summary:
The SLP vectorizer should propagate IR-level optimization hints/flags
(nsw, nuw, exact, fast-math) when converting scalar horizontal
reductions instructions into vectors, just like for other vectorized
instructions.
It doe not include IR propagation for extra arguments, we need to handle
original scalar operations for extra args to propagate correct flags.
Reviewers: mkuper, mzolotukhin, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30418
llvm-svn: 296614
Summary:
We should preserve IR flags for extra args. These IR flags should be
taken from original scalar operations, not from the reduction
operations.
Reviewers: mkuper, mzolotukhin, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30447
llvm-svn: 296613
Summary:
If horizontal reduction tree starts from the binary operation that is
used in PHI node, but this PHI is not used in horizontal reduction, we
may end up with extra addition of this PHI node after vectorization.
Here is an example:
```
%phi = phi i32 [ %tmp, %end], ...
...
%tmp = add i32 %tmp1, %tmp2
end:
```
after vectorization we always have something like:
```
%phi = phi i32 [ %tmp, %end], ...
...
%red = extractelement <8 x 32> %vec.red, 0
%tmp = add i32 %red, %phi
end:
```
even if `%phi` is not used in reduction tree. Patch considers these PHI
nodes as extra arguments and considers them in the final result iff they
really used in reduction.
Reviewers: mkuper, hfinkel, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30409
llvm-svn: 296606
Summary:
Solves PR 31990.
The bad rewrite could replace a memcpy of one word with
store i4 -1
while it should actually be
store i8 -1
Hopefully opt and llc has improved enough so the original optimization
done by the code isn't needed anymore.
One already existing testcase is affected. It originally tested that
the memcpy was replaced with
load double
but since we now remove that rewrite it will be
load i64
instead.
Patch suggestion by Eli Friedman.
Reviewers: eli.friedman, majnemer, efriedma
Reviewed By: efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D30254
llvm-svn: 296585
The practice in LV is that we emit analysis remarks and then finally report
either a missed or applied remark on the final decision whether vectorization
is taking place. On this code path, we were closing with an analysis remark.
llvm-svn: 296578
for VectorizeTree() API.This API uses it for proper mask computation to be used in shufflevector IR.
The fix is to compute the mask for out of order memory accesses while building the vectorizable tree
instead of actual vectorization of vectorizable tree.
Reviewers: mkuper
Differential Revision: https://reviews.llvm.org/D30159
Change-Id: Id1e287f073fa4959713ba545fa4254db5da8b40d
llvm-svn: 296575
Summary:
Currently, our post-dom tree tries to ignore and remove the effects of
infinite loops. It fails miserably at this, because it tries to do it
ahead of time, and thus can only detect self-loops, and any other type
of infinite loop, it pretends doesn't exist at all.
This can, in a bunch of cases, lead to wrong answers and a completely
empty post-dom tree.
Wrong answer:
```
declare void foo()
define internal void @f() {
entry:
br i1 undef, label %bb35, label %bb3.i
bb3.i:
call void @foo()
br label %bb3.i
bb35.loopexit3:
br label %bb35
bb35:
ret void
}
```
We get:
```
Inorder PostDominator Tree:
[1] <<exit node>> {0,7}
[2] %bb35 {1,6}
[3] %bb35.loopexit3 {2,3}
[3] %entry {4,5}
```
This is a trivial modification of the testcase for PR 6047
Note that we pretend bb3.i doesn't exist.
We also pretend that bb35 post-dominates entry.
While it's true that it does not exit in a theoretical sense, it's not
really helpful to try to ignore the effect and pretend that bb35
post-dominates entry. Worse, we pretend the infinite loop does
nothing (it's usually considered a side-effect), and doesn't even
exist, even when it calls a function. Sadly, this makes it impossible
to use when you are trying to move code safely. All compilers also
create virtual or real single exit nodes (including us), and connect
infinite loops there (which this patch does). In fact, others have
worked around our behavior here, to the point of building their own
post-dom trees:
https://zneak.github.io/fcd/2016/02/17/structuring.html and pointing
out the region infrastructure is near-useless for them with postdom in
this state :(
Completely empty post-dom tree:
```
define void @spam() #0 {
bb:
br label %bb1
bb1: ; preds = %bb1, %bb
br label %bb1
bb2: ; No predecessors!
ret void
}
```
Printing analysis 'Post-Dominator Tree Construction' for function 'foo':
=============================--------------------------------
Inorder PostDominator Tree:
[1] <<exit node>> {0,1}
:(
(note that even if you ignore the effects of infinite loops, bb2
should be present as an exit node that post-dominates nothing).
This patch changes post-dom to properly handle infinite loops and does
root finding during calculation to prevent empty tress in such cases.
We match gcc's (and the canonical theoretical) behavior for infinite
loops (find the backedge, connect it to the exit block).
Testcases coming as soon as i finish running this on a ton of random graphs :)
Reviewers: chandlerc, davide
Subscribers: bryant, llvm-commits
Differential Revision: https://reviews.llvm.org/D29705
llvm-svn: 296535
Summary: For SamplePGO, the profile may contain cross-module inline stacks. As we need to make sure the profile annotation happens when all the hot inline stacks are expanded, we need to pass this info to the module importer so that it can import proper functions if necessary. This patch implemented this feature by emitting cross-module targets as part of function entry metadata. In the module-summary phase, the metadata is used to build call edges that points to functions need to be imported.
Reviewers: mehdi_amini, tejohnson
Reviewed By: tejohnson
Subscribers: davidxl, llvm-commits
Differential Revision: https://reviews.llvm.org/D30053
llvm-svn: 296498
The LLVM backend cannot produce any debug info for an llvm::Function
without a DISubprogram attachment. When inlining a debug-info-carrying
function into a nodebug function, there is therefore no reason to keep
any debug info intrinsic calls or debug locations on the instructions.
This fixes a problem discovered in PR32042.
rdar://problem/30679307
llvm-svn: 296488
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296416
This was suggested in D27855: have the inliner add assumptions, so we don't
lose nonnull info provided by argument attributes.
This still doesn't solve PR28430 (dyn_cast), but this gets us closer.
https://reviews.llvm.org/D29999
llvm-svn: 296366
This is a fix for a loop predication bug which resulted in malformed IR generation.
Loop invariant side of the widened condition is not guaranteed to be available in the preheader as is, so we need to expand it as well. See added unsigned_loop_0_to_n_hoist_length test for example.
Reviewed By: sanjoy, mkazantsev
Differential Revision: https://reviews.llvm.org/D30099
llvm-svn: 296345
Summary:
Previously we used to return a bogus result, 0, for IR like `ashr %val,
-1`.
I've also added an assert checking that `ComputeNumSignBits` at least
returns 1. That assert found an already checked in test case where we
were returning a bad result for `ashr %val, -1`.
Fixes PR32045.
Reviewers: spatel, majnemer
Reviewed By: spatel, majnemer
Subscribers: efriedma, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D30311
llvm-svn: 296273
Current internal option -static-func-full-module-prefix keeps all the
directory path the profile counter names for static functions. The default
of this option is false. This strips the directory names from the source
filename which is problematic:
(1) it creates linker errors for profile-generation compilation, exposed in
our internal benchmarks. We are seeing messages like
"warning: relocation refers to discarded section".
This is due to the name conflicts after the stripping.
(2) the stripping only applies to getPGOFuncName.
Current Thin-LTO module importing for the indirect-calls assumes
the source directory name not being stripped. Current default value
for this option can potentially prevent some inter-module
indirect-call-promotions.
This patch turns the default value for -static-func-full-module-prefix to true.
The second part of the patch is to have an alternative implementation under
the internal option -static-func-strip-dirname-prefix=<value>
This options specifies level of directories to be stripped from the source
filename. Using a large value as the parameter has the same effect as
-static-func-full-module-prefix.
Differential Revision: http://reviews.llvm.org/D29512
llvm-svn: 296206
When we construct addressing modes, we use isNoopAddrSpaceCast to ignore
addrspacecast instructions. Make sure we insert the correct addrspacecast
when we reconstruct the addressing mode.
Differential Revision: https://reviews.llvm.org/D30114
llvm-svn: 296167
This optimisation was crashing when there was a chain of more than one bitcast
instruction to replace, as a result of the changes in D27283.
Patch by James Price.
Differential Revision: https://reviews.llvm.org/D30347
llvm-svn: 296163
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296149
This patch merges the existing floating-point induction variable widening code
into the integer induction variable widening code, creating a single set of
functions for both kinds of inductions. The primary motivation for doing this
is to enable vector phi node creation for floating-point induction variables.
Differential Revision: https://reviews.llvm.org/D30211
llvm-svn: 296145
The Fuchsia ABI defines slots from the thread pointer where the
stack-guard value for stack-protector, and the unsafe stack pointer
for safe-stack, are stored. This parallels the Android ABI support.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D30237
llvm-svn: 296081
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296060
Summary: In case we do not know what the condition is in an unswitched loop, but we know its definitely NOT a known constant. We can perform simplifcations based on this information.
Reviewers: sanjoy, hfinkel, chenli, efriedma
Reviewed By: efriedma
Subscribers: david2050, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D28968
llvm-svn: 296041
While not CVP's fault, this caused miscompiles (PR31181). Reverting
until those are resolved.
(This also reverts the follow-ups r288154 and r288161 which removed the
flag.)
llvm-svn: 296030
Summary: SamplePGO uses branch_weight annotation to represent callsite hotness. When ICP promotes an indirect call to direct call, we need to make sure the direct call is annotated with branch_weight in SamplePGO mode, so that downstream function inliner can use hot callsite heuristic.
Reviewers: davidxl, eraman, xur
Reviewed By: davidxl, xur
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D30282
llvm-svn: 296028
In OptimizeAdd, we scan the operand list to see if there are any common factors
between operands that can be factored out to reduce the number of multiplies
(e.g., 'A*A+A*B*C+D' -> 'A*(A+B*C)+D'). For each operand of the operand list, we
only consider unique factors (which is tracked by the Duplicate set). Now if we
find a factor that is a negative constant, we add the negated value as a factor
as well, because we can percolate the negate out. However, we mistakenly don't
add this negated constant to the Duplicates set.
Consider the expression A*2*-2 + B. Obviously, nothing to factor.
For the added value A*2*-2 we over count 2 as a factor without this change,
which causes the assert reported in PR30256. The problem is that this code is
assuming that all the multiply operands of the add are already reassociated.
This change avoids the issue by making OptimizeAdd tolerate multiplies which
haven't been completely optimized; this sort of works, but we're doing wasted
work: we'll end up revisiting the add later anyway.
Another possible approach would be to enforce RPO iteration order more strongly.
If we have RedoInsts, we process them immediately in RPO order, rather than
waiting until we've finished processing the whole function. Intuitively, it
seems like the natural approach: reassociation works on expression trees, so
the optimization only works in one direction. That said, I'm not sure how
practical that is given the current Reassociate; the "optimal" form for an
expression depends on its use list (see all the uses of "user_back()"), so
Reassociate is really an iterative optimization of sorts, so any changes here
would probably get messy.
PR30256
Differential Revision: https://reviews.llvm.org/D30228
llvm-svn: 296003
Summary: The discriminator has been encoded, and only the base discriminator should be used during profile matching.
Reviewers: dblaikie, davidxl
Reviewed By: dblaikie, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30218
llvm-svn: 295999
result
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295972
result
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295956
result
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295949
Implement isLegalToVectorizeLoadChain for AMDGPU to avoid
producing private address spaces accesses that will need to be
split up later. This was doing the wrong thing in the case
where the queried chain was an even number of elements.
A possible <4 x i32> store was being split into
store <2 x i32>
store i32
store i32
rather than
store <2 x i32>
store <2 x i32>
when legal.
llvm-svn: 295933
Summary:
Depends on D29606 and D29682
Makes us pass GVN's edge.ll (we also will pass a few other testcases
they just need cleaning up).
Thoughts on the Predicate* hiearchy of classes especially welcome :)
(it's not clear to me how best to organize it, and currently, the getBlock* seems ... uglier than maybe wasting a field somewhere or something).
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29747
llvm-svn: 295889
After rL294814, LSR formula can have multiple SCEVAddRecExprs inside of its BaseRegs.
Previous canonicalization will swap the first SCEVAddRecExpr in BaseRegs with ScaledReg.
But now we want to swap the SCEVAddRecExpr Reg related with current loop with ScaledReg.
Otherwise, we may generate code like this: RegA + lsr.iv + RegB, where loop invariant
parts RegA and RegB are not grouped together and cannot be promoted outside of loop.
With this patch, it will ensure lsr.iv to be generated later in the expr:
RegA + RegB + lsr.iv, so that RegA + RegB can be promoted outside of loop.
Differential Revision: https://reviews.llvm.org/D26781
llvm-svn: 295884
Summary:
If the same value is used several times as an extra value, SLP
vectorizer takes it into account only once instead of actual number of
using.
For example:
```
int val = 1;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
val = val + input[y * 8 + x] + 3;
}
}
```
We have 2 extra rguments: `1` - initial value of horizontal reduction
and `3`, which is added 8*8 times to the reduction. Before the patch we
added `1` to the reduction value and added once `3`, though it must be
added 64 times.
Reviewers: mkuper, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30262
llvm-svn: 295868
Prevent memory objects of different address spaces to be part of
the same load/store groups when analysing interleaved accesses.
This is fixing pr31900.
Reviewers: HaoLiu, mssimpso, mkuper
Reviewed By: mssimpso, mkuper
Subscribers: llvm-commits, efriedma, mzolotukhin
Differential Revision: https://reviews.llvm.org/D29717
This reverts r295042 (re-applies r295038) with an additional fix for the
buildbot problem.
llvm-svn: 295858
Summary: The CallTargetProfile should be added to FProfile to be consistent with other profile readers.
Reviewers: dnovillo, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30233
llvm-svn: 295852
This enables peeling of loops with low dynamic iteration count by default,
when profile information is available.
Differential Revision: https://reviews.llvm.org/D27734
llvm-svn: 295796
This is part of trying to clean up our handling of min/max patterns in IR.
By converting these to canonical form, we're more likely to recognize them
because there are various places in InstCombine that don't use
matchSelectPattern or m_SMax and friends.
The backend fixups referenced in the now deleted TODO comment were added with:
https://reviews.llvm.org/rL291392https://reviews.llvm.org/rL289738
If there's any codegen fallout from this change, we should be able to address
it in DAGCombiner or target-specific lowering.
llvm-svn: 295758
Summary:
This is a fix for assertion failure in
`getInverseMinMaxSelectPattern` when ABS is passed in as a select pattern.
We should not be invoking the simplification rule for
ABS(MIN(~ x,y))) or ABS(MAX(~x,y)) combinations.
Added a test case which would cause an assertion failure without the patch.
Reviewers: sanjoy, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30051
llvm-svn: 295719
The new method introduced under "-lsr-exp-narrow" option (currenlty set to true).
Summary:
The method is based on registers number mathematical expectation and should be
generally closer to optimal solution.
Please see details in comments to
"LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas()" function
(in lib/Transforms/Scalar/LoopStrengthReduce.cpp).
Reviewers: qcolombet
Differential Revision: http://reviews.llvm.org/D29862
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 295704
Summary: This begins using the predicateinfo pass in NewGVN.
Reviewers: davide
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D29682
llvm-svn: 295583
Changing to 'or' (rather than 'xor' when no wrapping flags are set)
allows icmp simplifies to happen as expected.
Differential Revision: https://reviews.llvm.org/D29729
llvm-svn: 295574
The change to InstCombine in:
https://reviews.llvm.org/D29729
...exposes this missing fold in InstSimplify, so adding this
first to avoid a regression.
llvm-svn: 295573
A line number doesn't make much sense if you don't say where it's
from. Add a verifier check for this and update some tests that had
bogus debug info.
llvm-svn: 295516
A future change will cause this byte offset to be inttoptr'd and then exported
via an absolute symbol. On the importing end we will expect the symbol to be
in range [0,2^32) so that it will fit into a 32-bit relocation. The problem
is that on 64-bit architectures if the offset is negative it will not be in
the correct range once we inttoptr it.
This change causes us to use a 32-bit integer so that it can be inttoptr'd
(which zero extends) into the correct range.
Differential Revision: https://reviews.llvm.org/D30016
llvm-svn: 295487
We previously only created a vector phi node for an induction variable if its
step had a constant integer type. However, the step actually only needs to be
loop-invariant. We only handle inductions having loop-invariant steps, so this
patch should enable vector phi node creation for all integer induction
variables that will be vectorized.
Differential Revision: https://reviews.llvm.org/D29956
llvm-svn: 295456
Summary:
JumpThreading for guards feature has been reverted at https://reviews.llvm.org/rL295200
due to the following problem: the feature used the following algorithm for detection of
diamond patters:
1. Find a block with 2 predecessors;
2. Check that these blocks have a common single parent;
3. Check that the parent's terminator is a branch instruction.
The problem is that these checks are insufficient. They may pass for a non-diamond
construction in case if those two predecessors are actually the same block. This may
happen if parent's terminator is a br (either conditional or unconditional) to a block
that ends with "switch" instruction with exactly two branches going to one block.
This patch re-enables the JumpThreading for guards and fixes this issue by adding the
check that those found predecessors are actually different blocks. This guarantees that
parent's terminator is a conditional branch with exactly 2 different successors, which
is now ensured by assertions. It also adds two more tests for this situation (with parent's
terminator being a conditional and an unconditional branch).
Patch by Max Kazantsev!
Reviewers: anna, sanjoy, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30036
llvm-svn: 295410
In rL294814, we allow formula with SCEVAddRecExpr type of Reg from loops
other than current loop. This is good for the case when induction variable
of outerloop being used in expr in innerloop. But it is very bad to allow
such Reg from sibling loop because we may need to add lsr.iv in other sibling
loops when scev expanding those SCEVAddRecExpr type exprs. For the testcase
below, one loop can be inserted with a bunch of lsr.iv because of LSR for
other loops.
// The induction variable j from a loop in the middle will have initial
// value generated from previous sibling loop and exit value used by its
// next sibling loop.
void goo(long i, long j);
long cond;
void foo(long N) {
long i = 0;
long j = 0;
i = 0; do { goo(i, j); i++; j++; } while (cond);
i = 0; do { goo(i, j); i++; j++; } while (cond);
i = 0; do { goo(i, j); i++; j++; } while (cond);
i = 0; do { goo(i, j); i++; j++; } while (cond);
i = 0; do { goo(i, j); i++; j++; } while (cond);
i = 0; do { goo(i, j); i++; j++; } while (cond);
}
The fix is to only allow formula with SCEVAddRecExpr type of Reg from current
loop or its parents.
Differential Revision: https://reviews.llvm.org/D30021
llvm-svn: 295378
This is a short term solution to the problem that many passes currently fail
to update the assumption cache. In the long term the verifier should not
be controllable with a flag. We should either fix all passes to correctly
update the assumption cache and enable the verifier unconditionally or
somehow arrange for the assumption list to be updated automatically by passes.
Differential Revision: https://reviews.llvm.org/D30003
llvm-svn: 295236
Multiple blocks in the callee can be mapped to a single cloned block
since we prune the callee as we clone it. The existing code
iterates over the value map and clones the block frequency (and
eventually scales the frequencies of the cloned blocks). Value map's
iteration is not deterministic and so the cloned block might get the
frequency of any of the original blocks. The fix is to set the max of
the original frequencies to the cloned block. The first block in the
sequence must have this max frequency and, in the call context,
subsequent blocks must have its frequency.
Differential Revision: https://reviews.llvm.org/D29696
llvm-svn: 295115
Group calls into constant and non-constant arguments up front, and use uint64_t
instead of ConstantInt to represent constant arguments. The goal is to allow
the information from the summary to fit naturally into this data structure in
a future change (specifically, it will be added to CallSiteInfo).
This has two side effects:
- We disallow VCP for constant integer arguments of width >64 bits.
- We remove the restriction that the bitwidth of a vcall's argument and return
types must match those of the vfunc definitions.
I don't expect either of these to matter in practice. The first case is
uncommon, and the second one will lead to UB (so we can do anything we like).
Differential Revision: https://reviews.llvm.org/D29744
llvm-svn: 295110
Summary:
When setting debugloc for instructions created in SplitBlockPredecessors, current implementation copies debugloc from the first-non-phi instruction of the original basic block. However, if the first-non-phi instruction is a call for @llvm.dbg.value, the debugloc of the instruction may point the location outside of the block itself. For the example code of
```
1 typedef struct _node_t {
2 struct _node_t *next;
3 } node_t;
4
5 extern node_t *root;
6
7 int foo() {
8 node_t *node, *tmp;
9 int ret = 0;
10
11 node = tmp = root->next;
12 while (node != root) {
13 while (node) {
14 tmp = node;
15 node = node->next;
16 ret++;
17 }
18 }
19
20 return ret;
21 }
```
, below is the basicblock corresponding to line 12 after Reassociate expressions pass:
```
while.cond: ; preds = %while.cond2, %entry
%node.0 = phi %struct._node_t* [ %1, %entry ], [ null, %while.cond2 ]
%ret.0 = phi i32 [ 0, %entry ], [ %ret.1, %while.cond2 ]
tail call void @llvm.dbg.value(metadata i32 %ret.0, i64 0, metadata !19, metadata !20), !dbg !21
tail call void @llvm.dbg.value(metadata %struct._node_t* %node.0, i64 0, metadata !11, metadata !20), !dbg !31
%cmp = icmp eq %struct._node_t* %node.0, %0, !dbg !33
br i1 %cmp, label %while.end5, label %while.cond2, !dbg !35
```
As you can see, the first-non-phi instruction is a call for @llvm.dbg.value, and the debugloc is
```
!21 = !DILocation(line: 9, column: 7, scope: !6)
```
, which is a definition of 'ret' variable and outside of the scope of the basicblock itself. However, current implementation picks up this debugloc for the instructions created in SplitBlockPredecessors. This patch addresses this problem by picking up debugloc from the first-non-phi-non-dbg instruction.
Reviewers: dblaikie, samsonov, eugenis
Reviewed By: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29867
llvm-svn: 295106
This reverts 295092 (re-applies 295084), with a fix for dangling
references from the array of coverage names passed down from frontends.
I missed this in my initial testing because I only checked test/Profile,
and not test/CoverageMapping as well.
Original commit message:
The profile name variables passed to counter increment intrinsics are dead
after we emit the finalized name data in __llvm_prf_nm. However, we neglect to
erase these name variables. This causes huge size increases in the
__TEXT,__const section as well as slowdowns when linker dead stripping is
disabled. Some affected projects are so massive that they fail to link on
Darwin, because only the small code model is supported.
Fix the issue by throwing away the name constants as soon as we're done with
them.
Differential Revision: https://reviews.llvm.org/D29921
llvm-svn: 295099
The profile name variables passed to counter increment intrinsics are
dead after we emit the finalized name data in __llvm_prf_nm. However, we
neglect to erase these name variables. This causes huge size increases
in the __TEXT,__const section as well as slowdowns when linker dead
stripping is disabled. Some affected projects are so massive that they
fail to link on Darwin, because only the small code model is supported.
Fix the issue by throwing away the name constants as soon as we're done
with them.
Differential Revision: https://reviews.llvm.org/D29921
llvm-svn: 295084
Summary:
As written in the comments above, LastCallToStaticBonus is already applied to
the cost if Caller has only one user, so it is redundant to reapply the bonus
here.
If the only user is not a caller, TotalSecondaryCost will not be adjusted
anyway because callerWillBeRemoved is false. If there's no caller at all, we
don't need to care about TotalSecondaryCost because
inliningPreventsSomeOuterInline is false.
Reviewers: chandlerc, eraman
Reviewed By: eraman
Subscribers: haicheng, davidxl, davide, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D29169
llvm-svn: 295075
This reapplies commit r294967 with a fix for the execution time regressions
caught by the clang-cmake-aarch64-quick bot. We now extend the truncate
optimization to non-primary induction variables only if the truncate isn't
already free.
Differential Revision: https://reviews.llvm.org/D29847
llvm-svn: 295063
back into a vector
Previously the cost of the existing ExtractElement/ExtractValue
instructions was considered as a dead cost only if it was detected that
they have only one use. But these instructions may be considered
dead also if users of the instructions are also going to be vectorized,
like:
```
%x0 = extractelement <2 x float> %x, i32 0
%x1 = extractelement <2 x float> %x, i32 1
%x0x0 = fmul float %x0, %x0
%x1x1 = fmul float %x1, %x1
%add = fadd float %x0x0, %x1x1
```
This can be transformed to
```
%1 = fmul <2 x float> %x, %x
%2 = extractelement <2 x float> %1, i32 0
%3 = extractelement <2 x float> %1, i32 1
%add = fadd float %2, %3
```
because though `%x0` and `%x1` have 2 users each other, these users are
part of the vectorized tree and we can consider these `extractelement`
instructions as dead.
Differential Revision: https://reviews.llvm.org/D29900
llvm-svn: 295056
Prevent memory objects of different address spaces to be part of
the same load/store groups when analysing interleaved accesses.
This is fixing pr31900.
Reviewers: HaoLiu, mssimpso, mkuper
Reviewed By: mssimpso, mkuper
Subscribers: llvm-commits, efriedma, mzolotukhin
Differential Revision: https://reviews.llvm.org/D29717
llvm-svn: 295038
Summary:
Function isCompatibleIVType is already used as a guard before the call to
SE.getMinusSCEV(OperExpr, PrevExpr);
in LSRInstance::ChainInstruction. getMinusSCEV requires the expressions
to be of the same type, so we now consider two pointers with different
address spaces to be incompatible, since it is possible that the pointers
in fact have different sizes.
Reviewers: qcolombet, eli.friedman
Reviewed By: qcolombet
Subscribers: nhaehnle, Ka-Ka, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D29885
llvm-svn: 295033
Extend our store promotion code to deal with unordered atomic accesses. Ordered atomics continue to be unhandled.
Most of the change is straight-forward, the only complicated bit is in the reasoning around mixing of atomic and non-atomic memory access. Rather than trying to reason about the complex semantics in these cases, I simply disallowed promotion when both atomic and non-atomic accesses are present. This is conservatively correct.
It seems really tempting to just promote all access to atomics, but the original accesses might have been conditional. Since we can't lower an arbitrary atomic type, it might not be safe to promote all access to atomic. Consider a loop like the following:
while(b) {
load i128 ...
if (can lower i128 atomic)
store atomic i128 ...
else
store i128
}
It could be there's no race on the location and thus the code is perfectly well defined even if we can't lower a i128 atomically.
It's not clear we need to be this conservative - arguably the program above is brocken since it can't be lowered unless the branch is folded - but I didn't want to have to fix any fallout which might result.
Differential Revision: https://reviews.llvm.org/D15592
llvm-svn: 295015
Make the whole thing testable by adding YAML I/O support for the WPD
summary information and adding some negative tests that exercise the
YAML support.
Differential Revision: https://reviews.llvm.org/D29782
llvm-svn: 294981
This reverts commit r294967. This patch caused execution time slowdowns in a
few LLVM test-suite tests, as reported by the clang-cmake-aarch64-quick bot.
I'm reverting to investigate.
llvm-svn: 294973
This patch extends the optimization of truncations whose operand is an
induction variable with a constant integer step. Previously we were only
applying this optimization to the primary induction variable. However, the cost
model assumes the optimization is applied to the truncation of all integer
induction variables (even regardless of step type). The transformation is now
applied to the other induction variables, and I've updated the cost model to
ensure it is better in sync with the transformation we actually perform.
Differential Revision: https://reviews.llvm.org/D29847
llvm-svn: 294967
reductions.
Currently, LLVM supports vectorization of horizontal reduction
instructions with initial value set to 0. Patch supports vectorization
of reduction with non-zero initial values. Also, it supports a
vectorization of instructions with some extra arguments, like:
```
float f(float x[], int a, int b) {
float p = a % b;
p += x[0] + 3;
for (int i = 1; i < 32; i++)
p += x[i];
return p;
}
```
Patch allows vectorization of this kind of horizontal reductions.
Differential Revision: https://reviews.llvm.org/D29727
llvm-svn: 294934
Summary:
This adds support for placing predicateinfo such that it affects critical edges.
This fixes the issues mentioned by Nuno on the mailing list.
Depends on D29519
Reviewers: davide, nlopes
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29606
llvm-svn: 294921
proven larger than the loop-count
This fixes PR31098: Try to resolve statically data-dependences whose
compile-time-unknown distance can be proven larger than the loop-count,
instead of resorting to runtime dependence checking (which are not always
possible).
For vectorization it is sufficient to prove that the dependence distance
is >= VF; But in some cases we can prune unknown dependence distances early,
and even before selecting the VF, and without a runtime test, by comparing
the distance against the loop iteration count. Since the vectorized code
will be executed only if LoopCount >= VF, proving distance >= LoopCount
also guarantees that distance >= VF. This check is also equivalent to the
Strong SIV Test.
Reviewers: mkuper, anemet, sanjoy
Differential Revision: https://reviews.llvm.org/D28044
llvm-svn: 294892
it is dead or unreachable, as it should be.
This also makes the leader of INITIAL undef, enabling us to handle
irreducibility properly.
Summary:
This lets us verify, more than we do now, that we didn't screw up
value numbering.
Reviewers: davide
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D29842
llvm-svn: 294844
Summary:
The patch adds instructions number generated by a solution
to LSR cost under "-lsr-insns-cost" option.
Reviewers: qcolombet, hfinkel
Differential Revision: http://reviews.llvm.org/D28307
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 294821
There are no vldN/vstN f16 variants, even with +fullfp16.
We could use the i16 variants, but, in practice, even with +fullfp16,
the f16 sequence leading to the i16 shuffle usually gets scalarized.
We'd need to improve our support for f16 codegen before getting there.
Teach the cost model to consider f16 interleaved operations as
expensive. Otherwise, we are all but guaranteed to end up with
a large block of scalarized vector code.
llvm-svn: 294819
There are no vldN/vstN f16 variants, even with +fullfp16.
We could use the i16 variants, but, in practice, even with +fullfp16,
the f16 sequence leading to the i16 shuffle usually gets scalarized.
We'd need to improve our support for f16 codegen before getting there.
Reject f16 interleaved accesses. If we try to emit the f16 intrinsics,
we'll just end up with a selection failure.
llvm-svn: 294818
The recommit includes some changes of testcases. No functional change to the patch.
In RateRegister of existing LSR, if a formula contains a Reg which is a SCEVAddRecExpr,
and this SCEVAddRecExpr's loop is an outerloop, the formula will be marked as Loser
and dropped.
Suppose we have an IR that %for.body is outerloop and %for.body2 is innerloop. LSR only
handle inner loop now so only %for.body2 will be handled.
Using the logic above, formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) will be dropped
no matter what because reg({1,+, %size}<%for.body>) is a SCEVAddRecExpr type reg related
with outerloop. Only formula like
reg(%array) + 1*reg({{1,+, %size}<%for.body>,+,1}<nuw><nsw><%for.body2>) will be kept
because the SCEVAddRecExpr related with outerloop is folded into the initial value of the
SCEVAddRecExpr related with current loop.
But in some cases, we do need to share the basic induction variable
reg{0 ,+, 1}<%for.body2> among LSR Uses to reduce the final total number of induction
variables used by LSR, so we don't want to drop the formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) unconditionally.
From the existing comment, it tries to avoid considering multiple level loops at the same time.
However, existing LSR only handles innermost loop, so for any SCEVAddRecExpr with a loop other
than current loop, it is an invariant and will be simple to handle, and the formula doesn't have
to be dropped.
Differential Revision: https://reviews.llvm.org/D26429
llvm-svn: 294814
For function-scope variables with large initialisation list, FE usually
generates a global variable to hold the initializer, then generates
memcpy intrinsic to initialize the alloca. InstCombiner::visitAllocaInst
identifies such allocas which are accessed only by reading and replaces
them with the global variable. This is done by casting the global variable
to the type of the alloca and replacing all references.
However, when the global variable is in a different address space which
is disjoint with addr space 0 (e.g. for IR generated from OpenCL,
global variable cannot be in private addr space i.e. addr space 0), casting
the global variable to addr space 0 results in invalid IR for certain
targets (e.g. amdgpu).
To fix this issue, when the global variable is not in addr space 0,
instead of casting it to addr space 0, this patch chases down the uses
of alloca until reaching the load instructions, then replaces load from
alloca with load from the global variable. If during the chasing
bitcast and GEP are encountered, new bitcast and GEP based on the global
variable are generated and used in the load instructions.
Differential Revision: https://reviews.llvm.org/D27283
llvm-svn: 294786
Summary:
This patch starts the implementation as discuss in the following RFC: http://lists.llvm.org/pipermail/llvm-dev/2016-October/106532.html
When optimization duplicates code that will scale down the execution count of a basic block, we will record the duplication factor as part of discriminator so that the offline process tool can find the duplication factor and collect the accurate execution frequency of the corresponding source code. Two important optimization that fall into this category is loop vectorization and loop unroll. This patch records the duplication factor for these 2 optimizations.
The recording will be guarded by a flag encode-duplication-in-discriminators, which is off by default.
Reviewers: probinson, aprantl, davidxl, hfinkel, echristo
Reviewed By: hfinkel
Subscribers: mehdi_amini, anemet, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26420
llvm-svn: 294782
We previously only created a vector phi node for an induction variable if its
type matched the type of the canonical induction variable.
Differential Revision: https://reviews.llvm.org/D29776
llvm-svn: 294755
Chandler mentioned at the last social that the need for BFI in the new pass manager was causing a slight hiccup for this pass. Given this code has been checked in, but off for over a year, it makes sense to just remove it for now.
Note that there's nothing wrong with the general idea - it's actually a quite good one - and once we have the infrastructure in place to implement this without the full recompuation on every loop, we absolutely should.
llvm-svn: 294715
Now that the call graph supports efficient replacement of a function and
spurious reference edges, we can port ArgumentPromotion to the new pass
manager very easily.
The old PM-specific bits are sunk into callbacks that the new PM simply
doesn't use. Unlike the old PM, the new PM simply does argument
promotion and afterward does the update to LCG reflecting the promoted
function.
Differential Revision: https://reviews.llvm.org/D29580
llvm-svn: 294667
This fold already existed for vectors but only when 'C1' was a splat
constant (but 'C2' could be any constant).
There were no tests for any vector constants, so I'm adding a test
that shows non-splat constants for both operands.
llvm-svn: 294650
Summary:
This patch allows JumpThreading also thread through guards.
Virtually, guard(cond) is equivalent to the following construction:
if (cond) { do something } else {deoptimize}
Yet it is not explicitly converted into IFs before lowering.
This patch enables early threading through guards in simple cases.
Currently it covers the following situation:
if (cond1) {
// code A
} else {
// code B
}
// code C
guard(cond2)
// code D
If there is implication cond1 => cond2 or !cond1 => cond2, we can transform
this construction into the following:
if (cond1) {
// code A
// code C
} else {
// code B
// code C
guard(cond2)
}
// code D
Thus, removing the guard from one of execution branches.
Patch by Max Kazantsev!
Reviewers: reames, apilipenko, igor-laevsky, anna, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29620
llvm-svn: 294617
It turns out that some of our negative tests were not in fact providing the
test coverage we expected: they were passing because the vtables were failing
an early check that they were constant. Fix this by changing the globals in
these tests to constants.
llvm-svn: 294550
This module will contain nothing but vtable definitions and (soon)
available_externally function definitions, so there is no point in keeping
debug info in the module.
Differential Revision: https://reviews.llvm.org/D28913
llvm-svn: 294511
Making the cost model selecting between Interleave, GatherScatter or Scalar vectorization form of memory instruction.
The right decision should be done for non-consecutive memory access instrcuctions that may have more than one vectorization solution.
This patch includes the following changes:
- Cost Model calculates the cost of Load/Store vector form and choose the better option between Widening, Interleave, GatherScactter and Scalarization. Cost Model keeps the widening decision.
- Arrays of Uniform and Scalar values are moved from Legality to Cost Model.
- Cost Model collects Uniforms and Scalars per VF. The collection is based on CM decision map of Loadis/Stores vectorization form.
- Vectorization of memory instruction is performed according to the CM decision.
Differential Revision: https://reviews.llvm.org/D27919
llvm-svn: 294503
This test is under 'ArgumentPromotion' but there are no arguments that
get promoted in the test case, so there seems to be no point. Also,
there are no assertions about the output at all, so this seems like
something we should just delete given the low value.
llvm-svn: 294428
renaming things to at least have somewhat spelled out names, and even
have meaningful names where I could guess at what they should be.
Also add FileCheck assertions that we're actually doing what we set out
to do for some of the tests, for example not promoting a type that would
result in infinite promotion.
llvm-svn: 294426
Currently IRCE relies on the loops it transforms to be (semantically) of
the form:
for (i = START; i < END; i++)
...
or
for (i = START; i > END; i--)
...
However, we were not verifying the presence of the START < END entry
check (i.e. check before the first iteration). We were only verifying
that the backedge was guarded by (i + 1) < END.
Usually this would work "fine" since (especially in Java) most loops do
actually have the START < END check, but of course that is not
guaranteed.
llvm-svn: 294375
Summary:
This patch adds a utility to build extended SSA (see "ABCD: eliminating
array bounds checks on demand"), and an intrinsic to support it. This
is then used to get functionality equivalent to propagateEquality in
GVN, in NewGVN (without having to replace instructions as we go). It
would work similarly in SCCP or other passes. This has been talked
about a few times, so i built a real implementation and tried to
productionize it.
Copies are inserted for operands used in assumes and conditional
branches that are based on comparisons (see below for more)
Every use affected by the predicate is renamed to the appropriate
intrinsic result.
E.g.
%cmp = icmp eq i32 %x, 50
br i1 %cmp, label %true, label %false
true:
ret i32 %x
false:
ret i32 1
will become
%cmp = icmp eq i32, %x, 50
br i1 %cmp, label %true, label %false
true:
; Has predicate info
; branch predicate info { TrueEdge: 1 Comparison: %cmp = icmp eq i32 %x, 50 }
%x.0 = call @llvm.ssa_copy.i32(i32 %x)
ret i32 %x.0
false:
ret i23 1
(you can use -print-predicateinfo to get an annotated-with-predicateinfo dump)
This enables us to easily determine what operations are affected by a
given predicate, and how operations affected by a chain of
predicates.
Reviewers: davide, sanjoy
Subscribers: mgorny, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D29519
Update for review comments
Fix a bug Nuno noticed where we are giving information about and/or on edges where the info is not useful and easy to use wrong
Update for review comments
llvm-svn: 294351
This patch removes unneeded instructions from the existing ARM/AArch64
interleaved access cost model tests. I'll be adding a similar set of tests in a
follow-on patch to increase coverage.
llvm-svn: 294336
This reverts commit r294250. It caused PR31891.
Add a test case that shows that inlinable calls retain location
information with an accurate scope.
llvm-svn: 294317
Summary: Checking CS.getCalledFunction() == nullptr does not necessary indicate indirect call. We also need to check if CS.getCalledValue() is not a constant.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29570
llvm-svn: 294260
This breaks when one of the extra values is also a scalar that
participates in the same vectorization tree which we'll end up
reducing.
llvm-svn: 294245
In ValueMapper we create new operands for MDNodes and
rely on MDNode::replaceWithUniqued to create a new MDNode
with the specified operands. However this doesn't always
actually happen correctly for DISubprograms because when we
uniquify the new node, we only odr-compare it with existing nodes
(MDNodeSubsetEqualImpl<DISubprogram>::isDeclarationOfODRMember). Although
the TemplateParameters field can refer to a distinct DICompileUnit via
DITemplateTypeParameter::type -> DICompositeType::scope -> DISubprogram::unit,
it is not currently included in the odr comparison. As a result, we can end
up getting our original DISubprogram back, which means we will have a cloned
module referring to the DICompileUnit in the original module, which causes
a verification error.
The fix I implemented was to consider TemplateParameters to be one of the
odr-equal properties. But I'm a little uncomfortable with this. In general it
seems unsound to rely on distinct MDNodes never being reachable from nodes
which we only check odr-equality of. My only long term suggestion would be
to separate odr-uniquing from full uniquing.
Differential Revision: https://reviews.llvm.org/D29240
llvm-svn: 294240
Summary: When type casting of the return value is needed, promoteIndirectCall will return the type casting instruction instead of the direct call. This patch changed to return the direct call instruction instead.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29569
llvm-svn: 294205
tests.
This also removes the use of instcombine as we can max the patterns
produced by argument promotion directly with the more powerful tools in
FileCheck.
llvm-svn: 294174
This patch is based on the llvm-dev discussion here:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/109631.html
Folding to i1 should always be desirable because that's better for value tracking
and we have special folds for i1 types.
I checked for other users of shouldChangeType() where this might have an effect,
but we already handle the i1 case differently than other types in all of those cases.
Side note: the default datalayout includes i1, so it seems we only find this gap in
shouldChangeType + phi folding for the case when there is (1) an explicit datalayout
without i1, (2) casting to i1 from a legal type, and (3) a phi with exactly 2 incoming
casted operands (as Björn mentioned).
Differential Revision: https://reviews.llvm.org/D29336
llvm-svn: 294066
The code comments didn't match the code logic, and we didn't actually distinguish the fake unary (not/neg/fneg)
operators from arguments. Adding another level to the weighting scheme provides more structure and can help
simplify the pattern matching in InstCombine and other places.
I fixed regressions that would have shown up from this change in:
rL290067
rL290127
But that doesn't mean there are no pattern-matching logic holes left; some combines may just be missing regression tests.
Should fix:
https://llvm.org/bugs/show_bug.cgi?id=28296
Differential Revision: https://reviews.llvm.org/D27933
llvm-svn: 294049
This generalizes memory access sorting to use differences between SCEVs,
instead of relying on constant offsets. That allows us to properly do
SLP vectorization of non-sequentially ordered loads within loops bodies.
Differential Revision: https://reviews.llvm.org/D29425
llvm-svn: 294027
Currently LLVM supports vectorization of horizontal reduction
instructions with initial value set to 0. Patch supports vectorization
of reduction with non-zero initial values. Also it supports a
vectorization of instructions with some extra arguments, like:
float f(float x[], int a, int b) {
float p = a % b;
p += x[0] + 3;
for (int i = 1; i < 32; i++)
p += x[i];
return p;
}
Patch allows vectorization of this kind of horizontal reductions.
Differential Revision: https://reviews.llvm.org/D28961
llvm-svn: 293994
Exit loop analysis early if suitable private access found.
Do not account for GEPs which are invariant to loop induction variable.
Do not account for Allocas which are too big to fit into register file anyway.
Add option for tuning: -amdgpu-unroll-threshold-private.
Differential Revision: https://reviews.llvm.org/D29473
llvm-svn: 293991
Summary: While scanning predecessors to find an available loaded value, if the predecessor has a single predecessor, we can continue scanning through the single predecessor.
Reviewers: mcrosier, rengolin, reames, davidxl, haicheng
Reviewed By: rengolin
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D29200
llvm-svn: 293896
Summary:
We can hoist out loads that are dominated by invariant.start, to the preheader.
We conservatively assume the load is variant, if we see a corresponding
use of invariant.start (it could be an invariant.end or an escaping
call).
Reviewers: mkuper, sanjoy, reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29331
llvm-svn: 293887
Although this is 'no-functional-change-intended', I'm adding tests
for shl-shl and lshr-lshr pairs because there is no existing test
coverage for those folds.
It seems like we should be able to remove some code from foldShiftedShift()
at this point because we're handling those patterns on the general path.
llvm-svn: 293814
This tries to address what Hal defined (in the post-commit review of
r293727) a long-standing problem with noinline, where we end up
de facto inlining trivial functions e.g.
__attribute__((noinline)) int patatino(void) { return 5; }
because of return value propagation.
llvm-svn: 293799
Summary:
If there are two adjacent guards with different conditions, we can
remove one of them and include its condition into the condition of
another one. This patch allows InstCombine to merge them by the
following pattern:
guard(a); guard(b) -> guard(a & b).
Reviewers: reames, apilipenko, igor-laevsky, anna, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29378
llvm-svn: 293778
A program may contain llvm.assume info that disagrees with other analysis.
This may be caused by UB in the program, so we must not crash because of that.
As noted in the code comments:
https://llvm.org/bugs/show_bug.cgi?id=31809
...we can do better, but this at least avoids the assert/crash in the bug report.
Differential Revision: https://reviews.llvm.org/D29395
llvm-svn: 293773
Fix a bug where we would construct shufflevector instructions addressing
invalid elements.
Differential Revision: https://reviews.llvm.org/D29313
llvm-svn: 293673
Summary: In iterative sample pgo where profile is collected from PGOed binary, we may see indirect call targets promoted and inlined in the profile. Before profile annotation, we need to make this happen in order to annotate correctly on IR. This patch explicitly promotes these indirect calls and inlines them before profile annotation.
Reviewers: xur, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29040
llvm-svn: 293657
transformToIndexedCompare
If they don't have the same type, the size of the constant
index would need to be adjusted (and this wouldn't be always
possible).
Alternatively we could try the analysis with the initial
RHS value, which would guarantee that the two sides have
the same type. However it is unlikely that in practice this
would pass our transformation requirements.
Fixes PR31808 (https://llvm.org/bugs/show_bug.cgi?id=31808).
llvm-svn: 293629
For now just port some of the existing NVPTX tests
and from an old HSAIL optimization pass which
approximately did the same thing.
Don't enable the pass yet until more testing is done.
llvm-svn: 293580
For targets with different addressing modes in each address space,
if this is dropped querying isLegalAddressingMode later with this
will give a nonsense result, breaking the isLegalUse assertions.
This is a candidate for the 4.0 release branch.
llvm-svn: 293542
This reverts commit r293196
Besides making things look nicer, ATM, we'd like to preserve analysis
more than we'd like to destroy the CFG. We'll probably revisit in the future
llvm-svn: 293501
The original shift is bigger, so this may qualify as 'obvious',
but here's an attempt at an Alive-based proof:
Name: exact
Pre: (C1 u< C2)
%a = shl i8 %x, C1
%b = lshr exact i8 %a, C2
=>
%c = lshr exact i8 %x, C2 - C1
%b = and i8 %c, ((1 << width(C1)) - 1) u>> C2
Optimization is correct!
llvm-svn: 293498
The jumbled scalar loads will be sorted while building the tree and these accesses will be marked to generate shufflevector after the vectorized load with proper mask.
Reviewers: hfinkel, mssimpso, mkuper
Differential Revision: https://reviews.llvm.org/D26905
Change-Id: I9c0c8e6f91a00076a7ee1465440a3f6ae092f7ad
llvm-svn: 293386
Summary: Along with https://reviews.llvm.org/D27804, debug locations need to be merged when hoisting store instructions as well. Not sure if just dropping debug locations would make more sense for this case, but as the branch instruction will have at least different discriminator with the hoisted store instruction, I think there will be no difference in practice.
Reviewers: aprantl, andreadb, danielcdh
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29062
llvm-svn: 293372
This is a minimal patch to avoid the infinite loop in:
https://llvm.org/bugs/show_bug.cgi?id=31751
But the general problem is bigger: we're not canonicalizing all of the min/max forms reported
by value tracking's matchSelectPattern(), and we don't define min/max consistently. Some code
uses matchSelectPattern(), other code uses matchers like m_Umax, and others have their own
inline definitions which may be subtly different from any of the above.
The reason that the test cases in this patch need a cast op to trigger is because we don't
(yet) canonicalize all min/max forms based on matchSelectPattern() in
canonicalizeMinMaxWithConstant(), but we do make min/max+cast transforms based on
matchSelectPattern() in visitSelectInst().
The location of the icmp transforms that trigger the inf-loop seems arbitrary at best, so
I'm moving those behind the min/max fence in visitICmpInst() as the quick fix.
llvm-svn: 293345
The interleaved access pass is an IR-to-IR transformation that runs before code
generation. It matches interleaved memory operations to target-specific
intrinsics (that are later lowered to load and store multiple instructions on
ARM/AArch64). We place tests for similar passes (e.g., GlobalMergePass) under
test/Transforms. This patch moves the InterleavedAccessPass tests out of
test/CodeGen and into target-specific directories under
test/Transforms/InterleavedAccess.
Although the pass is an IR pass, many of the existing tests were llc tests
rather opt tests. For example, the tests would check for ldN/stN instructions
generated by llc rather than the intrinsic calls the pass actually inserts.
Thus, this patch updates all tests to be opt tests that check for the inserted
intrinsics. We already have separate CodeGen tests that ensure we lower the
interleaved access intrinsics to their corresponding ldN/stN instructions. In
addition to migrating the tests to opt, this patch also performs some minor
clean-up (to ensure consistent naming, etc.).
Differential Revision: https://reviews.llvm.org/D29184
llvm-svn: 293309
skip sub-subloops.
The logic to skip subloops dated from when this code was shared with the
cached case. Once it was factored out to only run in the case of
recomputed subloops it became a dangerous bug. If a subsubloop contained
an interfering instruction it would be silently skipped from the alias
sets for LICM.
With the old pass manager this was extremely hard to trigger as it would
require failing to visit these subloops with the LICM pass but then
visiting the outer loop somehow. I've not yet contrived any test case
that actually manages to trigger this.
But with the new pass manager we don't do the cross-loop caching hack
that the old PM does and so we recompute alias set information from
first principles. While this seems much cleaner and simpler it exposed
this bug and would subtly miscompile code due to failing to correctly
model the aliasing constraints of deeply nested loops.
llvm-svn: 293273
Summary:
This adds basic dead and redundant store elimination to
NewGVN. Unlike our current DSE, it will happily do cross-block DSE if
it meets our requirements.
We get a bunch of DSE's simple.ll cases, and some stuff it doesn't.
Unlike DSE, however, we only try to eliminate stores of the same value
to the same memory location, not just general stores to the same
memory location.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29149
llvm-svn: 293258
the main pipeline.
This is a very straight forward port. Nothing weird or surprising.
This brings the number of missing passes from the new PM's pipeline down
to three.
llvm-svn: 293249
Summary:
There are many NVVM intrinsics that we can't entirely get rid of, but
that nonetheless often correspond to target-generic LLVM intrinsics.
For example, if flush denormals to zero (ftz) is enabled, we can convert
@llvm.nvvm.ceil.ftz.f to @llvm.ceil.f32. On the other hand, if ftz is
disabled, we can't do this, because @llvm.ceil.f32 will be lowered to a
non-ftz PTX instruction. In this case, we can, however, simplify the
non-ftz nvvm ceil intrinsic, @llvm.nvvm.ceil.f, to @llvm.ceil.f32.
These transformations are particularly useful because they let us
constant fold instructions that appear in libdevice, the bitcode library
that ships with CUDA and essentially functions as its libm.
Reviewers: tra
Subscribers: hfinkel, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D28794
llvm-svn: 293244
This change reverts:
r293061: "[InstCombine] Canonicalize guards for NOT OR condition"
r293058: "[InstCombine] Canonicalize guards for AND condition"
They miscompile cases like:
```
declare void @llvm.experimental.guard(i1, ...)
define void @test_guard_not_or(i1 %A, i1 %B) {
%C = or i1 %A, %B
%D = xor i1 %C, true
call void(i1, ...) @llvm.experimental.guard(i1 %D, i32 20, i32 30)[ "deopt"() ]
ret void
}
```
because they do transfer the `i32 20, i32 30` parameters to newly
created guard instructions.
llvm-svn: 293227
Summary:
This does not actually fix the testcase in PR31761 (discussion is
ongoing on the testcase), but does fix a bug it exposes, where stores
were not properly clobbering loads.
We accomplish this by unifying the memory equivalence infratructure
back into the normal congruence infrastructure, and then properly
destroying congruence classes when memory state leaders disappear.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29195
llvm-svn: 293216
We already have this fold when the lshr has one use, but it doesn't need that
restriction. We may be able to remove some code from foldShiftedShift().
Also, move the similar:
(X << C) >>u C --> X & (-1 >>u C)
...directly into visitLShr to help clean up foldShiftByConstOfShiftByConst().
That whole function seems questionable since it is called by commonShiftTransforms(),
but there's really not much in common if we're checking the shift opcodes for every
fold.
llvm-svn: 293215
change the set of uniform instructions in the loop causing an assert
failure.
The problem is that the legalization checking also builds data
structures mapping various facts about the loop body. The immediate
cause was the set of uniform instructions. If these then change when
LCSSA is formed, the data structures would already have been built and
become stale. The included test case triggered an assert in loop
vectorize that was reduced out of the new PM's pipeline.
The solution is to form LCSSA early enough that no information is cached
across the changes made. The only really obvious position is outside of
the main logic to vectorize the loop. This also has the advantage of
removing one case where forming LCSSA could mutate the loop but we
wouldn't track that as a "Changed" state.
If it is significantly advantageous to do some legalization checking
prior to this, we can do a more careful positioning but it seemed best
to just back off to a safe position first.
llvm-svn: 293168
factory functions for the two modes the loop unroller is actually used
in in-tree: simplified full-unrolling and the entire thing including
partial unrolling.
I've also wired these up to nice names so you can express both of these
being in a pipeline easily. This is a precursor to actually enabling
these parts of the O2 pipeline.
Differential Revision: https://reviews.llvm.org/D28897
llvm-svn: 293136
Even when we don't create a remainder loop (that is, when we unroll by 2), we
may duplicate nested loops into the remainder. This is complicated by the fact
the remainder may itself be either inserted into an outer loop, or at the top
level. In the latter case, we may need to create new top-level loops.
Differential Revision: https://reviews.llvm.org/D29156
llvm-svn: 293124
Summary:
Previously we assumed that the result of sqrt(x) always had 0 as its
sign bit. But sqrt(-0) == -0.
Reviewers: hfinkel, efriedma, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28928
llvm-svn: 293115
This patch introduces guard based loop predication optimization. The new LoopPredication pass tries to convert loop variant range checks to loop invariant by widening checks across loop iterations. For example, it will convert
for (i = 0; i < n; i++) {
guard(i < len);
...
}
to
for (i = 0; i < n; i++) {
guard(n - 1 < len);
...
}
After this transformation the condition of the guard is loop invariant, so loop-unswitch can later unswitch the loop by this condition which basically predicates the loop by the widened condition:
if (n - 1 < len)
for (i = 0; i < n; i++) {
...
}
else
deoptimize
This patch relies on an NFC change to make ScalarEvolution::isMonotonicPredicate public (revision 293062).
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D29034
llvm-svn: 293064
This is a partial fix for Bug 31520 - [guards] canonicalize guards in instcombine
Reviewed By: apilipenko
Differential Revision: https://reviews.llvm.org/D29075
Patch by Maxim Kazantsev.
llvm-svn: 293061
This is a partial fix for Bug 31520 - [guards] canonicalize guards in instcombine
Reviewed By: apilipenko
Differential Revision: https://reviews.llvm.org/D29074
Patch by Maxim Kazantsev.
llvm-svn: 293058
This is a partial fix for Bug 31520 - [guards] canonicalize guards in instcombine
Reviewed By: majnemer, apilipenko
Differential Revision: https://reviews.llvm.org/D29071
Patch by Maxim Kazantsev.
llvm-svn: 293056
instructions.
If number of instructions in horizontal reduction list is not power of 2
then only PowerOf2Floor(NumberOfInstructions) last elements are actually
vectorized, other instructions remain scalar. Patch tries to vectorize
the remaining elements either.
Differential Revision: https://reviews.llvm.org/D28959
llvm-svn: 293042
Floating point intrinsics in LLVM are generally not speculatively
executed, since most of them are defined to behave the same as libm
functions, which set errno.
However, the @llvm.powi.* intrinsics do not correspond to any libm
function, and lacks any defined error handling semantics in LangRef.
It most certainly does not alter errno.
llvm-svn: 293041
Conservatively disable sinking and merging inline-asm instructions as doing so
can potentially create arguments that cannot satisfy the inline-asm constraints.
For example, SimplifyCFG used to do the following transformation:
(before)
if.then:
%0 = call i32 asm "rorl $2, $0", "=&r,0,n"(i32 %r6, i32 8)
br label %if.end
if.else:
%1 = call i32 asm "rorl $2, $0", "=&r,0,n"(i32 %r6, i32 6)
br label %if.end
(after)
%.sink = select i1 %tobool, i32 6, i32 8
%0 = call i32 asm "rorl $2, $0", "=&r,0,n"(i32 %r6, i32 %.sink)
This would result in a crash in the backend since only immediate integer operands
are permitted for constraint "n".
rdar://problem/30110806
Differential Revision: https://reviews.llvm.org/D29111
llvm-svn: 293025
loops.
We do this by reconstructing the newly added loops after the unroll
completes to avoid threading pass manager details through all the mess
of the unrolling infrastructure.
I've enabled some extra assertions in the LPM to try and catch issues
here and enabled a bunch of unroller tests to try and make sure this is
sane.
Currently, I'm manually running loop-simplify when needed. That should
go away once it is folded into the LPM infrastructure.
Differential Revision: https://reviews.llvm.org/D28848
llvm-svn: 293011
Summary:
When we decide that the result of the invoke instruction need to be spilled, we need to insert the spill into a block that is on the normal edge coming out of the invoke instruction. (Prior to this change the code would insert the spill immediately after the invoke instruction, which breaks the IR, since invoke is a terminator instruction).
In the following example, we will split the edge going into %cont and insert the spill there.
```
%r = invoke double @print(double 0.0) to label %cont unwind label %pad
cont:
%0 = call i8 @llvm.coro.suspend(token none, i1 false)
switch i8 %0, label %suspend [i8 0, label %resume
i8 1, label %cleanup]
resume:
call double @print(double %r)
```
Reviewers: majnemer
Reviewed By: majnemer
Subscribers: mehdi_amini, llvm-commits, EricWF
Differential Revision: https://reviews.llvm.org/D29102
llvm-svn: 293006
Summary: In iterative sample pgo where profile is collected from PGOed binary, we may see indirect call targets promoted and inlined in the profile. Before profile annotation, we need to make this happen in order to annotate correctly on IR. This patch explicitly promotes these indirect calls and inlines them before profile annotation.
Reviewers: xur, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29040
llvm-svn: 292979
Summary:
GVNHoist performs all the optimizations that MLSM does to loads, in a
more general way, and in a faster time bound (MLSM is N^3 in most
cases, N^4 in a few edge cases).
This disables the load portion.
Note that the way ld_hoist_st_sink.ll is written makes one think that
the loads should be moved to the while.preheader block, but
1. Neither MLSM nor GVNHoist do it (they both move them to identical places).
2. MLSM couldn't possibly do it anyway, as the while.preheader block
is not the head of the diamond, while.body is. (GVNHoist could do it
if it was legal).
3. At a glance, it's not legal anyway because the in-loop load
conflict with the in-loop store, so the loads must stay in-loop.
I am happy to update the test to use update_test_checks so that
checking is tighter, just was going to do it as a followup.
Note that i can find no particular benefit to the store portion on any
real testcase/benchmark i have (even size-wise). If we really still
want it, i am happy to commit to writing a targeted store sinker, just
taking the code from the MemorySSA port of MergedLoadStoreMotion
(which is N^2 worst case, and N most of the time).
We can do what it does in a much better time bound.
We also should be both hoisting and sinking stores, not just sinking
them, anyway, since whether we should hoist or sink to merge depends
basically on luck of the draw of where the blockers are placed.
Nonetheless, i have left it alone for now.
Reviewers: chandlerc, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29079
llvm-svn: 292971
a lazy-asserting PoisoningVH.
AssertVH is fundamentally incompatible with cache-invalidation of
analysis results. The invaliadtion happens after the AssertingVH has
already fired. Instead, use a PoisoningVH that will assert if the
dangling handle is ever used rather than merely be assigned or
destroyed.
This patch also removes all of the (numerous) doomed attempts to work
around this fundamental incompatibility. It is a pretty significant
simplification IMO.
The most interesting change is in the Inliner where we still do some
clearing because we don't want to rely on the coarse grained
invalidation strategy of the containing pass manager. However, I prefer
the approach that contains this logic to the cleanup phase of the
Inliner, and I think we could enhance the CGSCC analysis management
layer to make this even better in the future if desired.
The rest is straight cleanup.
I've also added a test for one of the harder cases to work around: when
a *module analysis* contains many AssertingVHes pointing at functions.
Differential Revision: https://reviews.llvm.org/D29006
llvm-svn: 292928
With this change dominator tree remains in sync after each step of loop
peeling.
Differential Revision: https://reviews.llvm.org/D29029
llvm-svn: 292895
Running non-LCSSA-preserving LoopSimplify followed by LCSSA on (roughly) the
same loop is incorrect, since LoopSimplify may break LCSSA arbitrarily higher
in the loop nest. Instead, run LCSSA first, and then run LCSSA-preserving
LoopSimplify on the result.
This fixes PR31718.
Differential Revision: https://reviews.llvm.org/D29055
llvm-svn: 292854
Summary:
Next round of extra tests for MSSA.
I have a prototype invariant.group handling implementation
that fixes all the FIXMEs, and I think it will be
easier to see what is the difference if I firstly
post this, and then only fix fixits.
Reviewers: george.burgess.iv, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29022
llvm-svn: 292797
bots ever since d0k fixed the CHECK lines so that it did something at
all.
It isn't actually testing SCEV directly but LSR, so move it into LSR and
the x86-specific tree of tests that already exists there. Target
dependence is common and unavoidable with the current design of LSR.
llvm-svn: 292774
invalidation of deleted functions in GlobalDCE.
This was always testing a bug really triggered in GlobalDCE. Right now
we have analyses with asserting value handles into IR. As long as those
remain, when *deleting* an IR unit, we cannot wait for the normal
invalidation scheme to kick in even though it was designed to work
correctly in the face of these kinds of deletions. Instead, the pass
needs to directly handle invalidating the analysis results pointing at
that IR unit.
I've tought the Inliner about this and this patch teaches GlobalDCE.
This will handle the asserting VH case in the existing test as well as
other issues of the same fundamental variety. I've moved the test into
the GlobalDCE directory and added a comment explaining what is going on.
Note that we cannot simply require LVI here because LVI is too lazy.
llvm-svn: 292773
While this is covered by a clang test case, we should have something
locally to LLVM that immediately checks the inliner doesn't leave
analyses to dangling IR bodies.
llvm-svn: 292772
new PM's inliner.
The bug happens when we refine an SCC after having computed a proxy for
the FunctionAnalysisManager, and then proceed to compute fresh analyses
for functions in the *new* SCC using the manager provided by the old
SCC's proxy. *And* when we manage to mutate a function in this new SCC
in a way that invalidates those analyses. This can be... challenging to
reproduce.
I've managed to contrive a set of functions that trigger this and added
a test case, but it is a bit brittle. I've directly checked that the
passes run in the expected ways to help avoid the test just becoming
silently irrelevant.
This gets the new PM back to passing the LLVM test suite after the PGO
improvements landed.
llvm-svn: 292757
Summary:
This test had a bug: !llvm.invariant.group instead
of !invariant.group.
Also add some new test for future development.
All tests passes, when MSSA will support invariant.group
only the lines with FIXIT should be changed.
Reviewers: dberlin, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28969
llvm-svn: 292730
We may be able to assert that no shl-shl or lshr-lshr pairs ever get here
because we should have already handled those in foldShiftedShift().
llvm-svn: 292726
This adds the last remaining core feature of the loop pass pipeline in
the new PM and removes the last of the really egregious hacks in the
LICM tests.
Sadly, this requires really substantial changes in the unittests in
order to provide and maintain simplified loops. This is particularly
hard because for example LoopSimplify will try to fold undef branches to
an ideal direction and simplify the loop accordingly.
Differential Revision: https://reviews.llvm.org/D28766
llvm-svn: 292709
Summary:
Under option -mergefunc-preserve-debug-info we:
- Do not create a new function for a thunk.
- Retain the debug info for a thunk's parameters (and associated
instructions for the debug info) from the entry block.
Note: -debug will display the algorithm at work.
- Create debug-info for the call (to the shared implementation) made by
a thunk and its return value.
- Erase the rest of the function, retaining the (minimally sized) entry
block to create a thunk.
- Preserve a thunk's call site to point to the thunk even when both occur
within the same translation unit, to aid debugability. Note that this
behaviour differs from the underlying -mergefunc implementation which
modifies the thunk's call site to point to the shared implementation
when both occur within the same translation unit.
Reviewers: echristo, eeckstein, dblaikie, aprantl, friss
Reviewed By: aprantl
Subscribers: davide, fhahn, jfb, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D28075
llvm-svn: 292702
Summary:
Currently we return undef, but we're in the process of changing the
LangRef so that llvm.sqrt behaves like the other math intrinsics,
matching the return value of the standard libcall but not setting errno.
This change is legal even without the LangRef change because currently
calling llvm.sqrt(x) where x is negative is spec'ed to be UB. But in
practice it's also safe because we're simply constant-folding fewer
inputs: Inputs >= -0 get constant-folded as before, but inputs < -0 now
aren't constant-folded, because ConstantFoldFP aborts if the host math
function raises an fp exception.
Reviewers: hfinkel, efriedma, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28929
llvm-svn: 292692
This adds the following to the new PM based inliner in PGO mode:
* Use block frequency analysis to derive callsite's profile count and use
that to adjust thresholds of hot and cold callsites.
* Incrementally update the BFI of the caller after a callee gets inlined
into it. This incremental update is only within an invocation of the run
method - BFI is not preserved across calls to run.
Update the function entry count of the callee after inlining it into a
caller.
* I've tuned the thresholds for the hot and cold callsites using a hacked
up version of the old inliner that explicitly computes BFI on a set of
internal benchmarks and spec. Once the new PM based pipeline stabilizes
(IIRC Chandler mentioned there are known issues) I'll benchmark this
again and adjust the thresholds if required.
Inliner PGO support.
Differential revision: https://reviews.llvm.org/D28331
llvm-svn: 292666
Unfortunately, recognizing these in value tracking may cause us to hit
a hack in InstCombiner::visitICmpInst() more often:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/109340.html
...but besides being the obviously Right Thing To Do, there's a clear
codegen win from identifying these patterns for several targets.
llvm-svn: 292655
To import a type identifier we read the summary and create external
references to the symbols defined when exporting.
Differential Revision: https://reviews.llvm.org/D28546
llvm-svn: 292654
Summary:
This rewrites store expression/leader handling. We no longer use the
value operand as the leader, instead, we store it separately. We also
now store the stored value as part of the expression, and compare it
when comparing stores for equality. This enables us to get rid of a
bunch of our previous hacks and machinations, as the existing
machinery takes care of everything *except* updating the stored value
on classes. The only time we have to update it is if the storecount
goes to 0, and when we do, we destroy it.
Since we no longer use the value operand as the leader, during elimination, we have to use the value operand. Doing this also fixes a bunch of store forwarding cases we were missing.
Any value operand we use is guaranteed to either be updated by previous eliminations, or minimized by future ones.
(IE the fact that we don't use the most dominating value operand when it's not a constant does not affect anything).
Sadly, this change also exposes that we didn't pay attention to the
output of the pr31594.ll test, as it also very clearly exposes the
same store leader bug we are fixing here.
(I added pr31682.ll anyway, but maybe we think that's too large to be useful)
On the plus side, propagate-ir-flags.ll now passes due to the
corrected store forwarding.
This change was 3 stage'd on darwin and linux, with the full test-suite.
Reviewers:
davide
Subscribers:
llvm-commits
llvm-svn: 292648
This is the third attemp to recommit r292526.
The original summary:
Currently, a GEP is considered free only if its indices are all constant.
TTI::getGEPCost() can give target-specific more accurate analysis. TTI is
already used for the cost of many other instructions.
llvm-svn: 292633
This is the second attemp to recommit r292526.
The original summary:
Currently, a GEP is considered free only if its indices are all constant.
TTI::getGEPCost() can give target-specific more accurate analysis. TTI is
already used for the cost of many other instructions.
llvm-svn: 292616
Simplify a packss/packus truncation based on the elements of the mask that are actually demanded.
Differential Revision: https://reviews.llvm.org/D28777
llvm-svn: 292591
Like several other loop passes (the vectorizer, etc) this pass doesn't
really fit the model of a loop pass. The critical distinction is that it
isn't intended to be pipelined together with other loop passes. I plan
to add some documentation to the loop pass manager to make this more
clear on that side.
LoopSink is also different because it doesn't really need a lot of the
infrastructure of our loop passes. For example, if there aren't loop
invariant instructions causing a preheader to exist, there is no need to
form a preheader. It also doesn't need LCSSA because this pass is
only involved in sinking invariant instructions from a preheader into
the loop, not reasoning about live-outs.
This allows some nice simplifications to the pass in the new PM where we
can directly walk the loops once without restructuring them.
Differential Revision: https://reviews.llvm.org/D28921
llvm-svn: 292589
Part of the assert has been left active for further debugging.
The other part has been turned into a stat for tracking for the
moment.
llvm-svn: 292583
This recommits r292526 which is reverted in r292529 after fixing the test case.
The original summary:
Currently, a GEP is considered free only if its indices are all constant.
TTI::getGEPCost() can give target-specific more accurate analysis. TTI is
already used for the cost of many other instructions.
llvm-svn: 292570
Summary:
Fence instructions are currently marked as `ModRef` for all memory locations.
We can improve this for constant memory locations (such as constant globals),
since fence instructions cannot modify these locations.
This helps us to forward constant loads across fences (added test case in GVN).
There were no changes in behaviour for similar test cases in early-cse and licm.
Reviewers: dberlin, sanjoy, reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28914
llvm-svn: 292546
This can prove that:
extern int f;
int g() {
int x = 0;
for (int i = 0; i < 365; ++i) {
x /= f;
}
return x;
}
always returns zero. Thanks to Sanjoy for confirming this
transformation actually made sense (bugs are mine).
llvm-svn: 292531
Currently, a GEP is considered free only if its indices are all constant.
TTI::getGEPCost() can give target-specific more accurate analysis. TTI is
already used for the cost of many other instructions.
Differential Revision: https://reviews.llvm.org/D28693
llvm-svn: 292526