Today Polly generates induction variable in this way:
polly.indvar = phi 0, polly.indvar.next
...
polly.indvar.next = polly.indvar + stide
polly.loop_cond = predicate polly.indvar, (UB - stride)
Instead of:
polly.indvar = phi 0, polly.indvar.next
...
polly.indvar.next = polly.indvar + stide
polly.loop_cond = predicate polly.indvar.next, UB
The way Polly generate induction variable cause some problem in the indvar simplify pass.
This patch make polly generate the later form, by assuming the induction variable never overflow
Differential Revision: https://reviews.llvm.org/D33089
llvm-svn: 302866
In case some code -- not guarded by control flow -- would be emitted directly in
the start block, it may happen that this code would use uninitalized scalar
values if the scalar initialization is only emitted at the end of the start
block. This is not a problem today in normal Polly, as all statements are
emitted in their own basic blocks, but Polly-ACC emits host-to-device copy
statements into the start block.
Additional Polly-ACC test coverage will be added in subsequent changes that
improve the handling of PHI nodes in Polly-ACC.
llvm-svn: 278124
The recent expression type changes still need more discussion, which will happen
on phabricator or on the mailing list. The precise list of commits reverted are:
- "Refactor division generation code"
- "[NFC] Generate runtime checks after the SCoP"
- "[FIX] Determine insertion point during SCEV expansion"
- "Look through IntToPtr & PtrToInt instructions"
- "Use minimal types for generated expressions"
- "Temporarily promote values to i64 again"
- "[NFC] Avoid unnecessary comparison for min/max expressions"
- "[Polly] Fix -Wunused-variable warnings (NFC)"
- "[NFC] Simplify min/max expression generation"
- "Simplify the type adjustment in the IslExprBuilder"
Some of them are just reverted as we would otherwise get conflicts. I will try
to re-commit them if possible.
llvm-svn: 272483
We now use the minimal necessary bit width for the generated code. If
operations might overflow (add/sub/mul) we will try to adjust the types in
order to ensure a non-wrapping computation. If the type adjustment is not
possible, thus the necessary type is bigger than the type value of
--polly-max-expr-bit-width, we will use assumptions to verify the computation
will not wrap. However, for run-time checks we cannot build assumptions but
instead utilize overflow tracking intrinsics.
llvm-svn: 271878
When introducing separate control flow for the original and optimized code we
introduce now a special 'ExitingBlock':
\ /
EnteringBB
|
SplitBlock---------\
_____|_____ |
/ EntryBB \ StartBlock
| (region) | |
\_ExitingBB_/ ExitingBlock
| |
MergeBlock---------/
|
ExitBB
/ \
This 'ExitingBlock' contains code such as the final_reloads for scalars, which
previously were just added to whichever statement/loop_exit/branch-merge block
had been generated last. Having an explicit basic block makes it easier to
find these constructs when looking at the CFG.
llvm-svn: 255107
These flags are now always passed to all tests and need to be disabled if
not needed. Disabling these flags, rather than passing them to almost all
tests, significantly simplfies our RUN: lines.
llvm-svn: 249422
This commit basically reverts r246427 but still solves the issue
tackled by that commit. Instead of emitting initialization code in the
beginning of the start block we now generate parallel code in its own
block and thereby guarantee separation. This is necessary as we cannot
generate code for hoisted loads prior to the start block but it still
needs to be placed prior to everything else.
llvm-svn: 248674
At some point we build loop trip counts using this method. It was replaced by
a simpler trick that works only for affine (e.g., not modulo) constraints and
relies on the removal of unbounded parts. In order to allow modulo constrains
again we go back to the former, more accurate method.
llvm-svn: 247540
This removes old code that has been disabled since several weeks and was hidden
behind the flags -disable-polly-intra-scop-scalar-to-array=false and
-polly-model-phi-nodes=false. Earlier, Polly used to translate scalars and
PHI nodes to single element arrays, as this avoided the need for their special
handling in Polly. With Johannes' patches adding native support for such scalar
references to Polly, this code is not needed any more. After this commit both
-polly-prepare and -polly-independent are now mostly no-ops. Only a couple of
simple transformations still remain, but they are scheduled for removal too.
Thanks again to Johannes Doerfert for his nice work in making all this code
obsolete.
llvm-svn: 240766
To reduce compile time and to allow more and better quality SCoPs in
the long run we introduced scalar dependences and PHI-modeling. This
patch will now allow us to generate code if one or both of those
options are set. While the principle of demoting scalars as well as
PHIs to memory in order to communicate their value stays the same,
this allows to delay the demotion till the very end (the actual code
generation). Consequently:
- We __almost__ do not modify the code if we do not generate code
for an optimized SCoP in the end. Thus, the early exit as well as
the unprofitable option will now actually preven us from
introducing regressions in case we will probably not get better
code.
- Polly can be used as a "pure" analyzer tool as long as the code
generator is set to none.
- The original SCoP is almost not touched when the optimized version
is placed next to it. Runtime regressions if the runtime checks
chooses the original are not to be expected and later
optimizations do not need to revert the demotion for that part.
- We will generate direct accesses to the demoted values, thus there
are no "trivial GEPs" that select the first element of a scalar we
demoted and treated as an array.
Differential Revision: http://reviews.llvm.org/D7513
llvm-svn: 238070