Thinlink provides an opportunity to propagate function attributes across modules, enabling additional propagation opportunities.
This change propagates (currently default off, turn on with `disable-thinlto-funcattrs=1`) noRecurse and noUnwind based off of function summaries of the prevailing functions in bottom-up call-graph order. Testing on clang self-build:
1. There's a 35-40% increase in noUnwind functions due to the additional propagation opportunities.
2. Throughput is measured at 10-15% increase in thinlink time which itself is 1.5% of E2E link time.
Implementation-wise this adds the following summary function attributes:
1. noUnwind: function is noUnwind
2. mayThrow: function contains a non-call instruction that `Instruction::mayThrow` returns true on (e.g. windows SEH instructions)
3. hasUnknownCall: function contains calls that don't make it into the summary call-graph thus should not be propagated from (e.g. indirect for now, could add no-opt functions as well)
Testing:
Clang self-build passes and 2nd stage build passes check-all
ninja check-all with newly added tests passing
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D36850
This is a fix for the issue reported at
https://reviews.llvm.org/D110043#3019942:
The ElementSize is a uint64_t and as such may be larger than the
index space, or be negative in the index space. This is UB, but
shouldn't cause assertion failures.
We address this by detecting whether the size is too large and
use a zero index in that case (which is always conservatively
correct).
Differential Revision: https://reviews.llvm.org/D110437
In ThinLTO for locals we normally compute the GUID from the name after
prepending the source path to get a unique global id. SamplePGO indirect
call profiles contain the target GUID without this uniquification,
however (unless compiling with -funique-internal-linkage-names).
In order to correctly handle the call edges added to the combined index
for these indirect calls, during importing and bitcode writing we
consult a map of original to full GUID to identify the actual callee.
However, for a large application this was consuming a lot of compile
time as we need to do this repeatedly (especially during importing where
we may traverse call edges multiple times).
To fix this implement a suggestion in one of the FIXME comments, and
actually modify the call edges during a single traversal after the index
is built to perform the fixups once. I combined this fixup with the dead
code analysis performed on the index in order to avoid adding an
additional walk of the index. The dead code analysis is the first
analysis performed on the index.
This reduced the time required for a large thin link with SamplePGO by
about 20%.
No new test added, but I confirmed that there are existing tests that
will fail when no fixup is performed.
Differential Revision: https://reviews.llvm.org/D110374
- This patch adds in the GOFF mangling support to the LLVM data layout string. A corresponding additional line has been added into the data layout section in the language reference documentation.
- Furthermore, this patch also sets the right data layout string for the z/OS target in the SystemZ backend.
Reviewed By: uweigand, Kai, abhina.sreeskantharajan, MaskRay
Differential Revision: https://reviews.llvm.org/D109362
While both GlobalAlias and GlobalIFunc are GlobalIndirectSymbol, their
`getIndirectSymbol()` usage is quite different (GlobalIFunc's resolver
is an entity different from GlobalIFunc itself).
As discussed on https://lists.llvm.org/pipermail/llvm-dev/2020-September/144904.html
("[IR] Modelling of GlobalIFunc"), the name `getBaseObject` is confusing when
used with GlobalIFunc.
To resolve the confusion:
* Move GloalIndirectSymol::getBaseObject to GlobalAlias:: (GlobalIFunc should use `getResolver` instead)
* Change GlobalValue::getBaseObject not to inspect GlobalIFunc. Note: the function has 7 references.
* Add GlobalIFunc::getResolverFunction to peel off potential ConstantExpr indirection
(`strlen` in `test/LTO/Resolution/X86/ifunc.ll`)
Note: GlobalIFunc::getResolver (like GlobalAlias::getAliasee which does not peel
off ConstantExpr indirection) is kept to be used by ValueEnumerator.
Reviewed By: ibookstein
Differential Revision: https://reviews.llvm.org/D109792
And always print it.
This makes some LLVM diagnostics match up better with Clang's diagnostics.
Updated some AMDGPU uses of DiagnosticInfoResourceLimit and now we print
better diagnostics for those.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D110204
A logic incompleteness may lead MemorySSA to be too conservative
in its results. Specifically, when dealing with a call of kind
`call i32 bitcast (i1 (i1)* @test to i32 (i32)*)(i32 %1)`, where
the function `test` is declared with readonly attribute, the
bitcast is not looked through, obscuring function attributes. Hence,
some methods of CallBase (e.g., doesNotReadMemory) could provide
suboptimal results.
Differential Revision: https://reviews.llvm.org/D109888
This patch allows sinking an instruction which can have multiple uses in a
single user. We were previously over-restrictive by looking for exactly one use,
rather than one user.
Also added an API for retrieving a unique undroppable user.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D109700
One of the two inputs of the Shufflevector is often a placeholder.
Previously, there were cases where the placeholder was undef, and there were cases where it was poison.
I added these constructors to create a placeholder consistently.
Changing to use the newly added constructor will be written in a separate patch.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D110146
We implement logic to convert a byte offset into a sequence of GEP
indices for that offset in a number of places. This patch adds a
DataLayout::getGEPIndicesForOffset() method, which implements the
core logic. I've updated SROA, ConstantFolding and InstCombine to
use it, and there's a few more places where it looks relevant.
Differential Revision: https://reviews.llvm.org/D110043
Some buildbots fail with:
> C:\a\llvm-clang-x86_64-expensive-checks-win\llvm-project\llvm\lib\IR\Verifier.cpp(4352): error C2678: binary '==': no operator found which takes a left-hand operand of type 'const llvm::MDOperand' (or there is no acceptable conversion)
Possibly the explicit MDOperand to Metadata* conversion will help?
New field `elements` is added to '!DIImportedEntity', representing
list of aliased entities.
This is needed to dump optimized debugging information where all names
in a module are imported, but a few names are imported with overriding
aliases.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D109343
This reverts commit 4ac4e52189.
There are couple of test failures, which needs update of the test cases.
Doing a clean revert and will recommit the change along with fixed
testcases.
The API was removed in 4ac4e52189 in favor of
getUniqueUndroppableUser.
However, this caused a buildbot failure in AbstractCallSiteTest.cpp,
which uses the API and the AbstractCallSite class requires a "use"
rather than a user.
Retain the API so that the unittest compiles and passes.
This patch allows sinking an instruction which can have multiple uses in a
single user. We were previously over-restrictive by looking for exactly one use,
rather than one user.
Also, the API for retrieving undroppable user has been updated accordingly since
in both usecases (Attributor and InstCombine), we seem to care about the user,
rather than the use.
Reviewed-By: nikic
Differential Revision: https://reviews.llvm.org/D109700
This patch adds functionality to check assumption attributes on call
sites as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D109376
Currently, opaque pointers are supported in two forms: The
-force-opaque-pointers mode, where all pointers are opaque and
typed pointers do not exist. And as a simple ptr type that can
coexist with typed pointers.
This patch removes support for the mixed mode. You either get
typed pointers, or you get opaque pointers, but not both. In the
(current) default mode, using ptr is forbidden. In -opaque-pointers
mode, all pointers are opaque.
The motivation here is that the mixed mode introduces additional
issues that don't exist in fully opaque mode. D105155 is an example
of a design problem. Looking at D109259, it would probably need
additional work to support mixed mode (e.g. to generate GEPs for
typed base but opaque result). Mixed mode will also end up
inserting many casts between i8* and ptr, which would require
significant additional work to consistently avoid.
I don't think the mixed mode is particularly valuable, as it
doesn't align with our end goal. The only thing I've found it to
be moderately useful for is adding some opaque pointer tests in
between typed pointer tests, but I think we can live without that.
Differential Revision: https://reviews.llvm.org/D109290
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
integer 0/1 for the operand of bundle "clang.arc.attachedcall"
https://reviews.llvm.org/D102996 changes the operand of bundle
"clang.arc.attachedcall". This patch makes changes to llvm that are
needed to handle the new IR.
This should make it easier to understand what the IR is doing and also
simplify some of the passes as they no longer have to translate the
integer values to the runtime functions.
Differential Revision: https://reviews.llvm.org/D103000
Index is 0 when the return value has the returned attribute. But the
return value cannot have the returned attribute, so the check is
pointless.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D109334
llvm.vp.select extends the regular select instruction with an explicit
vector length (%evl).
All lanes with indexes at and above %evl are
undefined. Lanes below %evl are taken from the first input where the
mask is true and from the second input otherwise.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D105351
Added opt option -print-pipeline-passes to print a -passes compatible
string describing the built pass pipeline.
As an example:
$ opt -enable-new-pm=1 -adce -licm -simplifycfg -o /dev/null /dev/null -print-pipeline-passes
verify,function(adce),function(loop-mssa(licm)),function(simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts>),verify,BitcodeWriterPass
At the moment this is best-effort only and there are some known
limitations:
- Not all passes accepting parameters will print their parameters
(currently only implemented for simplifycfg).
- Some ClassName to pass-name mappings are not unique.
- Some ClassName to pass-name mappings are missing (e.g.
BitcodeWriterPass).
Differential Revision: https://reviews.llvm.org/D108298
Added opt option -print-pipeline-passes to print a -passes compatible
string describing the built pass pipeline.
As an example:
$ opt -enable-new-pm=1 -adce -licm -simplifycfg -o /dev/null /dev/null -print-pipeline-passes
verify,function(adce),function(loop-mssa(licm)),function(simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts>),verify,BitcodeWriterPass
At the moment this is best-effort only and there are some known
limitations:
- Not all passes accepting parameters will print their parameters
(currently only implemented for simplifycfg).
- Some ClassName to pass-name mappings are not unique.
- Some ClassName to pass-name mappings are missing (e.g.
BitcodeWriterPass).
This is part one of a couple of patches to fully rename these methods.
I've made the mistake of assuming that these indexes are for parameters
multiple times, but actually they're based off of a weird indexing
scheme AttributeList::AttrIndex where 0 is the return value and ~0 is
the function. Hopefully renaming these methods will make this clearer.
Ideally users should use more specific methods like
AttributeList::getFnAttr().
This patch simply adds the name that we want in the end. This is so the
removal of the methods with the original names happens in a separate
change to make it easier for downstream users.
This touches all relevant methods in AttributeList, CallBase, and Function.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D108788
We have a large compile showing occasional non-deterministic behavior
that is due to DIArgList not being properly uniqued in some cases. I
tracked this down to handleChangedOperands, for which there is a custom
implementation for DIArgList, that does not take care of re-uniquing
after updating the DIArgList Args, unlike the default version of
handleChangedOperands for MDNode.
Since the Args in the DIArgList form the key for the store, this seems
to be occasionally breaking the lookup in that DenseSet. Specifically,
when invoking DIArgList::get() from replaceVariableLocationOp, very
occasionally it returns a new DIArgList object, when one already exists
having the same exact Args pointers. This in turn causes a subsequent
call to Instruction::isIdenticalToWhenDefined on those two otherwise
identical DIArgList objects during a later pass to return false, leading
to different IR in those rare cases.
I modified DIArgList::handleChangedOperands to perform similar
re-uniquing as the MDNode version used by other metadata node types.
This also necessitated a change to the context destructor, since in some
cases we end up with DIArgList as distinct nodes: DIArgList is the only
metadata node type to have a custom dropAllReferences, so we need to
invoke that version on DIArgList in the DistinctMDNodes store to clean
it up properly.
Differential Revision: https://reviews.llvm.org/D108968
In D87099, the mangler learned to quote export directives that contain
special characters. Only alhpanumerical characters as well as
'_', '$', '.' and '@' were exmpt from this quoting. However, at least
binutils considers an unquoted '.' to be syntax and object files
containing such symbols will cause errors during linking. Fix that
by removing '.' from the list of allowed exemptions.
Differential Revision: https://reviews.llvm.org/D100359
It looks like this array was missed in 4276d4a8d0
Fixed tests that expected `elements` to be empty or depeneded on the order of the empty DINode.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D107024
This patch emits DW_TAG_namelist and DW_TAG_namelist_item for fortran
namelist variables. DICompositeType is extended to support this fortran
feature.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D108553
Generate btf_tag annotations for function parameters.
A field "annotations" is introduced to DILocalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DILocalVariable(name: "info",, arg: 1, ..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106620
Generate btf_tag annotations for DIGlobalVariable.
A field "annotations" is introduced to DIGlobalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DIGlobalVariable(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106619
Generate btf_tag annotations for DISubprogram types.
A field "annotations" is introduced to DISubprogram, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DISubprogram(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106618
Add support for the GNU C style __attribute__((error(""))) and
__attribute__((warning(""))). These attributes are meant to be put on
declarations of functions whom should not be called.
They are frequently used to provide compile time diagnostics similar to
_Static_assert, but which may rely on non-ICE conditions (ie. relying on
compiler optimizations). This is also similar to diagnose_if function
attribute, but can diagnose after optimizations have been run.
While users may instead simply call undefined functions in such cases to
get a linkage failure from the linker, these provide a much more
ergonomic and actionable diagnostic to users and do so at compile time
rather than at link time. Users instead may be able use inline asm .err
directives.
These are used throughout the Linux kernel in its implementation of
BUILD_BUG and BUILD_BUG_ON macros. These macros generally cannot be
converted to use _Static_assert because many of the parameters are not
ICEs. The Linux kernel still needs to be modified to make use of these
when building with Clang; I have a patch that does so I will send once
this feature is landed.
To do so, we create a new IR level Function attribute, "dontcall" (both
error and warning boil down to one IR Fn Attr). Then, similar to calls
to inline asm, we attach a !srcloc Metadata node to call sites of such
attributed callees.
The backend diagnoses these during instruction selection, while we still
know that a call is a call (vs say a JMP that's a tail call) in an arch
agnostic manner.
The frontend then reconstructs the SourceLocation from that Metadata,
and determines whether to emit an error or warning based on the callee's
attribute.
Link: https://bugs.llvm.org/show_bug.cgi?id=16428
Link: https://github.com/ClangBuiltLinux/linux/issues/1173
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D106030
Generate btf_tag annotations for DIDrived types. More specifically,
clang frontend generates the btf_tag annotations for record
fields. The annotations are represented as an DINodeArray
in DebugInfo. The following example illustrate how
annotations are encoded in IR:
distinct !DIDerivedType(tag: DW_TAG_member, ..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106616