With architected flat scratch it becomes readonly. We must always
reserve SGPR pair for it even if we do not use scratch at all since
an attempt to write to SGPRs mapped to FLAT_SCRATCH results in
memory violation.
This is not needed since GFX10 with architected flat scratch though
since special SGPRs are not carving space from normal SGPRs.
Differential Revision: https://reviews.llvm.org/D110376
Suffix opcodes with _gfx10.
Remove direct references to architecture specific opcodes.
Add a BVH flag and apply this to diassembly.
Fix a number of disassembly errors on gfx90a target caused by
previous incorrect BVH detection code.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D108117
While collecting reachable callees (from kernels), ignore call graph node which
does not have associated function or associated function is not a definition.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D107329
Disable null export (for kills) when a frontend defines a pixel
shader as not exporting using amdgpu-color-export and
amdgpu-depth-export function attrbutes.
This allows the generation of export free pixel shaders.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D105683
Set informational fields in the .shader_functions table.
Also correct the documentation, .scratch_memory_size and .lds_size are
integers.
Differential Revision: https://reviews.llvm.org/D105116
Add SReg_224, VReg_224, AReg_224, etc.
Link 224-bit types with v7i32/v7f32.
Link existing 192-bit types to newly added v3i64/v3f64/v6i32/v6f32.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D104622
Don't use SCC iterators when we're only interested in reachability.
Use df_begin/df_end inline to find reachable nodes.
Differential Revision: https://reviews.llvm.org/D104704
The main motivation behind pointer replacement of LDS use within non-kernel
functions is - to *avoid* subsequent LDS lowering pass from directly packing
LDS (assume large LDS) into a struct type which would otherwise cause allocating
huge memory for struct instance within every kernel.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D103225
This allows to lower an LDS variable into a kernel structure
even if there is a constant expression used from different
kernels.
Differential Revision: https://reviews.llvm.org/D103655
There is a trivial but severe bug in the recent code collecting
LDS globals used by kernel. It aborts scan on the first constant
without scanning further uses. That leads to LDS overallocation
with multiple kernels in certain cases.
Differential Revision: https://reviews.llvm.org/D103190
A16 support for image instructions assembly/disassembly (gfx10) was missing
Also refactor MIMG op addr size calcs to common function
We'd got 3 places where the same operation was being done.
One test is now marked XFAIL until a related codegen patch is in place
Differential Revision: https://reviews.llvm.org/D102231
Change-Id: I7e86e730ef8c71901457855cba570581f4f576bb
The waitcnt pass would increment the number of vmem events for some buffer
invalidates that were not handled by the pass.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D102252
Preexisting waitcnt may not update the scoreboard if the instruction
being examined needed to wait on fewer counters than what was encoded in
the old waitcnt instruction. Fixing this results in the elimination of
some redudnat waitcnt.
These changes also enable combining consecutive waitcnt into a single
S_WAITCNT or S_WAITCNT_VSCNT instruction.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D100281
Move some utility functions which are used within LDS lowering pass to a separate utils
file so that other LDS related passes can make use of them when required.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D100526
By convention, VOP1/2/C instructions which can be promoted to VOP3 have _e32 suffix while promoted instructions have _e64 suffix. Instructions which have a single variant should have no _e32/_e64 suffix. Unfortunately there was no simple way to identify single variant instructions - it was implemented by a hack. See bug https://bugs.llvm.org/show_bug.cgi?id=39086.
This fix simplifies handling of single VOP instructions by adding a dedicated flag.
Differential Revision: https://reviews.llvm.org/D99408
This instruction is only valid on 2D MSAA and 2D MSAA Array
surfaces. Remove intrinsic support for other dimension types,
and block assembly for unsupported dimensions.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D98397
gfx90a operations require even aligned registers, but this was
previously achieved by reserving registers inside the full class.
Ideally this would be captured in the static instruction definitions
for the operands, and we would have different instructions per
subtarget. The hackiest part of this is we need to manually reassign
AGPR register classes after instruction selection (we get away without
this for VGPRs since those types are actually registered for legal
types).
Update the list of s_sendmsg messages known to the assembler and
disassembler and validate the ones that were added or removed in gfx9
and gfx10.
Differential Revision: https://reviews.llvm.org/D97295
Support for XNACK and SRAMECC is not static on some GPUs. We must be able
to differentiate between different scenarios for these dynamic subtarget
features.
The possible settings are:
- Unsupported: The GPU has no support for XNACK/SRAMECC.
- Any: Preference is unspecified. Use conservative settings that can run anywhere.
- Off: Request support for XNACK/SRAMECC Off
- On: Request support for XNACK/SRAMECC On
GCNSubtarget will track the four options based on the following criteria. If
the subtarget does not support XNACK/SRAMECC we say the setting is
"Unsupported". If no subtarget features for XNACK/SRAMECC are requested we
must support "Any" mode. If the subtarget features XNACK/SRAMECC exist in the
feature string when initializing the subtarget, the settings are "On/Off".
The defaults are updated to be conservatively correct, meaning if no setting
for XNACK or SRAMECC is explicitly requested, defaults will be used which
generate code that can be run anywhere. This corresponds to the "Any" setting.
Differential Revision: https://reviews.llvm.org/D85882
Rename the *_gfx9_gfx10 ttmp registers to *_gfx9plus for simplicity,
and use the corresponding isGFX9Plus predicate to decide when to use
them instead of the old *_vi versions.
Differential Revision: https://reviews.llvm.org/D94975
It's more future-proof to use isGFX10Plus from the start, on the
assumption that future architectures will be based on current
architectures.
Also make use of the existing isGFX9Plus in a few places.
Differential Revision: https://reviews.llvm.org/D92092
Add .shader_functions to pal metadata, which contains the stack frame
size for all non-entry-point functions.
Differential Revision: https://reviews.llvm.org/D90036
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
Add a calling convention called amdgpu_gfx for real function calls
within graphics shaders. For the moment, this uses the same calling
convention as other calls in amdgpu, with registers excluded for return
address, stack pointer and stack buffer descriptor.
Differential Revision: https://reviews.llvm.org/D88540
Previously, the default value for ieee mode was
- on for compute kernels and compute shaders,
- off for all shaders except compute shaders.
This commit changes the default to be
- on for compute kernels,
- off for shaders.
This aligns the default value with the settings that are actually in
use. To my knowledge, all users of shader calling conventions (mesa and
llpc) disable the ieee mode by default.
Differential Revision: https://reviews.llvm.org/D89388
If no pal metadata is given, default to the msgpack format instead of
the legacy metadata. This makes tests better readable.
Differential Revision: https://reviews.llvm.org/D90035
Introduce a utility function to make it more
convenient to write code that is the same on
the GFX9 and GFX10 subtargets.
Use isGFX9Plus in the AsmParser for AMDGPU.
Authored By: Joe_Nash
Differential Revision: https://reviews.llvm.org/D88908
It was found some packed immediate operands (e.g. `<half 1.0, half 2.0>`) are
incorrectly processed so one of two packed values were lost.
Introduced new function to check immediate 32-bit operand can be folded.
Converted condition about current op_sel flags value to fall-through.
Fixes: SWDEV-247595
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D87158
If the same stream object is used for multiple compiles, the PAL metadata from eariler compilations will leak into later one. See https://github.com/GPUOpen-Drivers/llpc/issues/882 for how this is happening in LLPC.
No tests were added because multiple compiles will have to happen using the same pass manager, and I do not see a setup for that on the LLVM side. Let me know if there is a good way to test this.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D85667
PAL recently got support for multiple ELF sections and relocations,
therefore we can now use .rodata sections instead of forcing constants
into .text.
Differential Revision: https://reviews.llvm.org/D85895