I'm not sure this is the best way to approach this,
but the situation is rather not very detectable unless we explicitly call it out when refusing to advise to unroll.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D107271
Add new pass LowerRefTypesIntPtrConv to generate trap
instruction for an inttoptr and ptrtoint of a reference type instead
of erroring, since calling these instructions on non-integral pointers
has been since allowed (see ac81cb7e6).
Differential Revision: https://reviews.llvm.org/D107102
This optimizes out the mask when the result of a bitmask is interpreted as an i8
or i16 value. Resolves PR50507.
Differential Revision: https://reviews.llvm.org/D107103
Replace the clang builtins and LLVM intrinsics for the SIMD extmul instructions
with normal codegen patterns.
Differential Revision: https://reviews.llvm.org/D106724
When Emscripten EH mixes with Emscripten SjLj, we are not currently
handling some of them correctly. There are three cases:
1. The current function calls `setjmp` and there is an `invoke` to a
function that can either throw or longjmp. In this case, we have to
check both for exception and longjmp. We are currently handling this
case correctly:
0c0eb76782/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (L1058-L1090)
When inserting routines for functions that can longjmp, which we do
only for setjmp-calling functions, we check if the function was
previously an `invoke` and handle it correctly.
2. The current function does NOT call `setjmp` and there is an `invoke`
to a function that can either throw or longjmp. Because there is no
`setjmp` call, we haven't been doing any check for functions that can
longjmp. But in that case, for `invoke`, we only check for an
exception and if it is not an exception we reset `__THREW__` to 0,
which can silently swallow the longjmp:
0c0eb76782/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (L70-L80)
This CL fixes this.
3. The current function calls `setjmp` and there is no `invoke`. Because
it is not an `invoke`, we haven't been doing any check for functions
that can throw, and only insert longjmp-checking routines for
functions that can longjmp. But in that case, if a longjmpable
function throws, we only check for a longjmp so if it is not a
longjmp we reset `__THREW__` to 0, which can silently swallow the
exception:
0c0eb76782/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (L156-L169)
This CL fixes this.
To do that, this moves around some code, so we register necessary
functions for both EH and SjLj and precompute some data (the set of
functions that contains `setjmp`) before doing actual EH or SjLj
transformation.
This CL makes 2nd and 3rd tests in
https://github.com/emscripten-core/emscripten/pull/14732 work.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D106525
Both `__THREW__` and `__threwValue` are global variables, and we have
been distinguishing the global variable `__THREW__` and the loaded value
`%__THREW__.val` in comments but not doing it for `__threwValue`. Made
the pseudocode comments consistent for both variables.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D106524
Replace the clang builtins and LLVM intrinsics for {f32x4,f64x2}.{pmin,pmax}
with standard codegen patterns. Since wasm_simd128.h uses an integer vector as
the standard single vector type, the IR for the pmin and pmax intrinsic
functions contains bitcasts that would not be there otherwise. Add extra codegen
patterns that can still select the pmin and pmax instructions in the presence of
these bitcasts.
Differential Revision: https://reviews.llvm.org/D106612
Reland of 31859f896.
This change implements new DAG notes GLOBAL_GET/GLOBAL_SET, and
lowering methods for load and stores of reference types from IR
globals. Once the lowering creates the new nodes, tablegen pattern
matches those and converts them to Wasm global.get/set.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D104797
Replace the experimental clang builtins and LLVM intrinsics for these
instructions with normal instruction selection patterns. The wasm_simd128.h
intrinsics header was already using portable code for the corresponding
intrinsics, so now it produces the correct instructions.
Differential Revision: https://reviews.llvm.org/D106400
Debug info sections need R_WASM_FUNCTION_OFFSET_I32 relocs (with FK_Data_4 fixup
kinds) to refer to functions (instead of R_WASM_TABLE_INDEX as is used in data
sections). Usually this is done in a convoluted way, with unnamed temp data
symbols which target the start of the function, in which case
WasmObjectWriter::recordRelocation converts it to use the section symbol
instead. However in some cases the function can actually be undefined; in this
case the dwarf generator uses the function symbol (a named undefined function
symbol) instead. In that case the section-symbol transform doesn't work and we
need to generate the correct reloc type a different way. In this change
WebAssemblyWasmObjectWriter::getRelocType takes the fixup section type into
account to choose the correct reloc type.
Fixes PR50408
Differential Revision: https://reviews.llvm.org/D103557
Replace the experimental clang builtins and LLVM intrinsics for these
instructions with normal codegen patterns. Resolves PR50435.
Differential Revision: https://reviews.llvm.org/D106019
Replace the experimental clang builtin and LLVM intrinsics for these
instructions with normal codegen patterns. Resolves PR50433.
Differential Revision: https://reviews.llvm.org/D105950
Replace the clang builtin function and LLVM intrinsic for
f32x4.demote_zero_f64x2 with combines from normal SDNodes. Also add missing
combines for i32x4.trunc_sat_zero_f64x2_{s,u}, which share the same pattern.
Differential Revision: https://reviews.llvm.org/D105755
Replace the clang builtin function and LLVM intrinsic previously used to select
the f64x2.promote_low_f32x4 instruction with custom combines from standard
SelectionDAG nodes. Implement the new combines to share code with the similar
combines for f64x2.convert_low_i32x4_{s,u}. Resolves PR50232.
Differential Revision: https://reviews.llvm.org/D105675
This to protect against non-sensical instruction sequences being assembled,
which would either cause asserts/crashes further down, or a Wasm module being output that doesn't validate.
Unlike a validator, this type checker is able to give type-errors as part of the parsing process, which makes the assembler much friendlier to be used by humans writing manual input.
Because the MC system is single pass (instructions aren't even stored in MC format, they are directly output) the type checker has to be single pass as well, which means that from now on .globaltype and .functype decls must come before their use. An extra pass is added to Codegen to collect information for this purpose, since AsmPrinter is normally single pass / streaming as well, and would otherwise generate this information on the fly.
A `-no-type-check` flag was added to llvm-mc (and any other tools that take asm input) that surpresses type errors, as a quick escape hatch for tests that were not intended to be type correct.
This is a first version of the type checker that ignores control flow, i.e. it checks that types are correct along the linear path, but not the branch path. This will still catch most errors. Branch checking could be added in the future.
Differential Revision: https://reviews.llvm.org/D104945
Override the `shouldScalarizeBinop` target lowering hook using the same
implementation used in the x86 backend. This causes `extract_vector_elt`s of
vector binary ops to be scalarized if the scalarized version would be supported.
Differential Revision: https://reviews.llvm.org/D105646
WebAssembly's shift instructions implicitly masks the shift count, so optimize
out redundant explicit masks of the shift count. For vector shifts, this
currently only works if the mask is applied before splatting the shift count,
but this should be addressed in a future commit. Resolves PR49655.
Differential Revision: https://reviews.llvm.org/D105600
Reland of 31859f896.
This change implements new DAG notes GLOBAL_GET/GLOBAL_SET, and
lowering methods for load and stores of reference types from IR
globals. Once the lowering creates the new nodes, tablegen pattern
matches those and converts them to Wasm global.get/set.
Differential Revision: https://reviews.llvm.org/D104797
This is a mechanical change. This actually also renames the
similarly named methods in the SmallString class, however these
methods don't seem to be used outside of the llvm subproject, so
this doesn't break building of the rest of the monorepo.
This change implements new DAG notes GLOBAL_GET/GLOBAL_SET, and
lowering methods for load and stores of reference types from IR
globals. Once the lowering creates the new nodes, tablegen pattern
matches those and converts them to Wasm global.get/set.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D95425
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
DwarfDebug unconditionally assumes for all call instructions the 0th
operand is the callee operand, which seems to be true for other targets,
but not for WebAssembly. This adds `TargetInstrInfo::getCallOperand`
method whose default implementation returns `getOperand(0)` and makes
WebAssembly overrides it to use its own utility method to get the callee
operand.
This also fixes an existing bug in `WebAssembly::getCalleeOp`, which was
uncovered by this CL.
Reviewed By: dschuff, djtodoro
Differential Revision: https://reviews.llvm.org/D102978
`WebAssemblyDebugValueManager` does not currently handle
`DBG_VALUE_LIST`, which is a recent addition to LLVM. We tried to
nullify them within the constructor of `WebAssemblyDebugValueManager` in
D102589, but it made the class error-prone to use because it deletes
instructions within the constructor and thus invalidates existing
iterators within the BB, so the user of the class should take special
care not to use invalidated iterators. This actually caused a bug in
ExplicitLocals pass.
Instead of trying to fix ExplicitLocals pass to make the iterator usage
correct, which is possible but error-prone, this adds
NullifyDebugValueLists pass that nullifies all `DBG_VALUE_LIST`
instructions before we run WebAssembly specific passes in the backend.
We can remove this pass after we implement handlers for
`DBG_VALUE_LIST`s in `WebAssemblyDebugValueManager` and elsewhere.
Fixes https://github.com/emscripten-core/emscripten/issues/14255.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D102999
Unlike normal loads these don't have an extension field, but we know
from TargetLowering whether these are sign-extending or zero-extending,
and so can optimise away unnecessary extensions.
This was noticed on RISC-V, where sign extensions in the calling
convention would result in unnecessary explicit extension instructions,
but this also fixes some Mips inefficiencies. PowerPC sees churn in the
tests as all the zero extensions are only for promoting 32-bit to
64-bit, but these zero extensions are still not optimised away as they
should be, likely due to i32 being a legal type.
This also simplifies the WebAssembly code somewhat, which currently
works around the lack of target-independent combines with some ugly
patterns that break once they're optimised away.
Re-landed with correct handling in ComputeNumSignBits for Tmp == VTBits,
where zero-extending atomics were incorrectly returning 0 rather than
the (slightly confusing) required return value of 1.
Re-landed again after D102819 fixed PowerPC to correctly zero-extend all
of its atomics as it claimed to do, since the combination of that bug
and this optimisation caused buildbot regressions.
Reviewed By: RKSimon, atanasyan
Differential Revision: https://reviews.llvm.org/D101342
__table_base is know 64-bit, since in LLVM it represents a function pointer offset
__table_base32 is a copy in wasm32 for use in elem init expr, since no truncation may be used there.
New reloc R_WASM_TABLE_INDEX_REL_SLEB64 added
Differential Revision: https://reviews.llvm.org/D101784
We have been handling filters and landingpads incorrectly all along. We
pass clauses' (catches') types to `__cxa_find_matching_catch` in JS glue
code, which returns the thrown pointer and sets the selector using
`setTempRet0()`.
We apparently have been doing the same for filters' (exception specs')
types; we pass them to `__cxa_find_matching_catch` just the same way as
clauses. And `__cxa_find_matching_catch` treats all given types as
clauses. So it is a little surprising; maybe we intended to do something
from the JS side and didn't end up doing?
So anyway, I don't think supporting exception specs in Emscripten EH is
a priority, but this can actually cause incorrect results for normal
catches when functions are inlined and the inlined spec type has a
parent-child relationship with the catch's type.
---
The below is an example of a bug that can happen when inlining and class
hierarchy is mixed. If you are busy you can skip this part:
```
struct A {};
struct B : A {};
void bar() throw (B) { throw B(); }
void foo() {
try {
bar();
} catch (A &) {
fputs ("Expected result\n", stdout);
}
}
```
In the unoptimized code, `bar`'s landingpad will have a filter for `B`
and `foo`'s landingpad will have a clause for `A`. But when `bar` is
inlined into `foo`, `foo`'s landingpad has both a filter for `B` and a
clause for `A`, and it passes the both types to
`__cxa_find_matching_catch`:
```
__cxa_find_matching_catch(typeinfo for B, typeinfo for A)
```
`__cxa_find_matching_catch` thinks both are clauses, and looks at the
first type `B`, which belongs to a filter. And the thrown type is `B`,
so it thinks the first type `B` is caught. But this makes it return an
incorrect selector, because it is supposed to catch the exception using
the second type `A`, which is a parent of `B`. As a result, the `foo` in
the example program above does not print "Expected result" but just
throws the exception to the caller. (This wouldn't have happened if `A`
and `B` are completely disjoint types, such as `float` and `int`)
Fixes https://bugs.llvm.org/show_bug.cgi?id=50357.
Reviewed By: dschuff, kripken
Differential Revision: https://reviews.llvm.org/D102795
WebAssemblyDebugValueManager class currently does not handle
DBG_VALUE_LIST instructions correctly for two reasons, which are
explained in https://bugs.llvm.org/show_bug.cgi?id=50361.
This effectively nullifies DBG_VALUE_LISTs in
WebAssemblyDebugValueManager so that the info will appear as "optimized
out" in debuggers but still be at least correct in the meantime.
Reviewed By: dschuff, jmorse
Differential Revision: https://reviews.llvm.org/D102589
When a stackified variable has an associated `DBG_VALUE` instruction,
DebugFixup pass adds a `DBG_VALUE` instruction after the stackified
value's last use to clear the variable's debug range info. But when the
last use instruction is a terminator, it can cause a verification
failure (when run with `-verify-machineinstrs`) because there are no
instructions allowed after a terminator.
For example:
```
%myvar = ...
DBG_VALUE target-index(wasm-operand-stack), $noreg, !"myvar", ...
BR_IF 0, %myvar, ...
DBG_VALUE $noreg, $noreg, !"myvar", ...
```
In this test, `%myvar` is stackified, so the first `DBG_VALUE`
instruction's first operand has changed to `wasm-operand-stack` to
denote it. And an additional `DBG_VALUE` instruction is added after its
last use, `BR_IF`, to signal variable `myvar` is not in the operand
stack anymore. But because the `DBG_VALUE` instruction is added after
the `BR_IF`, a terminator, it fails MachineVerifier.
`DBG_VALUE` instructions are used in `DbgEntityHistoryCalculator` to
compute value ranges to emit DWARF info, and it turns out the
`DbgEntityHistoryCalculator` terminates ranges at the end of a BB, so we
don't need to emit `DBG_VALUE` after a terminator.
Fixes https://bugs.llvm.org/show_bug.cgi?id=50175.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D102309
In wasm64, the signatures of some library functions and global variables
defined in Emscripten change:
- `emscripten_longjmp`: `(i32, i32) -> ()` -> `(i64, i32) -> ()`
This changes because the first argument is the address of a memory
buffer. This in turn causes more changes below.
- `setThrew`: `(i32, i32) -> ()` -> `(i64, i32) -> ()`
`emscripten_longjmp` calls `setThrew` with the i64 buffer argument as
the first parameter.
- `__THREW__` (global var): `i32` to `i64`
`setThrew`'s first argument is set to this `__THREW__` variable, so it
should change to i64 as well.
- `testSetjmp`: `(i32, i32*, i32) -> (i32)` -> `(i64, i32*, i32) -> (i32)`
In the code transformation done in this pass, the value of `__THREW__`
is passed as the first parameter of `testSetjmp`.
This patch creates some helper functions to easily get types that become
different depending on the wasm32/wasm64, and uses them to change
various function signatures and code transformations. Also updates the
tests with WASM32/WASM64 check lines.
(Untested) Emscripten side patch: https://github.com/emscripten-core/emscripten/pull/14108
Reviewed By: aardappel
Differential Revision: https://reviews.llvm.org/D101985
We explicitly made it error out in D101403, out of a good intention that
the error message will make people less confusing. Turns out, we weren't
failing all cases of wasm EH + SjLj; only a few cases were failing and
our client was able to get around by fixing source code, but now we made
it fail for all cases, even the cases that previously succeeded fail,
which we didn't intend. This reverts that change.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D102364
As we have been missing support for WebAssembly globals on the IR level,
the lowering of WASM_SYMBOL_TYPE_GLOBAL to IR was incomplete. This
commit fleshes out the lowering support, lowering references to and
definitions of addrspace(1) values to correctly typed
WASM_SYMBOL_TYPE_GLOBAL symbols.
Depends on D101608.
Differential Revision: https://reviews.llvm.org/D101913
This patch adds support for WebAssembly globals in LLVM IR, representing
them as pointers to global values, in a non-default, non-integral
address space. Instruction selection legalizes loads and stores to
these pointers to new WebAssemblyISD nodes GLOBAL_GET and GLOBAL_SET.
Once the lowering creates the new nodes, tablegen pattern matches those
and converts them to Wasm global.get/set of the appropriate type.
Based on work by Paulo Matos in https://reviews.llvm.org/D95425.
Reviewed By: pmatos
Differential Revision: https://reviews.llvm.org/D101608
This change was originally landed in: 5000a1b4b9
It was reverted in: 061e071d8c
This change adds support for a new WASM_SEG_FLAG_STRINGS flag in
the object format which works in a similar fashion to SHF_STRINGS
in the ELF world.
Unlike the ELF linker this support is currently limited:
- No support for SHF_MERGE (non-string merging)
- Always do full tail merging ("lo" can be merged with "hello")
- Only support single byte strings (p2align 0)
Like the ELF linker merging is only performed at `-O1` and above.
This fixes part of https://bugs.llvm.org/show_bug.cgi?id=48828,
although crucially it doesn't not currently support debug sections
because they are not represented by data segments (they are custom
sections)
Differential Revision: https://reviews.llvm.org/D97657
This change adds support for a new WASM_SEG_FLAG_STRINGS flag in
the object format which works in a similar fashion to SHF_STRINGS
in the ELF world.
Unlike the ELF linker this support is currently limited:
- No support for SHF_MERGE (non-string merging)
- Always do full tail merging ("lo" can be merged with "hello")
- Only support single byte strings (p2align 0)
Like the ELF linker merging is only performed at `-O1` and above.
This fixes part of https://bugs.llvm.org/show_bug.cgi?id=48828,
although crucially it doesn't not currently support debug sections
because they are not represented by data segments (they are custom
sections)
Differential Revision: https://reviews.llvm.org/D97657
Unlike normal loads these don't have an extension field, but we know
from TargetLowering whether these are sign-extending or zero-extending,
and so can optimise away unnecessary extensions.
This was noticed on RISC-V, where sign extensions in the calling
convention would result in unnecessary explicit extension instructions,
but this also fixes some Mips inefficiencies. PowerPC sees churn in the
tests as all the zero extensions are only for promoting 32-bit to
64-bit, but these zero extensions are still not optimised away as they
should be, likely due to i32 being a legal type.
This also simplifies the WebAssembly code somewhat, which currently
works around the lack of target-independent combines with some ugly
patterns that break once they're optimised away.
Re-landed with correct handling in ComputeNumSignBits for Tmp == VTBits,
where zero-extending atomics were incorrectly returning 0 rather than
the (slightly confusing) required return value of 1.
Reviewed By: RKSimon, atanasyan
Differential Revision: https://reviews.llvm.org/D101342
- Removes the mention of fastcomp, which is deprecated.
- Some functions in Emscripten have moved from JS glue code to
compiler-rt/emscripten_setjmp.c and
compiler-rt/emscripten_exception_builtins.c. This fixes comments about
that.
Reviewed By: sbc100
Differential Revision: https://reviews.llvm.org/D101812
The WebAssembly SIMD intrinsics in wasm_simd128.h generally try not to require
any particular alignment for memory operations to be maximally flexible. For
builtin memory access functions and their corresponding LLVM IR intrinsics,
there's no way to set the expected alignment, so the best we can do is set the
alignment to 1 in the backend. This change means that the alignment hints in the
emitted code will no longer be incorrect when users use the intrinsics to access
unaligned data.
Differential Revision: https://reviews.llvm.org/D101850
This seems to have broken sanitizers, giving lots of
Assertion `NumBits <= MAX_INT_BITS && "bitwidth too large"' failed.
failures across multiple targets (currently X86 and PowerPC). Reverting
until I have a chance to reproduce and debug.
This reverts commit 6e876f9ded.
Unlike normal loads these don't have an extension field, but we know
from TargetLowering whether these are sign-extending or zero-extending,
and so can optimise away unnecessary extensions.
This was noticed on RISC-V, where sign extensions in the calling
convention would result in unnecessary explicit extension instructions,
but this also fixes some Mips inefficiencies. PowerPC sees churn in the
tests as all the zero extensions are only for promoting 32-bit to
64-bit, but these zero extensions are still not optimised away as they
should be, likely due to i32 being a legal type.
This also simplifies the WebAssembly code somewhat, which currently
works around the lack of target-independent combines with some ugly
patterns that break once they're optimised away.
Reviewed By: RKSimon, atanasyan
Differential Revision: https://reviews.llvm.org/D101342
We previously had an ISel pattern for i64x2.abs, but because the ISDNode was not
marked legal for v2i64, the instruction was not being selected.
Differential Revision: https://reviews.llvm.org/D101803
- Error out when both Emscripten EH and wasm EH are used together, i.e.,
both `-enable-emscripten-cxx-exceptions` and `-exception-model=wasm`
are given together. This will not happen if you use Emscripten, but
this can happen when you call `llc` manually with wrong set of
arguments.
- Currently we don't yet support using wasm EH with Emscripten SjLj.
Unlike `-enable-emscripten-cxx-exceptions` which is turned on only
when you use `emcc -s DISABLE_EXCEPTION_CATCHING=0`,
`-enable-emscripten-sjlj` is turned on by Emscripten by default. So we
error out only when it is turned on and `setjmp` or `longjmp` is
actually used.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D101403
Previously we used an i32 constant to store the saturation width, but i32 isn't
legal on RISCV64. This wasn't a big deal to fix, but it is extra work for the
type legalizer.
This patch uses a VTSDNode to store the type similar to SEXT_INREG. This makes
it opaque to the type legalizer.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D101262
Background:
CFGStackify's [[ 398f253400/llvm/lib/Target/WebAssembly/WebAssemblyCFGStackify.cpp (L1481-L1540) | fixEndsAtEndOfFunction ]] fixes block/loop/try's return
type when the end of function is unreachable and the function return
type is not void. So if a function returns i32 and `block`-`end` wraps the
whole function, i.e., the `block`'s `end` is the last instruction of the
function, the `block`'s return type should be i32 too:
```
block i32
...
end
end_function
```
If there are consecutive `end`s, this signature has to be propagate to
those blocks too, like:
```
block i32
...
block i32
...
end
end
end_function
```
This applies to `try`-`end` too:
```
try i32
...
catch
...
end
end_function
```
In case of `try`, we not only follow consecutive `end`s but also follow
`catch`, because for the type of the whole `try` to be i32, both `try`
and `catch` parts have to be i32:
```
try i32
...
block i32
...
end
catch
...
block i32
...
end
end
end_function
```
---
Previously we only handled consecutive `end`s or `end` before a `catch`.
But now we have `delegate`, which serves like `end` for
`try`-`delegate`. So we have to follow `delegate` too and mark its
corresponding `try` as i32 (the function's return type):
```
try i32
...
catch
...
try i32 ;; Here
...
delegate N
end
end_function
```
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D101036
This adds support for YAML serialization of `Params` and `Results`
fields in `WebAssemblyMachineFunctionInfo`. Types are printed as `MVT`'s
string representation. This is for writing MIR tests easier.
The tests added are testing simple parsing and printing of `params` /
`results` fields under `machineFunctionInfo`.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D101029
This CL
1. Creates Utils/ directory under lib/Target/WebAssembly
2. Moves existing WebAssemblyUtilities.cpp|h into the Utils/ directory
3. Creates Utils/WebAssemblyTypeUtilities.cpp|h and put type
declarataions and type conversion functions scattered in various
places into this single place.
It has been suggested several times that it is not easy to share utility
functions between subdirectories (AsmParser, DIsassembler, MCTargetDesc,
...). Sometimes we ended up [[ https://reviews.llvm.org/D92840#2478863 | duplicating ]] the same function because of
this.
There are already other targets doing this: AArch64, AMDGPU, and ARM
have Utils/ subdirectory under their target directory.
This extracts the utility functions into a single directory Utils/ and
make them sharable among all passes in WebAssembly/ and its
subdirectories. Also I believe gathering all type-related conversion
functionalities into a single place makes it more usable. (Actually I
was working on another CL that uses various type conversion functions
scattered in multiple places, which became the motivation for this CL.)
Reviewed By: dschuff, aardappel
Differential Revision: https://reviews.llvm.org/D100995
This is just a cleanup of the very high level stuff. I'm sure there is
more to update here but I'll leave that to others and/or a followup.
Differential Revision: https://reviews.llvm.org/D100888
af7925b4dd added a custom DAG combine for recognizing fp-to-ints of
extract_subvectors that could be lowered to f64x2.convert_low_i32x4_{s,u}
instructions. This commit extends the combines to recognize equivalent
extract_subvectors of fp-to-ints as well.
Differential Revision: https://reviews.llvm.org/D100790
We previously used splats instead of v128.const to materialize vector constants
because V8 did not support v128.const. Now that V8 supports v128.const, we can
use v128.const instead. Although this increases code size, it should also
increase performance (or at least require fewer engine-side optimizations), so
it is an appropriate change to make.
Differential Revision: https://reviews.llvm.org/D100716
Use the target-independent @llvm.fptosi and @llvm.fptoui intrinsics instead.
This includes removing the instrinsics for i32x4.trunc_sat_zero_f64x2_{s,u},
which are now represented in IR as a saturating truncation to a v2i32 followed by
a concatenation with a zero vector.
Differential Revision: https://reviews.llvm.org/D100596
Removes the builtins and intrinsics used to opt in to using these instructions
and replaces them with normal ISel patterns now that they are no longer
prototypes.
Differential Revision: https://reviews.llvm.org/D100402
Add a custom DAG combine and ISD opcode for detecting patterns like
(uint_to_fp (extract_subvector ...))
before the extract_subvector is expanded to ensure that they will ultimately
lower to f64x2.convert_low_i32x4_{s,u} instructions. Since these instructions
are no longer prototypes and can now be produced via standard IR, this commit
also removes the target intrinsics and builtins that had been used to prototype
the instructions.
Differential Revision: https://reviews.llvm.org/D100425
Now that these instructions are no longer prototypes, we do not need to be
careful about keeping them opt-in and can use the standard LLVM infrastructure
for them. This commit removes the bespoke intrinsics we were using to represent
these operations in favor of the corresponding target-independent intrinsics.
The clang builtins are preserved because there is no standard way to easily
represent these operations in C/C++.
For consistency with the scalar codegen in the Wasm backend, the intrinsic used
to represent {f32x4,f64x2}.nearest is @llvm.nearbyint even though
@llvm.roundeven better captures the semantics of the underlying Wasm
instruction. Replacing our use of @llvm.nearbyint with use of @llvm.roundeven is
left to a potential future patch.
Differential Revision: https://reviews.llvm.org/D100411
In the final SIMD spec, there is only a single v128.any_true instruction, rather
than one for each lane interpretation because the semantics do not depend on the
lane interpretation.
Differential Revision: https://reviews.llvm.org/D100241
When lowering a BUILD_VECTOR SDNode, we choose among various possible vector
creation instructions in an attempt to minimize the total number of instructions
used. We previously considered using swizzles, consts, and splats, and this
patch adds shuffles as well. A common pattern that now lowers to shuffles is
when two 64-bit vectors are concatenated. Previously, concatenations generally
lowered to sequences of extract_lane and replace_lane instructions when they
could have been a single shuffle.
Differential Revision: https://reviews.llvm.org/D100018
wasm64 was missing DAG ISEL patterns for external symbol based global.get, but simply adding these analogous to the existing 32-bit versions doesn't work.
This is because we are conflating the 32-bit global index with the pointer represented by the external symbol, which for wasm32 happened to work.
The simplest fix is to pretend we have a 64-bit global index. This sounds incorrect, but is immaterial since once this index is stored as a MachineOperand it becomes 64-bit anyway (and has been all along). As such, the EmitInstrWithCustomInserter based implementation I experimented with become a no-op and no further changes in the C++ code are required.
Differential Revision: https://reviews.llvm.org/D99904
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
A frequent pattern for floating point conditional branches use an xor
to invert the input for the branch. Instead we can fold away the xor
by swapping the branch target instead.
Differential Revision: https://reviews.llvm.org/D99171
Removes the prototype builtin and intrinsic for i64x2.eq and implements that
instruction as well as the other i64x2 comparison instructions in the final SIMD
spec. Unsigned comparisons were not included in the final spec, so they still
need to be scalarized via a custom lowering.
Differential Revision: https://reviews.llvm.org/D99623
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
When I updated the SIMD opcodes in f5764a8654, I accidentally missed updating
i8x16.popcnt. This patch fixes the omission.
Differential Revision: https://reviews.llvm.org/D99536
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
This commit adds a full WasmTableType to MCSymbolWasm, differing from
the current situation (just an ElemType) in that it additionally records
a WasmLimits.
We add support for specifying the limits in .S files also, via the
following syntax variations:
.tabletype SYM, ELEMTYPE
.tabletype SYM, ELEMTYPE, MINSIZE
.tabletype SYM, ELEMTYPE, MINSIZE, MAXSIZE
Depends on D99186.
Differential Revision: https://reviews.llvm.org/D99191
Updates the names (e.g. widen => extend, saturate => sat) and opcodes of all
SIMD instructions to match the finalized SIMD spec. Deliberately does not change
the public interface in wasm_simd128.h yet; that will require more care.
Depends on D98466.
Differential Revision: https://reviews.llvm.org/D98676
Removes the instruction definitions, intrinsics, and builtins for qfma/qfms,
signselect, and prefetch instructions, which were not included in the final
WebAssembly SIMD spec.
Depends on D98457.
Differential Revision: https://reviews.llvm.org/D98466
Now that the WebAssembly SIMD specification is finalized and engines are
generally up-to-date, there is no need for a separate target feature for gating
SIMD instructions that engines have not implemented. With this change,
v128.const is now enabled by default with the simd128 target feature.
Differential Revision: https://reviews.llvm.org/D98457
This patch adds handling for DBG_VALUE_LIST in the MIR-passes (after
finalize-isel), excluding the debug liveness passes and DWARF emission. This
most significantly affects MachineSink, which now needs to consider all used
registers of a debug value when sinking, but for most passes this change is
simply replacing getDebugOperand(0) with an iteration over all debug operands.
Differential Revision: https://reviews.llvm.org/D92578
This `R_WASM_MEMORY_ADDR_SELFREL_I32` relocation represents an offset
between its relocating address and the symbol address. It's very similar
to `R_X86_64_PC32` but restricted to be used for only data segments.
```
S + A - P
```
A: Represents the addend used to compute the value of the relocatable
field.
P: Represents the place of the storage unit being relocated.
S: Represents the value of the symbol whose index resides in the
relocation entry.
Proposal: https://github.com/WebAssembly/tool-conventions/issues/162
Differential Revision: https://reviews.llvm.org/D96659
Rewrites test to use correct architecture triple; fixes incorrect
reference in SourceLevelDebugging doc; simplifies `spillReg` behaviour
so as to not be dependent on changes elsewhere in the patch stack.
This reverts commit d2000b45d0.
This is a case D97677 missed. When taking out remaining BBs that are
reachable from already-taken-out exceptions (because they are not
subexcptions but unwind destinations), I assumed the remaining BBs are
not EH pads, but they can be. For example,
```
try {
try {
throw 0;
} catch (int) { // (a)
}
} catch (int) { // (b)
}
try {
foo();
} catch (int) { // (c)
}
```
In this code, (b) is the unwind destination of (a) so its exception is
taken out of (a)'s exception, But even though the next try-catch is not
inside the first two-level try-catches, because the first try always
throws, its continuation BB is unreachable and the whole rest of the
function is dominated by EH pad (a), including EH pad (c). So after we
take out of (b)'s exception out of (a)'s, we also need to take out (c)'s
exception out of (a)'s, because (c) is reachable from (b).
This adds one more step before what we did for remaining BBs in D97677;
it traverses EH pads first to take subexceptions out of their incorrect
parent exception. It's the same thing as D97677, but because we can do
this before we add BBs to exceptions' sets, we don't need to fix sets
and only need to fix parent exception pointers.
Other changes are variable name changes (I changed `WE` -> `SrcWE`,
`UnwindWE` -> `DstWE` for clarity), some comment changes, and a drive-by
fix in a bug in a `LLVM_DEBUG` print statement.
Fixes https://github.com/emscripten-core/emscripten/issues/13588.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D97929
Background:
Wasm EH, while using Windows EH (catchpad/cleanuppad based) IR, uses
Itanium-based libraries and ABIs with some modifications.
`__clang_call_terminate` is a wrapper generated in Clang's Itanium C++
ABI implementation. It contains this code, in C-style pseudocode:
```
void __clang_call_terminate(void *exn) {
__cxa_begin_catch(exn);
std::terminate();
}
```
So this function is a wrapper to call `__cxa_begin_catch` on the
exception pointer before termination.
In Itanium ABI, this function is called when another exception is thrown
while processing an exception. The pointer for this second, violating
exception is passed as the argument of this `__clang_call_terminate`,
which calls `__cxa_begin_catch` with that pointer and calls
`std::terminate` to terminate the program.
The spec (https://libcxxabi.llvm.org/spec.html) for `__cxa_begin_catch`
says,
```
When the personality routine encounters a termination condition, it
will call __cxa_begin_catch() to mark the exception as handled and then
call terminate(), which shall not return to its caller.
```
In wasm EH's Clang implementation, this function is called from
cleanuppads that terminates the program, which we also call terminate
pads. Cleanuppads normally don't access the thrown exception and the
wasm backend converts them to `catch_all` blocks. But because we need
the exception pointer in this cleanuppad, we generate
`wasm.get.exception` intrinsic (which will eventually be lowered to
`catch` instruction) as we do in the catchpads. But because terminate
pads are cleanup pads and should run even when a foreign exception is
thrown, so what we have been doing is:
1. In `WebAssemblyLateEHPrepare::ensureSingleBBTermPads()`, we make sure
terminate pads are in this simple shape:
```
%exn = catch
call @__clang_call_terminate(%exn)
unreachable
```
2. In `WebAssemblyHandleEHTerminatePads` pass at the end of the
pipeline, we attach a `catch_all` to terminate pads, so they will be in
this form:
```
%exn = catch
call @__clang_call_terminate(%exn)
unreachable
catch_all
call @std::terminate()
unreachable
```
In `catch_all` part, we don't have the exception pointer, so we call
`std::terminate()` directly. The reason we ran HandleEHTerminatePads at
the end of the pipeline, separate from LateEHPrepare, was it was
convenient to assume there was only a single `catch` part per `try`
during CFGSort and CFGStackify.
---
Problem:
While it thinks terminate pads could have been possibly split or calls
to `__clang_call_terminate` could have been duplicated,
`WebAssemblyLateEHPrepare::ensureSingleBBTermPads()` assumes terminate
pads contain no more than calls to `__clang_call_terminate` and
`unreachable` instruction. I assumed that because in LLVM very limited
forms of transformations are done to catchpads and cleanuppads to
maintain the scoping structure. But it turned out to be incorrect;
passes can merge cleanuppads into one, including terminate pads, as long
as the new code has a correct scoping structure. One pass that does this
I observed was `SimplifyCFG`, but there can be more. After this
transformation, a single cleanuppad can contain any number of other
instructions with the call to `__clang_call_terminate` and can span many
BBs. It wouldn't be practical to duplicate all these BBs within the
cleanuppad to generate the equivalent `catch_all` blocks, only with
calls to `__clang_call_terminate` replaced by calls to `std::terminate`.
Unless we do more complicated transformation to split those calls to
`__clang_call_terminate` into a separate cleanuppad, it is tricky to
solve.
---
Solution (?):
This CL just disables the generation and use of `__clang_call_terminate`
and calls `std::terminate()` directly in its place.
The possible downside of this approach can be, because the Itanium ABI
intended to "mark" the violating exception handled, we don't do that
anymore. What `__cxa_begin_catch` actually does is increment the
exception's handler count and decrement the uncaught exception count,
which in my opinion do not matter much given that we are about to
terminate the program anyway. Also it does not affect info like stack
traces that can be possibly shown to developers.
And while we use a variant of Itanium EH ABI, we can make some
deviations if we choose to; we are already different in that in the
current version of the EH spec we don't support two-phase unwinding. We
can possibly consider a more complicated transformation later to
reenable this, but I don't think that has high priority.
Changes in this CL contains:
- In Clang, we don't generate a call to `wasm.get.exception()` intrinsic
and `__clang_call_terminate` function in terminate pads anymore; we
simply generate calls to `std::terminate()`, which is the default
implementation of `CGCXXABI::emitTerminateForUnexpectedException`.
- Remove `WebAssembly::ensureSingleBBTermPads() function and
`WebAssemblyHandleEHTerminatePads` pass, because terminate pads are
already `catch_all` now (because they don't need the exception
pointer) and we don't need these transformations anymore.
- Change tests to use `std::terminate` directly. Also removes tests that
tested `LateEHPrepare::ensureSingleBBTermPads` and
`HandleEHTerminatePads` pass.
- Drive-by fix: Add some function attributes to EH intrinsic
declarations
Fixes https://github.com/emscripten-core/emscripten/issues/13582.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97834
This patch adds a new instruction that can represent variadic debug values,
DBG_VALUE_VAR. This patch alone covers the addition of the instruction and a set
of basic code changes in MachineInstr and a few adjacent areas, but does not
correctly handle variadic debug values outside of these areas, nor does it
generate them at any point.
The new instruction is similar to the existing DBG_VALUE instruction, with the
following differences: the operands are in a different order, any number of
values may be used in the instruction following the Variable and Expression
operands (these are referred to in code as “debug operands”) and are indexed
from 0 so that getDebugOperand(X) == getOperand(X+2), and the Expression in a
DBG_VALUE_VAR must use the DW_OP_LLVM_arg operator to pass arguments into the
expression.
The new DW_OP_LLVM_arg operator is only valid in expressions appearing in a
DBG_VALUE_VAR; it takes a single argument and pushes the debug operand at the
index given by the argument onto the Expression stack. For example the
sub-expression `DW_OP_LLVM_arg, 0` has the meaning “Push the debug operand at
index 0 onto the expression stack.”
Differential Revision: https://reviews.llvm.org/D82363
The WebAssembly text and binary formats have different operand orders
for the "type" and "table" fields of call_indirect (and
return_call_indirect). In LLVM we use the binary order for the MCInstr,
but when we produce or consume the text format we should use the text
order. For compilation units targetting WebAssembly 1.0 (without the
reference types feature), we omit the table operand entirely.
Differential Revision: https://reviews.llvm.org/D97761
This fixes two bugs in `WebAssemblyExceptionInfo` grouping, created by
D97247. These two bugs are not easy to split into two different CLs,
because tests that fail for one also tend to fail for the other.
- In D97247, when fixing `ExceptionInfo` grouping by taking out
the unwind destination' exception from the unwind src's exception, we
just iterated the BBs in the function order, but this was incorrect;
this changes it to dominator tree preorder. Please refer to the
comments in the code for the reason and an example.
- After this subexception-taking-out fix, there still can be remaining
BBs we have to take out. When Exception B is taken out of Exception A
(because EHPad B is the unwind destination of EHPad A), there can
still be BBs within Exception A that are reachable from Exception B,
which also should be taken out. Please refer to the comments in the
code for more detailed explanation on why this can happen. To make
this possible, this splits `WebAssemblyException::addBlock` into two
parts: adding to a set and adding to a vector. We need to iterate on
BBs within a `WebAssemblyException` to fix this, so we add BBs to sets
first. But we add BBs to vectors later after we fix all incorrectness
because deleting BBs from vectors is expensive. I considered removing
the vector from `WebAssemblyException`, but it was not easy because
this class has to maintain a similar interface with `MachineLoop` to
be wrapped into a single interface `SortRegion`, which is used in
CFGSort.
Other misc. drive-by fixes:
- Make `WebAssemblyExceptionInfo` do not even run when wasm EH is not
used or the function doesn't have any EH pads, not to waste time
- Add `LLVM_DEBUG` lines for easy debugging
- Fix `preds` comments in cfg-stackify-eh.ll
- Fix `__cxa_throw`'s signature in cfg-stackify-eh.ll
Fixes https://github.com/emscripten-core/emscripten/issues/13554.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97677
In `LateEHPrepare::addCatchAlls`, the current code tries to get the
iterator's debug info even when it is `MachineBasicBlock::end()`. This
fixes the bug by adding empty debug info instead in that case.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D97679
If the reference-types feature is enabled, call_indirect will explicitly
reference its corresponding function table via TABLE_NUMBER
relocations against a table symbol.
Also, as before, address-taken functions can also cause the function
table to be created, only with reference-types they additionally cause a
symbol table entry to be emitted.
Differential Revision: https://reviews.llvm.org/D90948
D97247 added the reverse mapping from unwind destination to their
source, but it had a critical bug; sources can be multiple, because
multiple BBs can have a single BB as their unwind destination.
This changes `WasmEHFuncInfo::getUnwindSrc` to `getUnwindSrcs` and makes
it return a vector rather than a single BB. It does not return the const
reference to the existing vector but creates a new vector because
`WasmEHFuncInfo` stores not `BasicBlock*` or `MachineBasicBlock*` but
`PointerUnion` of them. Also I hoped to unify those methods for
`BasicBlock` and `MachineBasicBlock` into one using templates to reduce
duplication, but failed because various usages require `BasicBlock*` to
be `const` but it's hard to make it `const` for `MachineBasicBlock`
usages.
Fixes https://github.com/emscripten-core/emscripten/issues/13514.
(More precisely, fixes
https://github.com/emscripten-core/emscripten/issues/13514#issuecomment-784708744)
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97583
Use `APInt` to convert a 32-bit or 64-bit immediate to an `APFloat` rather than
`bit_cast` to a `float` or `double` to avoid going through host floating-point and
potentially changing the bit pattern of NaNs.
Differential Revision: https://reviews.llvm.org/D97490
This is a case D97178 tried to solve but missed. D97178 could not handle
the case when
multiple consecutive delegates are generated:
- Before:
```
block
br (a)
try
catch
end_try
end_block
<- (a)
```
- After
```
block
br (a)
try
...
try
try
catch
end_try
<- (a)
delegate
delegate
end_block
<- (b)
```
(The `br` should point to (b) now)
D97178 assumed `end_block` exists two BBs later than `end_try`, because
it assumed the order as `end_try` BB -> `delegate` BB -> `end_block` BB.
But it turned out there can be multiple `delegate`s in between. This
patch changes the logic so we just search from `end_try` BB until we
find `end_block`.
Fixes https://github.com/emscripten-core/emscripten/issues/13515.
(More precisely, fixes
https://github.com/emscripten-core/emscripten/issues/13515#issuecomment-784711318.)
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97569