This patch fixes a problem when the AAKernelInfo state was invalidated,
e.g., due to `optnone` for a kernel, but not all parts indicated the
invalidation properly. We further eliminate most full state
invalidations as they should never be necessary.
Differential Revision: https://reviews.llvm.org/D109468
This is a follow-up of D110029, which uses bitset to indicate execution mode. This patches makes the changes in the function call.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110279
Neither of these passes modify the CFG, allowing us to preserve DomTree
and LoopInfo across them by using setPreservesCFG.
Differential Revision: https://reviews.llvm.org/D110161
The return type of strlen is size_t, not just any integer.
This is a partial fix for an example based on:
https://llvm.org/PR50836
There's another bug here because we can still crash
processing a real strlen or something that looks like it.
The pass uses different cost kinds to estimate "old" and "interleaved" costs:
default cost kind for all targets override `getInterleavedMemoryOpCost()` is
`TCK_SizeAndLatency`. Although at the moment estimated `TCK_Latency` costs are
equal to `TCK_SizeAndLatency`, (so the change is NFC) it may change in future.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110100
When determining whether to fold branches to a common destination by
merging two blocks, SimplifyCFG will count the number of instructions to
be moved into the first basic block. However, there's no reason to count
free instructions like bitcasts and other similar instructions.
This resolves missed branch foldings with -fstrict-vtable-pointers in
llvm-test-suite's lambda benchmark.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D108837
We can use riscv_vse intrinsic instead of riscv_vse_mask. The code here
is based on similar code for handling masked.scatter and vp.scatter.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D110206
Currenlty PseudoProbeInserter is a pass conditioned on a target switch. It works well with a single clang invocation. It doesn't work so well when the backend is called separately (i.e, through the linker or llc), where user has always to pass -pseudo-probe-for-profiling explictly. I'm making the pass a default pass that requires no command line arg to trigger, but will be actually run depending on whether the CU comes with `llvm.pseudo_probe_desc` metadata.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D110209
Note that MIRCanonicalizerID is declared in
llvm/include/llvm/CodeGen/Passes.h, which MIRCanonicalizerPass.cpp
includes.
Identified with readability-redundant-declaration.
Avoid relying on the default cost kinds in TTI calls (we already do this in other places in SLP) - noticed while trying to see how much work it'd be to extend D110242 and remove all remaining uses of default CostKind arguments.
This patch is for fixing potential shufflevector-related bugs like D93818.
As D93818, this patch change shufflevector's default placeholder to poison.
To reduce risk, it was divided into several patches, and this patch is for InstCombineVectorOps.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D110230
The execution mode of a kernel is stored in a global variable, whose value means:
- 0 - SPMD mode
- 1 - indicates generic mode
- 2 - SPMD mode execution with generic mode semantics
We are going to add support for SIMD execution mode. It will be come with another
execution mode, such as SIMD-generic mode. As a result, this value-based indicator
is not flexible.
This patch changes to bitset based solution to encode execution mode. Each
position is:
[0] - generic mode
[1] - SPMD mode
[2] - SIMD mode (will be added later)
In this way, `0x1` is generic mode, `0x2` is SPMD mode, and `0x3` is SPMD mode
execution with generic mode semantics. In the future after we add the support for
SIMD mode, `0b1xx` will be in SIMD mode.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110029
This patch is for fixing potential shufflevector-related bugs like D93818.
As D93818, this patch change shufflevector's default placeholder to poison.
To reduce risk, it was divided into several patches, and this patch is for InstCombineCompares and InstructionCombining.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D110227
Based off a discussion on D110100, we should be avoiding default CostKinds whenever possible.
This initial patch removes them from the 'inner' target implementation callbacks - these should only be used by the main TTI calls, so this should guarantee that we don't cause changes in CostKind by missing it in an inner call. This exposed a few missing arguments in getGEPCost and reduction cost calls that I've cleaned up.
Differential Revision: https://reviews.llvm.org/D110242
This patch is for fixing potential shufflevector-related bugs like D93818.
As D93818, this patch change shufflevector's default placeholder to poison.
To reduce risk, it was divided into several patches, and this patch is for InstCombineCasts.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D110226
Summary:
The thread ID function was reintroduced in D110195, but could
potentially be removed by the optimizer. Make the function noinline to
preserve the call sites and add it to the externalization RAII so its
definition is not removed by the attributor.
This code seems untested and is likely obsolete, because this case
should already be handled by the code that legalizes the result type
of EXTRACT_SUBVECTOR.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D110061
Like normal atomicrmw operations, at -O0 the simple register-allocator can
insert spills into the LL/SC loop if it's expanded and visible when regalloc
runs. This can cause the operation to never succeed by repeatedly clearing the
monitor. Instead expand to a cmpxchg, which has a pseudo-instruction for -O0.
This is required to codegen something like:
<vscale x 8 x i16> @llvm.experimental.vector.insert(<vscale x 8 x i16> %vec,
<vscale x 2 x i16> %subvec,
i64 %idx)
where the output vector is legal, but the input vector needs promoting.
It implements this by performing the whole operation on the promoted type,
and then truncating the result.
Reviewed By: david-arm, craig.topper
Differential Revision: https://reviews.llvm.org/D110059
IR with matrix intrinsics is likely to also contain large vector
operations, which can benefit from early simplifications.
This is the last step in a series of changes to improve code-gen for
code using matrix subscript operators with the C/C++ matrix extension in
CLang, like
using matrix_t = double __attribute__((matrix_type(15, 15)));
void foo(unsigned i, matrix_t &A, matrix_t &B) {
for (unsigned j = 0; j < 4; ++j)
for (unsigned k = 0; k < i; k++)
B[k][j] -= A[k][j] * B[i][j];
}
https://clang.godbolt.org/z/6dKxK1Ed7
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D102496
This reverts commit 2f6b07316f.
This caused several bots to hit an infinite loop at stage 2,
so it needs to be reverted while figuring out how to fix that.
This allows VMOVL in tail predicated loops so long as the the vector
size the VMOVL is extending into is less than or equal to the size of
the VCTP in the tail predicated loop. These cases represent a
sign-extend-inreg (or zero-extend-inreg), which needn't block tail
predication as in https://godbolt.org/z/hdTsEbx8Y.
For this a vecsize has been added to the TSFlag bits of MVE
instructions, which stores the size of the elements that the MVE
instruction operates on. In the case of multiple size (such as a
MVE_VMOVLs8bh that extends from i8 to i16, the largest size was be
chosen). The sizes are encoded as 00 = i8, 01 = i16, 10 = i32 and 11 =
i64, which often (but not always) comes from the instruction encoding
directly. A unit test was added, and although only a subset of the
vecsizes are currently used, the rest should be useful for other cases.
Differential Revision: https://reviews.llvm.org/D109706
The folding rule (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C,
Idx, 0)) creates a malformed SELECT IR if C is a vector while Idx is scalar.
SELECT VecC, ScalarIdx, 0
We could splat Idx to a vector but it defeats the purpose of
optimisation. Don't apply the folding rule in this case.
This fixes a regression from commit d561b6fbdb.
Most of the code wasn't yet scalable safe, although most of the
code conceptually just works for scalable vectors. This change
makes the algorithm work on ElementCount, where appropriate,
and leaves the fixed-width only code to use `getFixedNumElements`.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D110058
This patch updates VectorCombine to use a worklist to allow iterative
simplifications where a combine enables other combines.
Suggested in D100302.
The main use case at the moment is foldSingleElementStore and
scalarizeLoadExtract working together to improve scalarization.
Note that we now also do not run SimplifyInstructionsInBlock on the
whole function if there have been changes. This means we fail to
remove/simplify instructions not related to any of the vector combines.
IMO this is fine, as simplifying the whole function seems more like a
workaround for not tracking the changed instructions.
Compile-time impact looks neutral:
NewPM-O3: +0.02%
NewPM-ReleaseThinLTO: -0.00%
NewPM-ReleaseLTO-g: -0.02%
http://llvm-compile-time-tracker.com/compare.php?from=52832cd917af00e2b9c6a9d1476ba79754dcabff&to=e66520a4637290550a945d528e3e59573485dd40&stat=instructions
Reviewed By: spatel, lebedev.ri
Differential Revision: https://reviews.llvm.org/D110171
Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
instruction, so we might as well convert it to the more flexible VOP3-
only mad/fma form.
With this change, the only way we should emit VOP3-encoded mac/fmac is
if regalloc chooses registers that require the VOP3 encoding, e.g. sgprs
for both src0 and src1. In all other cases the mac/fmac should either be
converted to mad/fma or shrunk to VOP2 encoding.
Differential Revision: https://reviews.llvm.org/D110156
InstCombine's worklist can be re-used by other passes like
VectorCombine. Move it to llvm/Transform/Utils and rename it to
InstructionWorklist.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D110181
Add an overload to pass the flat workgroup range in separately. This
will allow the attributor to use the assumed value for
amdgpu-flat-workgroup-sizes when inferring amdgpu-waves-per-eu.
This is a follow-up of D105872. Now we are able to prepare for update
form with non-const increment.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D106032
Add a new LLVM switch `-profile-sample-block-accurate` to trust zero block counts for branches. Currently we leave out such zero counts when annotating branch weight metadata, which would lead to weights being considered as unknown.
Differential Revision: https://reviews.llvm.org/D110117
And always print it.
This makes some LLVM diagnostics match up better with Clang's diagnostics.
Updated some AMDGPU uses of DiagnosticInfoResourceLimit and now we print
better diagnostics for those.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D110204
This change adds the ASan intrinsic to the list whihc are setting hasCopyImplyingStackAdjustment.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D110012
This time with the right bug number.
When we rewrite the setcc we replace set old setcc output register
with the new CondReg. But since CondReg can be shared by other
replacements, we don't know if the kill flags for the old register
are valid for CondReg. So be conservative and remove them.
The test case has a SETCCr and a SETCCm on the same condition so
they end up sharing the same CondReg. The SETCCr had one use with
a kill flag. This kill flag isn't valid after the replacement because
CondReg needs a live range extending to the later SETCCm replacment.
Fixes PR51903.
Currently, the dead functions information getting from optimizations remarks does not contain debug location, but knowing where these dead functions locate could be useful for debugging or for detecting dead code.
Cause in `LTO::addRegularLTO()` we use `BitcodeModule::getLazyModule()` to read the bitcode module, when we pass Function F to `ore::NV()`, F is not materialized, so `F->getSubprogram()` returns nullptr, and there is no debug location information of dead functions in optimizations remarks.
This patch call `F->materialize()` before we pass Function F to `ore::NV()`, then debug location information will be emitted for dead functions in optimization remarks.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D109737
When we rewrite the setcc we replace set old setcc output register
with the new CondReg. But since CondReg can be shared by other
replacements, we don't know if the kill flags for the old register
are valid for CondReg. So be conservative and remove them.
The test case has a SETCCr and a SETCCm on the same condition so
they end up sharing the same CondReg. The SETCCr had one use with
a kill flag. This kill flag isn't valid after the replacement because
CondReg needs a live range extending to the later SETCCm replacment.
Fixes PR51908.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D110046
This comment references behavior that was removed in
ccae43a247, which is a commit from 5 years
ago. It seems safe to assume that that behavior won't be coming back
soon. If it does, we can readd this part of the comment :)
A logic incompleteness may lead MemorySSA to be too conservative
in its results. Specifically, when dealing with a call of kind
`call i32 bitcast (i1 (i1)* @test to i32 (i32)*)(i32 %1)`, where
the function `test` is declared with readonly attribute, the
bitcast is not looked through, obscuring function attributes. Hence,
some methods of CallBase (e.g., doesNotReadMemory) could provide
suboptimal results.
Differential Revision: https://reviews.llvm.org/D109888
MergeICmps will currently sort (by offset) all comparisons in a chain,
including those that do not get merged. This is problematic in two ways:
* We may end up moving the original first block into the middle of
the chain, in which case the "extra work" instructions will also
be in the middle of the chain, resulting in invalid IR
(reported in https://reviews.llvm.org/D108782#3005583).
* Reordering branches is generally not legal, because it may
introduce branch on poison, which is UB (PR51845). The merging
done by MergeICmps is legal as long as we assume that memcmp()
works on frozen memory, but the reordering of unmerged comparisons
is definitely incorrect (without inserting freeze instructions),
so we should avoid it.
There are easier ways to fix the first issue, but I figured it was
worthwhile to do this properly to also fix the second one. What we
now do is to restore the original relative order of (potentially
merged) comparisons.
I took the liberty of dropping the MERGEICMPS_DOT_ON functionality,
because it would be more awkward to implement now (as the before and
after representation is different) and it doesn't seem terribly
useful nowadays.
Differential Revision: https://reviews.llvm.org/D110024
Normally, given that the DA results are kept consistent over the selection DAG, uniform comparisons get selected to S_CMP_* but divergent to V_CMP_*. Sometimes, for the sake of efficiency, SSA subgraphs may be converted to VALU to avoid repeatedly copying data back and forth. Hence we have to be able to sustain the correctness passing the i1 from VALU to SALU context and vice versa.
VALU operations only process the active lanes of the VGPR and ignore inactive ones.
Active lanes correspond to 1 bit in the EXEC mask register.
SALU represents i1 as just one bit but VALU as 64bits: 0/1 and 0/(0xffffffffffffffff & EXEC) respectively.
SALU uses one-bit conditional flag SCC but VALU - VCC that is a pair of 32-bit SGPRs
To expose SCC to the VALU context we need to convert the one-bit boolean value to the appropriate 64bit.
To return back to the SALU context we need to do the opposite.
To correctly convert 64bit VALU boolean to either 0 or 1 we need to filter out the bits corresponding to the inactive lanes.
Reviewed By: piotr
Differential Revision: https://reviews.llvm.org/D109900
When adding alias.scope and noalias metadata to a memcpy function,
the alias.scope and noalias metadata from the operands are merged.
The rule for merging alias.scope is to take the intersection of
the domains and the union of the scopes within those domains.
The rule for merging noalias is to take the intersection.
The bug is that AMDGPULowerModuleLDS was using concatenation for
both alias.scope and noalias. For example, when f1 and f2 are added
to the LDS structure and there is a memcpy(f2, f1, sizeof(f1)).
Then, concatenation creates noalias metadata for the memcpy that
includes both {f1, f2}. That means that the memcpy is assumed
not to alias a prior load of f2, which enables the optimizer to
remove a load of f2 that occurs after mempcy.
The function MDNode::getmostGenericAliasScope defines the semantics
for alias.scope. There is a function, combineMetadata in Local.cpp,
that uses intersect for noalias.
Differential Revision: https://reviews.llvm.org/D110049
This patch adds a prefixed load pattern involving v2f32 fpext v2f64, where we
are dealing with a value with an offset that fits into a 34-bit signed immediate.
A reduced test case is also added to patch that tests the pattern, in which the
pattern is tested in the big endian CHECKs of the newly added test.
Differential Revision: https://reviews.llvm.org/D109887
This patch fixes the crash found by PR51614:
whenever doing tail folding, interleave groups must be considered under mask.
Another fix D108900 follows for targets that support masked loads and stores:
when *deciding* to vectorize with masked interleave groups, check if the access
is reverse - which is currently not supported; rather than (only) asserting when
computing cost and generating code.
Differential Revision: https://reviews.llvm.org/D108891
This requires a minor change to CodeGenPrepare to ensure that
shouldSinkOperands will be called for And.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D110106
We already have pow(x, y) * pow(x, z) -> pow(x, y + z) transformation, but we are missing same transformation for powi (power is integer).
Requires reassoc.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D109954
isValidAssumeForContext can provide better results with access to the
dominator tree in some cases. This patch adjusts computeConstantRange to
allow passing through a dominator tree.
The use VectorCombine is updated to pass through the DT to enable
additional scalarization.
Note that similar APIs like computeKnownBits already accept optional dominator
tree arguments.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D110175
When using instructions which have a MetadataAsValue argument
(e.g. some target-specific intrinsics) MD canonicalization strips
internal MDNodes with a single ConstantAsMetadata child. That
prevented IRTranslator from the proper translation of such a calls.
Optimize (add (mul x, c0), c1) -> (ADDI (MUL (ADDI, c1/c0), c0), c1%c0),
if c1/c0 and c1%c0 are simm12, while c1 is not.
Optimize (add (mul x, c0), c1) -> (MUL (ADDI, c1/c0), c0),
if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D108607
This patch allows sinking an instruction which can have multiple uses in a
single user. We were previously over-restrictive by looking for exactly one use,
rather than one user.
Also added an API for retrieving a unique undroppable user.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D109700
One of the two inputs of the Shufflevector is often a placeholder.
Previously, there were cases where the placeholder was undef, and there were cases where it was poison.
I added these constructors to create a placeholder consistently.
Changing to use the newly added constructor will be written in a separate patch.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D110146
SystemZ adds the EXRL target instructions in the end of each file. This must
be done before debug info emission since that may end the text section, and
therefore this is now done in emitConstantPools() (instead of in
emitEndOfAsmFile).
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D109513
FMA_W_CHAIN is used when lowering fdiv f32. Prefer to select it to fmac
if there are no source modifiers, just like we do for other mad/mac and
fma/fmac cases.
Differential Revision: https://reviews.llvm.org/D110074
v_fmac with source modifiers forces VOP3 encoding, but it is strictly
better to use the VOP3-only v_fma instead, because $dst and $src2 are
not tied so it gives the register allocator more freedom and avoids a
copy in some cases.
This is the same strategy we already use for v_mad vs v_mac and
v_fma_legacy vs v_fmac_legacy.
Differential Revision: https://reviews.llvm.org/D110070
Add generic helper function that matches constant splat. It has option to
match constant splat with undef (some elements can be undef but not all).
Add util function and matcher for G_FCONSTANT splat.
Differential Revision: https://reviews.llvm.org/D104410
The logic in howManyLessThans is fishy. It first checks invariance of
RHS, and then uses OrigRHS as argument for isLoopEntryGuardedByCond, which
is, strictly saying, a different thing. We are seeing a very rare intermittent
failure of availability checks, and it looks like this precondition is
sometimes broken. Before we can figure out what's going on, adding asserts
that all involved values that may possibly to to isLoopEntryGuardedByCond
are available at loop entry.
If either of these asserts fails (OrigRHS is the most likely suspect), it
means that the logic here is flawed.
This fixes PR51730, a heap-use-after-free bug in
replaceConditionalBranchesOnConstant().
With the attached reproducer we were left with a function looking
something like this after replaceAndRecursivelySimplify():
[...]
cont2.i:
br i1 %.not1.i, label %handler.type_mismatch3.i, label %cont4.i
handler.type_mismatch3.i:
%3 = phi i1 [ %2, %cont2.thread.i ], [ false, %cont2.i ]
unreachable
cont4.i:
unreachable
[...]
with both the branch instruction and PHI node being in the worklist. As
a result of replacing the branch instruction with an unconditional
branch, the PHI node in %handler.type_mismatch3.i would be removed. This
then resulted in a heap-use-after-free bug due to accessing that removed
PHI node in the next worklist iteration.
This is solved by using a value handle worklist. I am a unsure if this
is the most idiomatic solution. Another solution could have been to
produce a worklist just containing the interesting branch instructions,
but I thought that it perhaps was a bit cleaner to keep all worklist
filtering in the loop that does the rewrites.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D109221
First (and biggest) change is to use "Killing/Dead" in place of "Later/Earlier" base for names in DSE. For example, [Maybe]DeadLoc - is a location killed by KillingI instruction. I believe such names are more descriptive and easy to understand than current ones.
Second, there are inconsistencies in naming where different names are used for the same thing. Fixed that too.
Third, reordered parameters of isPartialOverwrite, tryToMergePartialOverlappingStores, isOverwrite to make them consistent between each other. This greatly reduces potential mistakes.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D106947
For artifacts excluding G_TRUNC/G_SEXT, which have IR counterparts, we don't
seem to have debug users of defs. However, in the legalizer we're always calling
MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() which is expensive.
In some rare cases, this contributes significantly to unreasonably long compile
times when we have lots of artifact combiner activity.
To verify this, I added asserts to that function when it actually replaced a debug
use operand with undef for these artifacts. On CTMark with both -O0 and -Os and
debug info enabled, I didn't see a single case where it triggered.
In my measurements I saw around a 0.5% geomean compile-time improvement on -g -O0
for AArch64 with this change.
Differential Revision: https://reviews.llvm.org/D109750
The implication logic for two values that are both negative or non-negative
says that it doesn't matter whether their predicate is signed and unsigned,
but only flips unsigned into signed for further inference. This patch adds
support for flipping a signed predicate into unsigned as well.
Differential Revision: https://reviews.llvm.org/D109959
Reviewed By: nikic
In llvm, for non-alu32 mode, the stack alignment is 64bit so only one
64bit spill per 64bit slot. For alu32 mode, the stack alignment
is 32bit, so it is possible to have two 32bit spills per
64bit slot.
Currently, bpf kernel verifier does not preserve register states
for 32bit spills. That is, one 32bit register may hold a constant
value or a bounded range before spill. After reload from the
stack, the information is lost and sometimes this may cause
verifier failure. For 64bit register spill, the verifier
indeed tries to preserve the register state for reloading.
The current verifier can be modestly changed to handle one
32bit spill per 64bit stack slot with state-preserving reload.
Handling two 32bit spills per 64bit stack slot will require
substantial changes.
This patch changes stack alignment for alu32 to be 64bit.
This way, for any 64bit slot in alu32 mode, only one
32bit or 64bit register values can be saved. Together
with previous-mentioned verifier enhancement, 32bit
spill can be handled with state preserving.
Note that llvm stack slot coallescing
seems only doing adjacent packing which may leave some holes
in the stack. For example,
stack slot 8 <== 8 bytes
stack slot 4 <== 8 bytes with 4 byte hole
stack slot 8 <== 8 bytes
stack slot 4 <== 4 bytes
Differential Revision: https://reviews.llvm.org/D109073
When following a case of a switch instruction is guaranteed to lead to
UB, we can safely break these edges and redirect those cases into a newly
created unreachable block. As result, CFG will become simpler and we can
remove some of Phi inputs to make further analyzes easier.
Patch by Dmitry Bakunevich!
Differential Revision: https://reviews.llvm.org/D109428
Reviewed By: lebedev.ri
For x86 Darwin, we have a stack checking feature which re-uses some of this
machinery around stack probing on Windows. Renaming this to be more appropriate
for a generic feature.
Differential Revision: https://reviews.llvm.org/D109993
We implement logic to convert a byte offset into a sequence of GEP
indices for that offset in a number of places. This patch adds a
DataLayout::getGEPIndicesForOffset() method, which implements the
core logic. I've updated SROA, ConstantFolding and InstCombine to
use it, and there's a few more places where it looks relevant.
Differential Revision: https://reviews.llvm.org/D110043
Some buildbots fail with:
> C:\a\llvm-clang-x86_64-expensive-checks-win\llvm-project\llvm\lib\IR\Verifier.cpp(4352): error C2678: binary '==': no operator found which takes a left-hand operand of type 'const llvm::MDOperand' (or there is no acceptable conversion)
Possibly the explicit MDOperand to Metadata* conversion will help?
This patch fixes the warning
InstructionTables.cpp:27:56: error: loop variable 'Resource' of type
'const std::pair<const uint64_t, ResourceUsage> &' (aka 'const
pair<const unsigned long, llvm::mca::ResourceUsage> &') binds to a
temporary constructed from type 'const std::pair<unsigned long,
llvm::mca::ResourceUsage> &' [-Werror,-Wrange-loop-construct]
Note that Resource is declared as:
SmallVector<std::pair<uint64_t, ResourceUsage>, 4> Resources;
without "const" for uint64_t.
For strided accesses the loop vectorizer seems to prefer creating a
vector induction variable with a start value of the form
<i32 0, i32 1, i32 2, ...>. This value will be incremented each
loop iteration by a splat constant equal to the length of the vector.
Within the loop, arithmetic using splat values will be done on this
vector induction variable to produce indices for a vector GEP.
This pass attempts to dig through the arithmetic back to the phi
to create a new scalar induction variable and a stride. We push
all of the arithmetic out of the loop by folding it into the start,
step, and stride values. Then we create a scalar GEP to use as the
base pointer for a strided load or store using the computed stride.
Loop strength reduce will run after this pass and can do some
cleanups to the scalar GEP and induction variable.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D107790
Reworked reordering algorithm. Originally, the compiler just tried to
detect the most common order in the reordarable nodes (loads, stores,
extractelements,extractvalues) and then fully rebuilding the graph in
the best order. This was not effecient, since it required an extra
memory and time for building/rebuilding tree, double the use of the
scheduling budget, which could lead to missing vectorization due to
exausted scheduling resources.
Patch provide 2-way approach for graph reodering problem. At first, all
reordering is done in-place, it doe not required tree
deleting/rebuilding, it just rotates the scalars/orders/reuses masks in
the graph node.
The first step (top-to bottom) rotates the whole graph, similarly to the previous
implementation. Compiler counts the number of the most used orders of
the graph nodes with the same vectorization factor and then rotates the
subgraph with the given vectorization factor to the most used order, if
it is not empty. Then repeats the same procedure for the subgraphs with
the smaller vectorization factor. We can do this because we still need
to reshuffle smaller subgraph when buildiong operands for the graph
nodes with lasrger vectorization factor, we can rotate just subgraph,
not the whole graph.
The second step (bottom-to-top) scans through the leaves and tries to
detect the users of the leaves which can be reordered. If the leaves can
be reorder in the best fashion, they are reordered and their user too.
It allows to remove double shuffles to the same ordering of the operands in
many cases and just reorder the user operations instead. Plus, it moves
the final shuffles closer to the top of the graph and in many cases
allows to remove extra shuffle because the same procedure is repeated
again and we can again merge some reordering masks and reorder user nodes
instead of the operands.
Also, patch improves cost model for gathering of loads, which improves
x264 benchmark in some cases.
Gives about +2% on AVX512 + LTO (more expected for AVX/AVX2) for {625,525}x264,
+3% for 508.namd, improves most of other benchmarks.
The compile and link time are almost the same, though in some cases it
should be better (we're not doing an extra instruction scheduling
anymore) + we may vectorize more code for the large basic blocks again
because of saving scheduling budget.
Differential Revision: https://reviews.llvm.org/D105020
In ValueTracking.cpp we use a function called
computeKnownBitsFromOperator to determine the known bits of a value.
For the vscale intrinsic if the function contains the vscale_range
attribute we can use the maximum and minimum values of vscale to
determine some known zero and one bits. This should help to improve
code quality by allowing certain optimisations to take place.
Tests added here:
Transforms/InstCombine/icmp-vscale.ll
Differential Revision: https://reviews.llvm.org/D109883
Following D109516, this patch re-uses the new helper function for ELF relocation traversal in the RISCV backend.
Reviewed By: StephenFan
Differential Revision: https://reviews.llvm.org/D109522
Following D109516, this patch re-uses the new helper function for ELF relocation traversal in the x86-64 backend.
Reviewed By: StephenFan
Differential Revision: https://reviews.llvm.org/D109520
The vectorizer can sometimes make reverse shuffles from indices that
count down. In MVE, we don't have a 128bit rev instruction, but we can
select this to a VREV64 with some lane movs to swap the two halfs.
Ideally this would use VMOVD's, but only gets as far as VMOVS's at the
moment.
Differential Revision: https://reviews.llvm.org/D69510
Add eraseInstr(s) utility functions. Before deleting an instruction
collects its use instructions. After deletion deletes use instructions
that became trivially dead.
This patch clears all dead instructions in existing legalizer mir tests.
Differential Revision: https://reviews.llvm.org/D109154
In default pipelines the ModuleInlinerWrapperPass is adding the
InlinerPass to the pipeline twice, once due to MandatoryFirst (passing
true in the ctor) and then a second time with false as argument.
To make it possible to bisect and reduce opt test cases for this
part of the pipeline we need to be able to choose between the two
different variants of the InlinerPass when running opt. This patch is
changing 'inline' to a CGSCC_PASS_WITH_PARAMS in the PassRegistry,
making it possible run opt with both -passes=cgscc(inline) and
-passes=cgscc(inline<only-mandatory>).
Reviewed By: aeubanks, mtrofin
Differential Revision: https://reviews.llvm.org/D109877
v8.4 says that normal loads/stores of 128-bytes are single-copy atomic if
they're properly aligned (which all LLVM atomics are) so we no longer need to
do a full RMW operation to guarantee we got a clean read.
isPotentiallyReachable can use LoopInfo to return earlier. This patch
allows passing an optional LI to PointerMayBeCapturedBefore. Used in
D109844.
Reviewed By: nikic, asbirlea
Differential Revision: https://reviews.llvm.org/D109978
All transforms of IndVars have prerequisite requirement of LCSSA and LoopSimplify
form and rely on it. Added test that shows that this actually stands.
This reverts commit 6fec6552f5.
The patch was reverted on incorrect claim that this patch may break LCSSA form
when the loop is not in a simplify form. All IndVars' transform insure that
the loop is in simplify and LCSSA form, so if it wasn't broken before this
transform, it will also not be broken after it.
There is a piece of logic that uses the fact that signed and unsigned
versions of the same predicate are equivalent when both values are
non-negative. It's also true when both of them are negative.
Differential Revision: https://reviews.llvm.org/D109957
Reviewed By: nikic
This should probably be rendered as "std::nullptr_t" but for now clang
uses the unqualified name (which is ambiguous with possible user defined
name in the global namespace), so match that here.
The scev-based salvaging for LSR can sometimes produce unnecessarily
verbose expressions. This patch adds logic to detect when the value to
be recovered and the induction variable differ by only a constant
offset. Then, the expression to derive the current iteration count can
be omitted from the dbg.value in favour of the offset.
Reviewed by: aprantl
Differential Revision: https://reviews.llvm.org/D109044
Both ports are required in most cases. Update the uops counts + port usage based off the most recent llvm-exegesis captures (PR36895) and what Intel AoM / Agner / InstLatX64 reports as well.
Noticed while trying to improve fp costs for vectorization via the D103695 helper script.
We can combine unary shuffles into either of SHUFPS's inputs and adjust the shuffle mask accordingly.
Unlike general shuffle combining, we can be more aggressive and handle multiuse cases as we're not going to accidentally create additional shuffles.
Apparently this has no test coverage before D108382,
but D108382 itself shows a few regressions that this fixes.
It doesn't seem worthwhile breaking apart broadcasts,
assuming we want the broadcasted value to be preset in several elements,
not just the 0'th one.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D108411
Split off from D108253.
Broadcast is simpler than any other shuffle we might produce
to do what we want to do here, so prefer it.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D108382
Both ports are required, for reg and mem variants - we can also use the WriteFComX class directly and remove the unnecessary InstRW overrides. Matches what Intel AoM / Agner / InstLatX64 report as well.
The new device runtime uses an internal variable to set debugging. This
variable was originally privately linked because every module will have
a copy of it. This caused problems with merging the device bitcode
library because it would get renamed and there was not a way to refer to
an external, private symbol. This changes the symbol to weak_odr so it
can be defined multiply, but will not be renamed.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D109997
The AAExecutionDomain instance checks if a BB is executed by the main
thread only. Currently, this only checks the `__kmpc_kernel_init` call
for generic regions to indicate the path taken by the main thread. In
the new runtime, we want to be able to detect basic blocks even in SPMD
mode. For this we enable it to check thread-ID intrinsics being compared
to zero as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D109849
Nobody has complained about this, and the documentation for
LLVMContext::yield() states that LLVM is allowed to never call it.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D110008
A couple tweaks to
1. allow more thinlto importing by excluding probe intrinsics from IR size in module summary
2. Allow general default attributes (nofree nosync nounwind) for pseudo probe intrinsic. Without those attributes, pseudo probes will be basically treated as unknown calls which will in turn block their containing functions from annotated with those attributes.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D109976
We can use `OR` instead of `BLEND` if either the element we are not picking is zero (or masked away);
or the element we are picking overwhelms (e.g. it's all-ones) whatever the element we are not picking:
https://alive2.llvm.org/ce/z/RKejao
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D109726
The MMX pack/unpck shuffles don't need an override - they have the same behaviour as other shuffles (Port0 only).
The SSE pslldq/psrldq shuffles don't need an override - they have the same behaviour as other shuffles (Port0 only).
The SSE pshufb shuffles use 4uops (+1 load).
Noticed the pslldq/psrldq issue while trying to improve reduction costs via the D103695 helper script, and fixed the others while reviewing. Confirmed with Intel AoM / Agner / InstLatX64.
The .machine directive can be used in assembly files to specify the ISA for
the instructions following it.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D109660
Rework getConstantstVRegValWithLookThrough in order to make it clear if we
are matching integer/float constant only or any constant(default).
Add helper functions that get DefVReg and APInt/APFloat from constant instr
getIConstantVRegValWithLookThrough: integer constant, only G_CONSTANT
getFConstantVRegValWithLookThrough: float constant, only G_FCONSTANT
getAnyConstantVRegValWithLookThrough: either G_CONSTANT or G_FCONSTANT
Rename getConstantVRegVal and getConstantVRegSExtVal to getIConstantVRegVal
and getIConstantVRegSExtVal. These now only match G_CONSTANT as described
in comment.
Relevant matchers now return both DefVReg and APInt/APFloat.
Replace existing uses of getConstantstVRegValWithLookThrough and
getConstantVRegVal with new helper functions. Any constant match is
only required in:
ConstantFoldBinOp: for constant argument that was bit-cast of float to int
getAArch64VectorSplat: AArch64::G_DUP operands can be any constant
amdgpu select for G_BUILD_VECTOR_TRUNC: operands can be any constant
In other places use integer only constant match.
Differential Revision: https://reviews.llvm.org/D104409
This introduces an option to allow specialising on the address of global
values. This option is off by default because it is likely not that profitable
to do so and needs more investigation. Before, we were specialising on addresses
and thus this changes the default behaviour.
Differential Revision: https://reviews.llvm.org/D109775
This commit fixes an order-of-initialization issue: If the default mmapper
object is destroyed while some global SectionMemoryManager is still using it
then calls to the mapper from ~SectionMemoryManager will fail. This issue was
causing failures when running the LLVM Kaleidoscope examples on windows.
Switching to a ManagedStatic solves the initialization order issue.
Patch by Justice Adams. Thanks Justice!
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D107087
Do not call `TryToShrinkGlobalToBoolean` for address spaces
that don't allow initializers. It inserts an initializer value
while shrinking to bool. Used the target hook introduced with
D109337 to skip this call for the restricted address spaces.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D109823
Move the functionality in lld that handles writing of the LC_CODE_SIGNATURE load command and associated data section to a central reusable location.
This change is in preparation for another change that modifies llvm-objcopy to reproduce the LC_CODE_SIGNATURE load command and corresponding
data section to maintain the validity of signed macho object files passed through llvm-objcopy.
Reviewed By: #lld-macho, int3, oontvoo
Differential Revision: https://reviews.llvm.org/D109803
Finalization and deallocation actions are a key part of the upcoming
JITLinkMemoryManager redesign: They generalize the existing finalization and
deallocate concepts (basically "copy-and-mprotect", and "munmap") to include
support for arbitrary registration and deregistration of parts of JIT linked
code. This allows us to register and deregister eh-frames, TLV sections,
language metadata, etc. using regular memory management calls with no additional
IPC/RPC overhead, which should both improve JIT performance and simplify
interactions between ORC and the ORC runtime.
The SimpleExecutorMemoryManager class provides executor-side support for memory
management operations, including finalization and deallocation actions.
This support is being added in advance of the rest of the memory manager
redesign as it will simplify the introduction of an EPC based
RuntimeDyld::MemoryManager (since eh-frame registration/deregistration will be
expressible as actions). The new RuntimeDyld::MemoryManager will in turn allow
us to remove older remote allocators that are blocking the rest of the memory
manager changes.
Most PDB fields on disk are 32-bit but describe the file in terms of MSF
blocks, which are 4 kiB by default.
So PDB files can be a bit larger than 4 GiB, and much larger if you create them
with a block size > 4 kiB.
This is a first (necessary, but by far not not sufficient) step towards
supporting such PDB files. Now we don't truncate in-memory file offsets (which
are in terms of bytes, not in terms of blocks).
No effective behavior change. lld-link will still error out if it were to
produce PDBs > 4 GiB.
Differential Revision: https://reviews.llvm.org/D109923
To make the IR easier to analyze, this pass makes some minor transformations.
After that, even if it doesn't decide to optimize anything, it can't report that
it changed nothing and preserved all the analyses.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D109855
Nonfunctional commit fixing several minor spelling errors in llvm/lib/Target/AMDGPU header files.
Testing workflow as a new contributor.
Differential Revision: https://reviews.llvm.org/D109733
Skip stack accesses unless requested, as the memory profiler runtime
does not currently look at or report accesses for these addresses.
Differential Revision: https://reviews.llvm.org/D109868
getMetadata() currently uses a weird API where it populates a
structure passed to it, and optionally merges into it. Instead,
we can return the AAMDNodes and provide a separate merge() API.
This makes usages more compact.
Differential Revision: https://reviews.llvm.org/D109852
SimplifyDemandedBits can turn srl into sra if the bits being shifted
in aren't demanded. This patch can recover the original sra in some cases.
I've renamed the tablegen class for detecting W users since the "overflowing operator"
term I originally borrowed from Operator.h does not include srl.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D109162
In https://reviews.llvm.org/D100481, forceful inline of all non-kernel
functions using lds was disabled since AMDGPULowerModuleLDS pass now handles
static lds. However that pass does not handle extern lds so non-kernel
functions using extern lds must sill be inline.
Reviewed By: hsmhsm, arsenm
Differential Revision: https://reviews.llvm.org/D109773
This makes some tests in vector-reductions-logical.ll more stable when
applying D108837.
The cost of branching is higher when vector ops are involved due to
potential SLP transformations.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D108935
Introduce a new command-line flag `-swift-async-fp={auto|always|never}`
that controls how code generation sets the Swift extended async frame
info bit. There are three possibilities:
* `auto`: which determines how to set the bit based on deployment target, either
statically or dynamically via `swift_async_extendedFramePointerFlags`.
* `always`: the default, always set the bit statically, regardless of deployment
target.
* `never`: never set the bit, regardless of deployment target.
Patch by Doug Gregor <dgregor@apple.com>
Reviewed By: doug.gregor
Differential Revision: https://reviews.llvm.org/D109392
Change the asan-module pass into a MODULE_PASS_WITH_PARAMS in the
pass registry, and add a single parameter called 'kernel' that
can be set instead of having a special pass name 'kasan-module'
to trigger that special pass config.
Main reason is to make sure that we have a unique mapping from
ClassName to PassName in the new passmanager framework, making it
possible to correctly identify the passes when dealing with options
such as -print-after and -print-pipeline-passes.
This is a follow-up to D105006 and D105007.
Split ThreadSanitizerPass into ThreadSanitizerPass (as a function
pass) and ModuleThreadSanitizerPass (as a module pass).
Main reason is to make sure that we have a unique mapping from
ClassName to PassName in the new passmanager framework, making it
possible to correctly identify the passes when dealing with options
such as -print-after and -print-pipeline-passes.
This is a follow-up to D105006 and D105007.
Split MemorySanitizerPass into MemorySanitizerPass (as a function
pass) and ModuleMemorySanitizerPass (as a module pass).
Main reason is to make sure that we have a unique mapping from
ClassName to PassName in the new passmanager framework, making it
possible to correctly identify the passes when dealing with options
such as -print-after and -print-pipeline-passes.
This is a follow-up to D105006 and D105007.
Recently a vulnerability issue is found in the implementation of VLLDM
instruction in the Arm Cortex-M33, Cortex-M35P and Cortex-M55. If the
VLLDM instruction is abandoned due to an exception when it is partially
completed, it is possible for subsequent non-secure handler to access
and modify the partial restored register values. This vulnerability is
identified as CVE-2021-35465.
The mitigation sequence varies between v8-m and v8.1-m as follows:
v8-m.main
---------
mrs r5, control
tst r5, #8 /* CONTROL_S.SFPA */
it ne
.inst.w 0xeeb00a40 /* vmovne s0, s0 */
1:
vlldm sp /* Lazy restore of d0-d16 and FPSCR. */
v8.1-m.main
-----------
vscclrm {vpr} /* Clear VPR. */
vlldm sp /* Lazy restore of d0-d16 and FPSCR. */
More details on
developer.arm.com/support/arm-security-updates/vlldm-instruction-security-vulnerability
Differential Revision: https://reviews.llvm.org/D109157
When expanding the non-secure call instruction we are emiting code
to clear the secure floating-point registers only if the targeted
architecture has floating-point support. The potential problem is
when the source code containing non-secure calls are built with
-mfloat-abi=soft but some other part of the system has been built
with -mfloat-abi=softfp (soft and softfp are compatible as they use
the same procedure calling standard). In this case floating-point
registers could leak to non-secure state as the non-secure won't
have cleared them assuming no floating point has been used.
Differential Revision: https://reviews.llvm.org/D109153
Alive2 for `{insert/extract}element`: https://alive2.llvm.org/ce/z/hwy_E-
Actually, no one file of test suite is touched by this change,
which means that is rare pattern not generated by frontend. But
it's worth being in place.
Differential Revision: https://reviews.llvm.org/D109236