If a loop count was initially represented by a 32b unsigned int in C
then the hardware-loop pass can recognise the loop guard and insert
the llvm.test.set.loop.iterations intrinsic. If this was instead a
unsigned short/char then clang inserts a zext instruction to expand
the loop count to an i32. This patch adds the necessary pattern
matching to enable the use of lvm.test.set.loop.iterations in those
cases.
Patch by: sherwin-dc
Differential Revision: https://reviews.llvm.org/D109631
New field `elements` is added to '!DIImportedEntity', representing
list of aliased entities.
This is needed to dump optimized debugging information where all names
in a module are imported, but a few names are imported with overriding
aliases.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D109343
The default register bank selection code for G_LOAD assumes that we ought to
use a FPR when the load is casted to a float/double.
For atomics, this isn't true; we should always use GPRs.
Without this patch, we crash in the following example:
https://godbolt.org/z/MThjas441
Also make the code a little more stylistically consistent while we're here.
Also test some other weird cast combinations as well.
Differential Revision: https://reviews.llvm.org/D109771
There's technically a difference in the logic used by these
findIntrinsicID and MachineInstr::getIntrinsicID, but it shouldn't
be a meaningful difference here, with G_INTRINSIC instructions.
getIntrinsicID's "first non-def" logic should be correct for those.
The doc comment for isPredecessor says:
Returns true if \p DefMI precedes \p UseMI or they are the same
instruction.
And dominates relies on that behavior for its own:
Returns true if \p DefMI dominates \p UseMI. By definition an
instruction dominates itself.
Make both statements correct by fixing isPredecessor.
Found by inspection.
PassBuilder.cpp is the slowest file to compile in LLVM.
When trying to test changes to pipelines, it takes a long time to recompile.
This doesn't actually speedup building PassBuilder.cpp itself since most
of the time is spent in other large/duplicated functions caused by
PassRegistry.def.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D109798
In particular, it couldn't handle cases where lookup table constant
expressions involved bitcasts. This does not seem to come up
frequently in C++, but comes up reasonably often in Rust via
`#[derive(Debug)]`.
Originally reported by pcwalton.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D109565
This reverts commit 4ac4e52189.
There are couple of test failures, which needs update of the test cases.
Doing a clean revert and will recommit the change along with fixed
testcases.
Fix build bot failure in rG4ac4e521 caused due to assumeBundleBuilder
using new API (getUniqueUndroppableUser).
We now continue using the existing API for AssumeBundleBuilder
(getSingleUndroppableUser).
Sorry for the noise here.
Tests-Run: failing testcase passes.
The API was removed in 4ac4e52189 in favor of
getUniqueUndroppableUser.
However, this caused a buildbot failure in AbstractCallSiteTest.cpp,
which uses the API and the AbstractCallSite class requires a "use"
rather than a user.
Retain the API so that the unittest compiles and passes.
This patch allows sinking an instruction which can have multiple uses in a
single user. We were previously over-restrictive by looking for exactly one use,
rather than one user.
Also, the API for retrieving undroppable user has been updated accordingly since
in both usecases (Attributor and InstCombine), we seem to care about the user,
rather than the use.
Reviewed-By: nikic
Differential Revision: https://reviews.llvm.org/D109700
I was wondering how instcombine does on the examples in D109236,
and we're missing a basic transform:
inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
https://alive2.llvm.org/ce/z/z2aBu9
Note that there are several possible extensions of this fold
(see TODO comments).
Differential Revision: https://reviews.llvm.org/D109537
Add two levels of verification for MemorySSA: Fast and Full.
The defaults are kept the same. Full verification always occurs under
EXPENSIVE_CHECKS, but now it can also be requested in a specific pass for
debugging purposes.
Based off the worse case numbers generated by D103695, the AVX2/512 bit reversing/counting costs were higher than necessary (based off instruction counts instead of actual throughput).
Under some situations under Thumb1, we could be stuck in an infinite
loop recombining the same instruction. This puts a limit on that, not
combining SUBC with SUBE repeatedly.
This extends the reduction logic in the vectorizer to handle intrinsic
versions of min and max, both the floating point variants already
created by instcombine under fastmath and the integer variants from
D98152.
As a bonus this allows us to match a chain of min or max operations into
a single reduction, similar to how add/mul/etc work.
Differential Revision: https://reviews.llvm.org/D109645
When searching for hidden identity shuffles (added at rG41146bfe82aecc79961c3de898cda02998172e4b), only peek through bitcasts to the source operand if it is a vector type as well.
This is a first step towards addressing the last remaining limitation of
the VPlan version of sinkScalarOperands: the legacy version can
partially sink operands. For example, if a GEP has uniform users outside
the sink target block, then the legacy version will sink all scalar
GEPs, other than the one for lane 0.
This patch works towards addressing this case in the VPlan version by
detecting such cases and duplicating the sink candidate. All users
outside of the sink target will be updated to use the uniform clone.
Note that this highlights an issue with VPValue naming. If we duplicate
a replicate recipe, they will share the same underlying IR value and
both VPValues will have the same name ir<%gep>.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D104254
Added '-print-pipeline-passes' printing of parameters for those passes
declared with *_WITH_PARAMS macro in PassRegistry.def.
Note that it only prints the parameters declared inside *_WITH_PARAMS as
in a few cases there appear to be additional parameters not parsable.
The following passes are now covered (i.e. all of those with *_WITH_PARAMS in
PassRegistry.def).
LoopExtractorPass - loop-extract
HWAddressSanitizerPass - hwsan
EarlyCSEPass - early-cse
EntryExitInstrumenterPass - ee-instrument
LowerMatrixIntrinsicsPass - lower-matrix-intrinsics
LoopUnrollPass - loop-unroll
AddressSanitizerPass - asan
MemorySanitizerPass - msan
SimplifyCFGPass - simplifycfg
LoopVectorizePass - loop-vectorize
MergedLoadStoreMotionPass - mldst-motion
GVN - gvn
StackLifetimePrinterPass - print<stack-lifetime>
SimpleLoopUnswitchPass - simple-loop-unswitch
Differential Revision: https://reviews.llvm.org/D109310
The fmul is a canonicalizing operation, and fneg is not so this would
break denormals that need flushing and also would not quiet signaling
nans. Fold to fsub instead, which is also canonicalizing.
Pseudo probe instrumentation was missing from O0 build. It is needed in cases where some source files are built in O0 while the others are built in optimize mode.
Reviewed By: wenlei, wlei, wmi
Differential Revision: https://reviews.llvm.org/D109531
This simple heuristic uses the estimated live range length combined
with the number of registers in the class to switch which heuristic to
use. This was taking the raw number of registers in the class, even
though not all of them may be available. AMDGPU heavily relies on
dynamically reserved numbers of registers based on user attributes to
satisfy occupancy constraints, so the raw number is highly misleading.
There are still a few problems here. In the original testcase that
made me notice this, the live range size is incorrect after the
scheduler rearranges instructions, since the instructions don't have
the original InstrDist offsets. Additionally, I think it would be more
appropriate to use the number of disjointly allocatable registers in
the class. For the AMDGPU register tuples, there are a large number of
registers in each tuple class, but only a small fraction can actually
be allocated at the same time since they all overlap with each
other. It seems we do not have a query that corresponds to the number
of independently allocatable registers. Relatedly, I'm still debugging
some allocation failures where overlapping tuples seem to not be
handled correctly.
The test changes are mostly noise. There are a handful of x86 tests
that look like regressions with an additional spill, and a handful
that now avoid a spill. The worst looking regression is likely
test/Thumb2/mve-vld4.ll which introduces a few additional
spills. test/CodeGen/AMDGPU/soft-clause-exceeds-register-budget.ll
shows a massive improvement by completely eliminating a large number
of spills inside a loop.
Laying more foundation for full template name rebuilding - more complex
type printing benefits from an object to carry some state rather than
passing it around as parameters to every function.
This fixes a violation of the wrap flag rules introduced in c4048d8f. As noted in the original review, the NUW is legal to infer from the structure of the replacee, but a) there's no test coverage, and b) this should be done generically for all multiplies.
Differential Revision: https://reviews.llvm.org/D109782
Visibility options currently have limited support on AIX and may cause warnings or errors
depending on the build compiler used.
Reviewed By: ZarkoCA
Differential Revision: https://reviews.llvm.org/D108467
This reverts commit b7b4ebbcfa.
Reason: This breaks several code-size tests in Emscripten test suite
because this exports `emscripten_longjmp` for programs that didn't do it
before.
Use GCNHazardRecognizer in postra sched.
Updated tests for the new schedules.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D109536
Change-Id: Ia86ba2ae168f12fb34b4d8efdab491f84d936cde
Instead of discovering the sink-to block for each operand in the main
loop, the sink-to block can instead be directly queued with the
operands.
This simplifies processing in the main loop and is a NFC change split
off from D104254 as suggested there.
Ignore dbg instructions when collecting stack slot markers. This is
to make sure the coloring is invariant regarding presence of dbg
instructions (even in cases when the dbg instructions might be
badly placed in the input).
Differential Revision: https://reviews.llvm.org/D109758
We previously had a limitation that TLS variables could not
be exported (and therefore could also not be imported). This
change removed that limitation.
Differential Revision: https://reviews.llvm.org/D108877
This patch exploits the prefixed load and store instructions utilizing the
refactored load/store implementation introduced in D93370.
Prefixed load and store instructions are emitted whenever we are loading or
storing a value with an offset that fits into a 34-bit signed immediate.
Patterns for the prefixed load and stores are added in this patch, as well as
the implementation that detects when we are loading and storing a value with an
offset that fits in 34-bits.
Differential Revision: https://reviews.llvm.org/D96075
SCEV does not look through non-header PHIs inside the loop. Such phis
can be analyzed by adding separate accesses for each incoming pointer
value.
This results in 2 more loops vectorized in SPEC2000/186.crafty and
avoids regressions when sinking instructions before vectorizing.
Fixes PR50296, PR50288.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D102266
The class of instructions that write to narrow top/bottom lanes only
demand the even or odd elements of the input lanes. Which means that a
pair of VMOVNT; VMOVNB demands no lanes from the original input. This
teaches that to instcombine from the target hooks available through
ARMTTIImpl.
Differential Revision: https://reviews.llvm.org/D109325
Previously the relocations pointed at the public user facing,
possibly external symbol.
When the function itself is weak, that symbol may be overridden at
link time, pointing at another strong implementation of the same
function instead. In that case, there's two conflicting pdata entries
pointing at the same address, and the wrong unwind info might end up
used.
Both GCC/binutils and MSVC produce pdata pointing at internal static
symbols. (GCC/binutils point at the .text section just as LLVM does
after this change, MSVC points at special label type symbols with the
type IMAGE_SYM_CLASS_LABEL and names like '$LN4'.)
This fixes unwinding through an overridden "operator new" with a
statically linked C++ library in MinGW mode. (Building libc++ with
-ffunction-sections and linking with --gc-sections might avoid the
issue too.)
This makes the produced object files a little less user friendly
to debug, but with other recent improvements for llvm-readobj, the
unwind info debugging experience should be pretty much the same.
Differential Revision: https://reviews.llvm.org/D109651
Summary: Add the SectionIndex field for symbol.
1: a symbol can reference a section by SectionName or SectionIndex.
2: a symbol can reference a section by both SectionName and SectionIndex.
3: if both Section and SectionIndex are specified, but the two values refer
to different sections, an error will be reported.
4: an invalid SectionIndex is allowed.
5: if a symbol references a non-existent section by SectionName, an error will be reported.
Reviewed By: jhenderson, Higuoxing
Differential Revision: https://reviews.llvm.org/D109566
Three unrelated changes:
1) Add a concat method as a convenience to help write bitvector
use cases in a nicer way.
2) Use LLVM_UNLIKELY as suggested by @xbolva00 in a previous patch.
3) Fix casing of some "slow" methods to follow naming standards.
Differential Revision: https://reviews.llvm.org/D109620
PPCLoopInstrFormPrep pass now can prepare for load store instructions
in a loop whose increment is not a constant integer.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D105872
The attributor can determine that some indirect calls do not require
special inputs. The special inputs will still be present in the ABI,
so we need to allocate the registers and pass undefs.
This is a small first step towards reorganization of the ORC libraries:
Declarations for types and function names (as strings) to be found in the
"ORC runtime bootstrap" set are moved into OrcRTBridge.h / OrcRTBridge.cpp.
The current implementation of the "ORC runtime bootstrap" functions is moved
into OrcRTBootstrap.h and OrcRTBootstrap.cpp. It is likely that this code will
eventually be moved into ORT-RT proper (in compiler RT).
The immediate goal of this change is to make these bootstrap functions usable
for clients other than SimpleRemoteEPC/SimpleRemoteEPCServer. The first planned
client is a new RuntimeDyld::MemoryManager that will run over EPC, which will
allow us to remove the old OrcRemoteTarget code.
The code was using getTypeStoreSize to calculate the difference
between consecutive objects. The calculation was incorrect due
to padding that is added between consecutive objects. The
getTypeAllocSize includes the padding amount. For example,
if the type is [19 x i8], the difference between consecutive
objects is 32 bytes, not 19 bytes.
A second case for getTypeAllocSize is needed when computing
the pointer values for the vector accesses. The calculation needs
to account for the padding as well.
Differential Revision: https://reviews.llvm.org/D109403
This is for Swift VFE support. In some vtable forms that Swift emits, the "base" of a relative pointer is not the global symbol itself directly, but a GEP into it -- so the pointer is relative to a particular field in the global. So getPointerAtOffset() needs to be able to see through the GEP and allow it in a SUB expression, to correctly recognize the offset as a vtable slot.
Differential Revision: https://reviews.llvm.org/D109169
This is a fix on top of D106525's Case 2. In D106525, in
`runEHOnFunction` which handles Emscripten EH, We rethrow `longjmp` only
when the module has any usage of `setjmp` or `longjmp`. But now Wasm
object files are linked using wasm-ld, the module this pass sees is not
the whole program, and even if this module does not contain any
`longjmp`, another file can contain it and can be linked with the
current module. This enables the rethrowing of longjmp whenever
Emscripten SjLj is enabled, regardless of whether it is used in this
module or not.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D109670
APInt is used to describe a bit mask in a variety of value tracking and demanded bits/elts functions.
When traversing through dst/src operands, we have a number of places where these masks need to widened/narrowed to translate through bitcasts, reductions etc. to a different type.
This patch add a APIntOps::ScaleBitMask common helper, adds unit test coverage, and updates a number of cases to use the the helper instead of their own implementation.
This came up on D109065 where we currently have to add yet another implementation of the same code.
Differential Revision: https://reviews.llvm.org/D109683
Patch by @dpalermo
The corrupt bitcode reported in https://bugs.llvm.org/show_bug.cgi?id=51647 seems to be a result of a later pass changing the workfn variable to addrspace(5) (thread private, on the stack). That seems reasonable for an alloca without an address space so it's an open question why that can crash the bitcode reader.
This change puts it in the thread private address space to begin with which means whatever misfired further down the pipeline does not break it. That matches the codegen from clang where stack variables are always annotated (5) and then addrspace cast prior to following use.
This therefore patches around whatever unsuccessfully moved the alloca variable to addrspace(5). That solves the problem of openmp opt producing code that crashes the bitcode reader. It should be possible to create a minimal repro for the underlying bug based on some handwritten IR that uses an alloca in a generic address space.
Reviewed By: ronlieb, jdoerfert, dpalermo-phab
Differential Revision: https://reviews.llvm.org/D109500
Moved out the checks for profitability of TryToSinkInstructions
into a lambda function.
This will also allow us to easily add checks for bailing out if the
transform is not profitable.
Tests-Run: instCombine tests.
First step in reducing redundancy in `addRelocations()` implementations across ELF JITLink backends. The patch factors out common logic for ELF relocation traversal into the new helper function `forEachRelocation()` in the `ELFLinkGraphBuilder` base class. For now, this is applied to the Aarch64 implementation. Others may follow soon.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D109516
When back-deploying Swift async code we can't always toggle the flag showing an
extended frame is present because it will confuse unwinders on systems released
before this feature. So in cases where the code might run there, we `or` in a
mask provided by the runtime (as an absolute symbol) telling us whether the
unwinders can cope.
When deploying only for newer OSs, we can still hard-code the bit-set for
greater efficiency.
38b098be66 limited scalarization to indices that are known non-poison.
For certain patterns that restrict the range of an index, we can insert
a freeze of the original value, to prevent propagation of poison.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D107580
This extends the custom lowering for extending loads on
fixed length vectors in SVE to support masked extending loads.
The existing tests for correct behaviour of masked extending loads
exhibit bad code generation due to the legalistaion of i1 vectors.
They have been left as-is and new tests have been added that do not
exhibit this behaviour.
Differential Revision: https://reviews.llvm.org/D108200
After transformation, we assume the split condition of the pre-loop is always
true. In order to guarantee it, we need to check the start value of the split
cond AddRec satisfies the split condition.
Differential Revision: https://reviews.llvm.org/D109354
Summary: The patch adds support for yaml2obj customizing the string table.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D107421
This patch simply replaces any unsigned VFs with ElementCounts. It's
still NFC because at the moment epilogue vectorisation is disabled
when the main vector loop uses scalable vectors.
Differential Revision: https://reviews.llvm.org/D109364
Rename prefix `FeatureExt*` to `FeatureStdExt*` for all sub-extension for consistency
Reviewed By: HsiangKai, asb
Differential Revision: https://reviews.llvm.org/D108187
Summary: Use std::move(E) to avoid `Program aborted due to an unhandled Error`
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D109567
The packed variants of the instructions had been modelled as the same as the scalar variants.
Reported during a run of llvm-exegesis on a cheap SLM box and matches what Agner / InstLatX64 report as well.
This patch use the same way as the https://reviews.llvm.org/rGfe1fa43f16beac1506a2e73a9f7b3c81179744eb to handle the thread local variable.
It allocates 2 * pointerSize space in GOT to represent the thread key and data address. Instead of using the _tls_get_addr function, I customed a function __orc_rt_elfnix_tls_get_addr to get the address of thread local varible. Currently, this is a wip patch, only one TLS relocation R_X86_64_TLSGD is supported and I need to add the corresponding test cases.
To allocate the TLS descriptor in GOT, I need to get the edge kind information in PerGraphGOTAndPLTStubBuilder, So I add a `Edge::Kind K` argument in some functions in PerGraphGOTAndPLTStubBuilder.h. If it is not suitable, I can think further to solve this problem.
Differential Revision: https://reviews.llvm.org/D109293
Implement TODO in optimizeLoopExits. Now if we have proved that some loop exit
is taken on 1st iteration, we make all branches in the following exiting blocks
always branch out of the loop and their conditions simplified away.
Patch by Dmitry Makogon!
Differential Revision: https://reviews.llvm.org/D108910
Reviewed By: lebedev.ri
This is a part of D108910.
We replace all loop PHIs with values coming from the loop preheader if
we proved that backedge is never taken.
Patch by Dmitry Makogon!
Differential Revision: https://reviews.llvm.org/D109596
Reviewed By: lebedev.ri
This patch fixes a error made in 2cc6f7c8e1. That patch
added a call site position but there was a small error with the way
the presence of a unknown call edge was being propagated from call site
to function. This patch fixes that error. This error was effecting some
AMDGPU tests.
This allows for a custom encoding to be emitted. It can also be
used with inline assembly to allow the custom instruction to be
register allocated like other instructions.
I initially started from SystemZ's implementation, but some of
the formats allow operands to be specified in multiple ways so I
had to add support for matching different operand class lists for
the same format. That implementation is a simplified version of
what is emitted by tablegen for regular instructions.
I've left out the compressed formats. And I haven't supported the
named opcodes like LUI or OP_IMM_32. Those can be added in future
patches.
Documentation can be found here https://sourceware.org/binutils/docs-2.37/as/RISC_002dV_002dFormats.html
Reviewed By: jrtc27, MaskRay
Differential Revision: https://reviews.llvm.org/D108602
This patch makes it possible to query callbase reachability
(Can a callbase reach a function Fn transitively).
The patch moves the reachability query handling logic to a member class,
this class will have more users within the AA once we add other function
reachability queries.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106402
This patch adds a call site position for AACallEdges, this
allows us to ask questions about which functions a specific
`CallBase` might call.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106208
Users of VPValues are managed in a vector, so we need to be more
careful when iterating over users while updating them. For now, just
copy them.
Fixes 51798.
Rather than inspecting the pointer element type, use the access
type of the load/store/atomicrmw/cmpxchg.
In the process of doing this, simplify the logic by storing the
address + type in MemoryUses, rather than an Instruction + Operand
pair (which was then used to fetch the address).
https://alive2.llvm.org/ce/z/_AivbM
This case seems clear since we can reduce instruction count
and avoid an intermediate type change, but we might want to
use mask-and-compare for other sequences.
Currently, we can generate more instructions on some related
patterns by trying to use bit-hacks instead of mask+cmp, so
something is not behaving as expected.
Bootstrap symbols are symbols whose addresses may be required to bootstrap
the rest of the JIT. The bootstrap symbols map generalizes the existing
JITDispatchInfo class provide an arbitrary map of symbol names to addresses.
The JITDispatchInfo class will be replaced by bootstrap symbols with reserved
names in upcoming commits.
This reapplies bb27e45643 (SimpleRemoteEPC
support) and 2269a941a4 (#include <mutex>
fix) with further fixes to support building with LLVM_ENABLE_THREADS=Off.
Pass the access type to getPtrStride(), so it is not determined
from the pointer element type. Many cases still fetch the element
type at a higher level though, so this only partially addresses
the issue.
This is a translation of the existing code to handle the intrinsics
and another step towards D98152.
https://alive2.llvm.org/ce/z/jA7eBC
This pattern is already handled by underlying folds if there are
less uses, so the minimal tests in this case have extra uses.
The larger cmyk tests show the motivation - when combined with
other folds, we invert a larger sequence and eliminate 'not' ops.
Like the shuffle, we should treat the select delayed so that
all constants can be resolved.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D109053
This reverts commit 5629afea91 ("[ORC] Add missing
include."), and bb27e45643 ("[ORC] Add
SimpleRemoteEPC: ExecutorProcessControl over SPS + abstract transport.").
The SimpleRemoteEPC patch currently assumes availability of threads, and needs
to be rewritten with LLVM_ENABLE_THREADS guards.
SimpleRemoteEPC is an ExecutorProcessControl implementation (with corresponding
new server class) that uses ORC SimplePackedSerialization (SPS) to serialize and
deserialize EPC-messages to/from byte-buffers. The byte-buffers are sent and
received via a new SimpleRemoteEPCTransport interface that can be implemented to
run SimpleRemoteEPC over whatever underlying transport system (IPC, RPC, network
sockets, etc.) best suits your use case.
The SimpleRemoteEPCServer class provides executor-side support. It uses a
customizable SimpleRemoteEPCServer::Dispatcher object to dispatch wrapper
function calls to prevent the RPC thread from being blocked (a problem in some
earlier remote-JIT server implementations). Almost all functionality (beyond the
bare basics needed to bootstrap) is implemented as wrapper functions to keep the
implementation simple and uniform.
Compared to previous remote JIT utilities (OrcRemoteTarget*,
OrcRPCExecutorProcessControl), more consideration has been given to
disconnection and error handling behavior: Graceful disconnection is now always
initiated by the ORC side of the connection, and failure at either end (or in
the transport) will result in Errors being delivered to both ends to enable
controlled tear-down of the JIT and Executor (in the Executor's case this means
"as controlled as the JIT'd code allows").
The introduction of SimpleRemoteEPC will allow us to remove other remote-JIT
support from ORC (including the legacy OrcRemoteTarget* code used by lli, and
the OrcRPCExecutorProcessControl and OrcRPCEPCServer classes), and then remove
ORC RPC itself.
The llvm-jitlink and llvm-jitlink-executor tools have been updated to use
SimpleRemoteEPC over file descriptors. Future commits will move lli and other
tools and example code to this system, and remove ORC RPC.
When we have full-fp16 support, we should (manually select) s16 G_FCONSTANT to
a constant pool load.
Add support for that to `emitLoadFromConstantPool` + the existing constant
selection code.
Also tidy up the constant selection code a little. There were some out-of-date
comments + some dead code.
Differential Revision: https://reviews.llvm.org/D108957
Refactors copyBlockContentToWorkingMemory to use offsets rather than direct
pointers to working memory. This simplifies the problem of maintaining
alignments between blocks in working memory, without requiring the working
memory itself to be aligned.
This patch introduces the flags `-fopenmp-target-debug` and
`-fopenmp-target-debug=` to set the value of a global in the device.
This will be used to enable or disable debugging features statically in
the device runtime library.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D109544
We peform runtime folding, but do not currently emit remarks when it is
performed. This is because it comes from the runtime library and is
beyond the users control. However, people may still wish to view this
and similar information easily, so we can enable this behaviour using a
special flag to enable verbose remarks.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D109627
This reapplies commit 7dbba3376f, or, put
differently, this reverts commit d9a8d20827.
The test now requires the amdgpu and nvptx backend explicitly as it
won't work without properly.
This patch adds functionality to check assumption attributes on call
sites as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D109376
This leads to a statistically significant improvement when using -hwasan-instrument-stack=0: https://bit.ly/3AZUIKI.
When enabling stack instrumentation, the data appears gets better but not statistically significantly so. This is consistent
with the very moderate improvements I have seen for stack safety otherwise, so I expect it to improve when the underlying
issue of that is resolved.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108457
When combining 'and' of an unsigned unpack and shuffle instruction,
bail early if shuffle is not constructed from a constant integer.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D109556
Add `udiv` and `urem` instructions to the DAG post-dominated by `trunc`,
allowing TruncInstCombine to reduce bitwidth of expressions containing these
instructions. It is sufficient to require that all truncated bits of both
operands are zeros: https://alive2.llvm.org/ce/z/yiithn
(`urem` case is identical).
Differential Revision: https://reviews.llvm.org/D109515
Not all address spaces support initializers for globals and we can
therefore not set them without checking if they are allowed. This
patch adds a hook into TTI to check if an AS allows non-undef
initializers. We disable it for all but address space 0 by default,
NVPTX and AMDGPU targets allow all but address space 3.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D109337
When we guard side-effects as part of SPMDzation we do it for
consecutive instructions that need guarding. This patch will try to
reorder guarded side-effects in a block to decrease the number of
guarded regions we need. It does not use any smarts, e.g., alias
analysis, to move side-effects over non-interfering reads. Instead,
it only moves side-effects downwards to the next guarded side-effect
if there was nothing in between that could have possibly be affected.
Reviewed By: ggeorgakoudis
Differential Revision: https://reviews.llvm.org/D109070
Always use the byval/inalloca/preallocated type (which is required
nowadays), don't fall back on the pointer element type.
This requires adding Function::getParamPreallocatedType() to
mirror the CallBase API, so that the templated code can work with
both.
LICM may have pulled out a splat, but with .vx instructions we
can fold it into an operation.
This patch enables CGP to reverse the LICM transform and move the
splat back into the loop.
I've started with the commutable integer operations and shifts, but we can
extend this with more operations in future patches.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D109394
The re-use of this struct across iterations of the loop was causing
fields (specifically Name) to be incorrectly shared between multiple
sections.
Differential Revision: https://reviews.llvm.org/D108984
Currently, opaque pointers are supported in two forms: The
-force-opaque-pointers mode, where all pointers are opaque and
typed pointers do not exist. And as a simple ptr type that can
coexist with typed pointers.
This patch removes support for the mixed mode. You either get
typed pointers, or you get opaque pointers, but not both. In the
(current) default mode, using ptr is forbidden. In -opaque-pointers
mode, all pointers are opaque.
The motivation here is that the mixed mode introduces additional
issues that don't exist in fully opaque mode. D105155 is an example
of a design problem. Looking at D109259, it would probably need
additional work to support mixed mode (e.g. to generate GEPs for
typed base but opaque result). Mixed mode will also end up
inserting many casts between i8* and ptr, which would require
significant additional work to consistently avoid.
I don't think the mixed mode is particularly valuable, as it
doesn't align with our end goal. The only thing I've found it to
be moderately useful for is adding some opaque pointer tests in
between typed pointer tests, but I think we can live without that.
Differential Revision: https://reviews.llvm.org/D109290
This patch implements legalization of EXTRACT_SUBVECTOR for the case
where the result needs promoting, and the input type requires widening.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D109509
This patch implements legalization of EXTRACT_SUBVECTOR for the case
where the result needs promoting, and the input type is either legal
or requires splitting.
The idea is that the operation is broken down into simpler steps,
by first extracting a smaller subvector until the input vector
becomes legal or requires promotion.
Reviewed By: CarolineConcatto
Differential Revision: https://reviews.llvm.org/D109313
LoopFlatten wasn't triggering on this motivating case after IV widening:
void foo(int *A, int N, int M) {
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
f(A[i*M+j]);
}
The reason was that the old induction phi nodes were getting in the way. These
narrow and dead induction phis are not always trivially dead, and having both
the narrow and wide IVs confused the analysis and caused it to bail. This adds
some extra bookkeeping for these old phis, so we can filter them out when
checks on phi nodes are performed. Other clean up passes will get rid of these
old phis and increment instructions.
As this was one of the motivating examples from the beginning, it was
surprising this wasn't triggering from C/C++ code. It looks like the IR and CFG
is just slightly different.
Differential Revision: https://reviews.llvm.org/D109309
For SVE, when scalarising the PHI instruction the whole vector part is
generated as opposed to creating instructions for each lane for fixed-
width vectors. However, in some cases the lane values may be needed
later (e.g for a load instruction) so we still need to calculate
these values to avoid extractelement being called on the vector part.
Differential Revision: https://reviews.llvm.org/D109445
This fixes LanaiTTIImpl::getIntImmCost to return valid costs for i128
(and wider) values. Previously any immediate wider than
64 bits would cause Lanai llc to crash.
A regression test is also added that exercises this functionality.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D107091
D78776 removed is{Call,Branch,UnconditionalBranch} guards in objdump
before calling MCInstrAnalysis::evaluateBranch. This is fine for other
architectures as they gracefully handle evaluateBranch being called on
non-branches. However, the Lanai MCInstrAnalysis implementation didn't
and that change caused it to crash.
This inserts the same guards back into Lanai's evaluateBranch
implementation and adds a smoke test that exercises `llc | objdump` so
this kind of regression is hopefully caught next time.
Reviewed By: jpienaar, MaskRay
Differential Revision: https://reviews.llvm.org/D107593
When passing an empty strides map, there's nothing to replace for
replaceSymbolicStrideSCEV and it just returns the SCEV for Ptr. There
should be no need to call the function.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D109462
The MinSize attribute can be attached to both the callee and the caller
in the callsite. Function specialisation was already skipped for function
declarations (callees) with MinSize. This also skips specialisations for
the callsite when it has MinSize set.
Differential Revision: https://reviews.llvm.org/D109441
DWARFUnit::clearDIEs() uses std::vector::shrink_to_fit() to make
capacity of DieArray matched with its size(). The shrink_to_fit()
is not binding request to make capacity match with size().
Thus the memory could still be reserved after DWARFUnit::clearDIEs()
is called. This patch erases capacity when DWARFUnit::clearDIEs() is requested.
So the memory occupied by dies would be freed.
Differential Revision: https://reviews.llvm.org/D109499
Motivation: APInt not supporting zero bit values leads to
a lot of special cases in various bits of code, particularly
when using APInt as a bit vector (where you want to start with
zero bits and then concat on more. This is particularly
challenging in the CIRCT project, where the absence of zero-bit
ConstantOp forces duplication of ops and makes instcombine-like
logic far more complicated.
Approach: zero bit integers are weird. There are two reasonable
approaches: either make it illegal to do general arithmetic on
them (e.g. sign extends), or treat them as as implicitly having
a zero value. This patch takes the conservative approach, which
enables their use in bitvector applications.
Differential Revision: https://reviews.llvm.org/D109555
This reverts commit 98f4713122.
Without any (theoretical/practical) guarantee that all the allocas within
*entry* basic block are clustered together at the beginning of the block,
this patch is doomed to fail. Hence reverting it.
Previously we have the following binary representation:
struct bpf_type { name, info, type }
struct btf_tag { __u32 component_idx; }
If the tag points to a struct/union/var/func type, we will have
kflag = 1, component_idx = 0
if the tag points to struct/union member or func argument, we will have
kflag = 0, component_idx = 0, ..., vlen - 1
The above rather makes interface complex to have both kflag and
component needed to determine its legality and index.
This patch simplifies the interface by removing kflag involvement.
component_idx = (u32)-1 : tag pointing to a type
component_idx = 0 ... vlen - 1 : tag pointing to a member or argument
and kflag is always 0 and there is no need to check.
Differential Revision: https://reviews.llvm.org/D109560
Drop the legacy version in AMDGPUAnnotateKernelFeatures. This has the
side effect of now respecting the linkage, and not changing externally
visible functions.
Previously we assumed all callable functions did not need any
implicitly passed inputs, and added attributes to functions to
indicate when they were necessary. Requiring attributes for
correctness is pretty ugly, and it makes supporting indirect and
external calls more complicated.
This inverts the direction of the attributes, so an undecorated
function is assumed to need all implicit imputs. This enables
AMDGPUAttributor by default to mark when functions are proven to not
need a given input. This strips the equivalent functionality from the
legacy AMDGPUAnnotateKernelFeatures pass.
However, AMDGPUAnnotateKernelFeatures is not fully removed at this
point although it should be in the future. It is still necessary for
the two hacky amdgpu-calls and amdgpu-stack-objects attributes, which
would be better served by a trivial analysis on the IR during
selection. Additionally, AMDGPUAnnotateKernelFeatures still
redundantly handles the uniform-work-group-size attribute to be
removed in a future commit.
At this point when not using -amdgpu-fixed-function-abi, we are still
modifying the ABI based on these newly negated attributes. In the
future, this option will be removed and the locations for implicit
inputs will always be fixed. We will then use the new attributes to
avoid passing the values when unnecessary.
It's possible in some cases for the LHS to be a pointer where the RHS is not. This isn't directly possible for an icmp, but the analysis mixes up operands of different icmp expressions in some cases.
This does not include a test case as the smallest reduced case we've managed is extremely fragile and unlikely to test anything meaningful in the long term.
Also add an assertion to getNotSCEV() to make tracking down this sort of issue a bit easier in the future.
Fixes https://bugs.llvm.org/show_bug.cgi?id=51787 .
Differential Revision: https://reviews.llvm.org/D109546
This bit of code is incredibly suspicious. It allows fully unknown (but potentially negative) steps, but not steps known to be negative. The comment about scev flag inference is worrying, but also not correct to my knowledge.
At best, this might be covering up some related miscompile. However, there's no test in tree for it, the review history doesn't include obvious motivation, and the C++ example doesn't appear to give wrong results when hand translated to IR. I think it's time to remove this and see what falls out.
During review, there were concerns raised about the correctness of the corresponding signed case. This change was deliberately narrowed to the unsigned case which has been auditted and appears correct for negative values. We need to get back to the known-negative signed case, but that'll be a future patch if nothing falls out from this one.
Differential Revision: https://reviews.llvm.org/D104140
This patch updates the PC-Relative load and store patterns to utilize the
refactored load/store implementation introduced in D93370.
PC-Relative implementation has been added to PPCISelLowering.cpp, and also the
patterns in PPCInstrPrefix.td have been updated and no longer require AddedComplexity.
All existing test cases pass with this update.
Differential Revision: https://reviews.llvm.org/D95116
Soft deprecrate isNullValue/isAllOnesValue and update in tree
callers. This matches the changes to the APInt interface from
D109483.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D109535
In general, howManyLessThans doesn't really want to work with pointers
at all; the result is an integer, and the operands of the icmp are
effectively integers. However, isLoopEntryGuardedByCond doesn't like
extra ptrtoint casts, so the arguments to isLoopEntryGuardedByCond need
to be computed without those casts.
Somehow, the values got mixed up with the recent howManyLessThans
improvements; fix the confused values, and add a better comment to
explain what's happening.
Differential Revision: https://reviews.llvm.org/D109465
This constrains the Mov* and similar pseudo instruction to take
GPR64common register classes rather than GPR64. GPR64 includs XZR
which is invalid here, because this pseudo instructions expands
into an adrp/add pair sharing a destination register. XZR is invalid
on add and attempting to encode it will instead increment the stack
pointer causing crashes (downstream report at [1]). The test case
there reproduces on LLVM11, but I do not have a test case that
reaches this code path on main, since it is being masked by
improved dead code elimination introduced in D91513. Nevertheless,
this seems like a good thing to fix in case there are other cases
that dead code elimination doesn't clean up (e.g. if `optnone` is
used and the optimization is skipped).
I think it would be worth auditing uses of GPR64 in pseudo
instructions to see if there are any similar issues, but I do not
have a high enough view of the backend or knowledge of the
Aarch64 architecture to do this quickly.
[1] https://github.com/JuliaLang/julia/issues/39818
Reviewed By: t.p.northover
Differential Revision: https://reviews.llvm.org/D97435
Follow up to suggestions in D109103 via hans:
I think UnreachableDefault (or UnreachableFallthrough) would be a
better name now, since it doesn't just omit the range check, it also
omits the last bit test.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D109455
This library function only exists in compiler-rt not libgcc. So
this would fail to link unless we were linking with compiler-rt.
This is consistent with the recent removal of calls to mulodi4 on
32-bit targets like D108928.
I suppose maybe we could keep the libcalls for platforms like
Darwin that use compiler-rt exclusively?
Reviewed By: nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D109385
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
This patch adds class SystemZFrameLowering which is a SystemZ-specific class
detailing special registers used by calling conventions on the target.
SystemZELFFrameLowering and SystemZXPLINKFrameLowering implement this class
for ELF and XPLINK64 respectively. Previous functionality in SystemZFrameLowering
is moved to SystemZELFFrameLowering. SystemZXPLINKFrameLowering can then be
implemented in future patches.
Reviewed By: uweigand, Kai
Differential Revision: https://reviews.llvm.org/D108777
The motivating case is an infinite loop shown with a reduced test from:
https://llvm.org/PR51762
To solve this, I'm proposing we delete the most obviously broken part of this code.
The bug example shows a fundamental problem: we ask computeKnownBits if a transform
will be profitable, alter the code by creating new instructions, then rely on
computeKnownBits to return the same answer to actually eliminate instructions.
But there's no guarantee that the results will be the same between the 1st and 2nd
calls. In the infinite loop example, we get different answers, so we add
instructions that conflict with some other transform, and we're stuck.
There's at least one other problem visible in the test diff for
`@zext_or_masked_bit_test_uses`: the code doesn't check uses properly, so we can
end up with extra instructions created.
Last, it's not clear if this set of transforms actually improves analysis or
codegen. I spot-checked a few targets and don't see a clear win:
https://godbolt.org/z/x87EWovso
If we do see a regression from this change, codegen seems like the right place to
add a cmp -> bit-hack fold.
If this is too big of a step, we could limit the computeKnownBits calls by not
passing a context instruction and/or limiting the recursion. I checked that those
would stop the infinite loop for PR51762, but that won't guarantee that some other
example does not fall into the same loop.
Differential Revision: https://reviews.llvm.org/D109440
As discussed on the ticket, I'm intending to add additional 128->256 patterns when we have test coverage, but this addresses a known crash.
Differential Revision: https://reviews.llvm.org/D109434
Allow variable number of directories, as allowed by the
specification. NumberOfRvaAndSize will default to 16 if not specified,
as in the past.
Reviewed by: jhenderson
Differential Revision: https://reviews.llvm.org/D108825
I can't seem to wrap my head around the proper fix here,
we should be fine without this requirement, iff we can form this form,
but the naive attempt (https://reviews.llvm.org/D106317) has failed.
So just to unblock the release, put up a restriction.
Fixes https://bugs.llvm.org/show_bug.cgi?id=51125
For sve_fp_3op_p_zds_zx we have zero patterns downstream but the
intrinsic args can be added again if/when the patterns are implemented.
Identified in D109359.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D109429
Don't outline machine instructions which are using jump table indexes
since they are materialized as local labels (like the already handled
case of constant pools).
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D109436
This moves one mid-size function out of line, inlines the
trivial tcAnd/tcOr/tcXor/tcComplement methods into their only
caller, and moves the magic/umagic functions into SelectionDAG
since they are implementation details of its algorithm. This
also removes the unit tests for magic, but these are already
tested in the divide lowering logic for various targets.
This also upgrades some C style comments to C++.
Differential Revision: https://reviews.llvm.org/D109476
Similar to other code which handles creating the function frame.
If LR isn't live-in to the block that we're inserting the call into, we'll get
a MachineVerifier error.
This is a port of a combine which matches a pattern where a wide type scalar
value is stored by several narrow stores. It folds it into a single store or
a BSWAP and a store if the targets supports it.
Assuming little endian target:
i8 *p = ...
i32 val = ...
p[0] = (val >> 0) & 0xFF;
p[1] = (val >> 8) & 0xFF;
p[2] = (val >> 16) & 0xFF;
p[3] = (val >> 24) & 0xFF;
=>
*((i32)p) = val;
On CTMark AArch64 -Os this results in a good amount of savings:
Program before after diff
SPASS 412792 412788 -0.0%
kc 432528 432512 -0.0%
lencod 430112 430096 -0.0%
consumer-typeset 419156 419128 -0.0%
bullet 475840 475752 -0.0%
tramp3d-v4 367760 367628 -0.0%
clamscan 383388 383204 -0.0%
pairlocalalign 249764 249476 -0.1%
7zip-benchmark 570100 568860 -0.2%
sqlite3 287628 286920 -0.2%
Geomean difference -0.1%
Differential Revision: https://reviews.llvm.org/D109419
We were returning a tuple when all but one caller only cared about one piece of the return value. That one caller can inline the complexity, and we can simplify all other uses.
Previously the CodeExtractor created exit stubs, and the subsequent return value of the outlined function based on the order of out-of-region blocks after splitting any phi nodes, and collecting the blocks to be outlined. This could cause differences in order if there was a difference of exit block phi nodes between the two regions. This patch moves the collection of the output target blocks to be before this occurs, so that the assignment of target block to output value will be the same, regardless of the contents of the output block.
Reviewers: paquette, roelofs
Differential Revision: https://reviews.llvm.org/D108657
Since i128 isn't a legal C type on RV32, I don't believe
libgcc implements these functions for RV32. compiler-rt
does implement them because i128 support is enabled
in order to handle long double.
This is consistent with 32-bit X86 and ARM.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D109383
Users of delinearization assume that the the offset into the array element is zero. In most cases it will indeed be zero, but if it is not, the delinearization has to fail since it violates that assumption without the API even allowing to signal to the caller that the by offset is non-zero.
This bug caused Polly to miscompile blender (526.blender_r from SPEC CPU 2017) in -polly-process-unprofitable mode. The SCEV expression incorrectly delinearized has been reduced in the test case byte_offset.ll. The dropped offset into the array element of size 4 (a float) is ((sext i32 %mul7.i4534 to i64) + {(sext i32 %i1 to i64),+,((sext i32 (1 + ((1 + %shl.i.i) * (1 + %shl.i.i)) + %shl.i.i) to i64) * (sext i32 %i1 to i64))}<%for.body703>). This significant component was just dropped, and the wrong pointer was computed when regenerating code from the remaining delinearized subscripts. This occurred during blender's subsurface scattering implementation. As a result, blender's rendering diverged from the reference image.
Patch D108885 would also fix the API.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D109133
Since we might end up using multiple threads when logging information in the DWARFTransformer, the handleDie() method must use the supplied stream named "OS" when logging warnings and errors. When we use multiple threads, we log to a thread specific stream buffer and then use a mutex to ensure our output doesn't overlap when we emit warnings and errors after a thread is done.
Differential Revision: https://reviews.llvm.org/D109401
Make the following changes in order to support opaque pointers in SROA:
* Generate i8 GEPs for opaque pointers.
* Explicitly enforce that promotable allocas only have stores of
the alloca type -- previously this was implicitly enforced.
* Replace a check for pointer element type with load/store type.
Differential Revision: https://reviews.llvm.org/D109259
The implementation is mostly copied from MemDepAnalysis. We want to look
at all loads and stores to the same pointer operand. Bitcasts and zero
GEPs of a pointer are considered the same pointer value. We choose the
most dominating instruction.
Since updating MemorySSA with invariant.group is non-trivial, for now
handling of invariant.group is not cached in any way, so it's part of
the walker. The number of loads/stores with invariant.group is small for
now anyway. We can revisit if this actually noticeably affects compile
times.
To avoid invariant.group affecting optimized uses, we need to have
optimizeUsesInBlock() not use invariant.group in any way.
Co-authored-by: Piotr Padlewski <prazek@google.com>
Reviewed By: asbirlea, nikic, Prazek
Differential Revision: https://reviews.llvm.org/D109134
None of this logic has anything to do with SCEV's internals, it just uses the existing public APIs. As a result, we can move the code from ScalarEvolution.cpp/hpp to Delinearization.cpp/hpp with only minor changes.
This was discussed in advance on today's loop opt call. It turned out to be easy as hoped.
integer 0/1 for the operand of bundle "clang.arc.attachedcall"
https://reviews.llvm.org/D102996 changes the operand of bundle
"clang.arc.attachedcall". This patch makes changes to llvm that are
needed to handle the new IR.
This should make it easier to understand what the IR is doing and also
simplify some of the passes as they no longer have to translate the
integer values to the runtime functions.
Differential Revision: https://reviews.llvm.org/D103000
D104143 introduced canonical value numbering between regions, which allows for the easy identification of items across a region, eliminating the need in the outliner to create parallel lists of instructions for each region, and replace output values in a less convoluted way.
Additionally, in a future commit, the output values will not necessarily be recorded values from the region itself, it could be a combination value where the actual value being output is a PHINode instead. This new method allows us to handle the replacement of the output value to the stored value with the corresponding item in the same place for both normal output values, and PHINode outputs instead of handling the different types of outputs in different locations.
Reviewers: paquette, roelofs
Differential Revision: https://reviews.llvm.org/D108656
This patch changes SPMDization to not trigger for regions with no
parallelism. Otherwise, this will introduce unnecessary barriers that
will slow the single-threaded region down.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D109438
Otherwise we end up with an extra conditional jump, following by an
unconditional jump off the end of a function. ie.
bb.0:
BT32rr ..
JCC_1 %bb.4 ...
bb.1:
BT32rr ..
JCC_1 %bb.2 ...
JMP_1 %bb.3
bb.2:
...
bb.3.unreachable:
bb.4:
...
Should be equivalent to:
bb.0:
BT32rr ..
JCC_1 %bb.4 ...
JMP_1 %bb.2
bb.1:
bb.2:
...
bb.3.unreachable:
bb.4:
...
This can occur since at the higher level IR (Instruction) SwitchInsts
are required to have BBs for default destinations, even when it can be
deduced that such BBs are unreachable.
For most programs, this isn't an issue, just wasted instructions since the
unreachable has been statically proven.
The x86_64 Linux kernel when built with CONFIG_LTO_CLANG_THIN=y fails to
boot though once D106056 is re-applied. D106056 makes it more likely
that correlation-propagation (CVP) can deduce that the default case of
SwitchInsts are unreachable. The x86_64 kernel uses a binary post
processor called objtool, which emits this warning:
vmlinux.o: warning: objtool: cfg80211_edmg_chandef_valid()+0x169: can't
find jump dest instruction at .text.cfg80211_edmg_chandef_valid+0x17b
I haven't debugged precisely why this causes a failure at boot time, but
fixing this very obvious jump off the end of the function fixes the
warning and boot problem.
Link: https://bugs.llvm.org/show_bug.cgi?id=50080
Fixes: https://github.com/ClangBuiltLinux/linux/issues/679
Fixes: https://github.com/ClangBuiltLinux/linux/issues/1440
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D109103
This should have been the 4 byte version in the first place. Unfortunatelly there is no easy way to add a test as both the 1 byte and 4 byte version are printed as 'jmp' in the assembly code.
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D109453
This is consistent with the RVV intrinsic patterns. This has been
shown to prevent some "ran out of registers" errors in our internal
testing.
Unfortunately, there are some regressions on LMUL=8 tests in here.
I think the lack of registers with LMUL=8 just makes it very hard
to schedule correctly.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D109245
Currently, we only deal with the case where we can match
the number of low bits to be kept, i.e.:
```
x & ((1 << y) - 1)
```
will extract low `y` bits of `x`.
But what will
```
x & (-1 >> y)
```
do?
Logically, it will extract `bitwidth(x) - y` low bits, i.e.:
```
x & ~(-1 << (bitwidth(x)-y))
```
... except we can't do such a transformation in IR in general,
because if we wanted to extract all the bits `(-1 >> 0)` is fine,
but `-1 << bitwidth(x)` would be `poison`: https://alive2.llvm.org/ce/z/BKJZfw,
Yet, here with BMI's BEXTR and BMI2's BZHI we don't have any such problems with edge-cases.
So what we can do is: https://alive2.llvm.org/ce/z/gm5M2B
As briefly discussed with @craig.topper, this appears to be not worse than what we'd end up with currently (a pair of shifts):
* https://godbolt.org/z/nsPb8bejs (direct data dependency, sequential execution)
* https://godbolt.org/z/7bj3zeh1d (no direct data dependency, parallel execution)
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D107923
The expansion of these pseudos creates ADD instructions. Those
ADDs modify a GPR so that it is no longer contains the same value
as the input base pointer. Therefore, I believe we should have a
GPR as a Def on these instructions and expansion should get the
destination register for the ADDs from that operand.
At least in our tests here this works out so that register
scavenging picks the same register as the base pointer.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D109405
When we start outlining across branches, there is the possibility that we will have two different blocks with different output locations, or a single branch that goes to two blocks outside of the region that is being outlined. While the CodeExtractor provides most of the mechanisms by using the return value of the extracted function as the input to a switch statement to correctly branch to the correct location, we need special handling for different output schemas to each location.
This is done by repeating the existing storing scheme for each different exit block. We have a map from the return values used, to the basic block that is used to store the outputs for that particular exit block within the outlined function. Then if needed, we create a switch statement for each return block to branch to the correct set of stored outputs.
Reviewers: paquette
Differential Revision: https://reviews.llvm.org/D106993
The call to emitCodeAlignment was missing a STI which is required
after D45962.
emitCodeAlignment has a default parameter of 0 for MaxBytesToEmit.
Explicitly passing 0 here was interpreted as as nullptr for the STI.
This could possibly be avoided by taking STI as a const reference in
emitCodeAlignment.
Differential Revision: https://reviews.llvm.org/D109425
When handling register spill for indirect debug value LiveDebugValues pass doesn't add
DW_OP_deref operator which may in some cases cause debugger to return value address, instead
of value while machine register holding that address is spilled.
Differential revision: https://reviews.llvm.org/D109142
This patch fixes a variety of crashes resulting from the `MemCpyOptPass`
casting `TypeSize` to a constant integer, whether implicitly or
explicitly.
Since the `MemsetRanges` requires a constant size to work, all but one
of the fixes in this patch simply involve skipping the various
optimizations for scalable types as cleanly as possible.
The optimization of `byval` parameters, however, has been updated to
work on scalable types in theory. In practice, this optimization is only
valid when the length of the `memcpy` is known to be larger than the
scalable type size, which is currently never the case. This could
perhaps be done in the future using the `vscale_range` attribute.
Some implicit casts have been left as they were, under the knowledge
they are only called on aggregate types. These should never be
scalably-sized.
Reviewed By: nikic, tra
Differential Revision: https://reviews.llvm.org/D109329
This patch extends the preliminary support for vector-predicated (VP)
operation legalization to include promotion of illegal integer vector
types.
Integer promotion of binary VP operations is relatively simple and
piggy-backs on the non-VP logic, but passing the two extra mask and VP
operands through to the promoted operation.
Tests have been added to the RISC-V target to cover the basic scenarios
for integer promotion for both fixed- and scalable-vector types.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D108288
This patch implements extract_subvector for predicate types when
the input type is more than twice the size of the subvector that
is being extracted.
Reviewed By: CarolineConcatto
Differential Revision: https://reviews.llvm.org/D109314
This improvement adds "assume" after removal of branch basing on UB in successor block.
Consider the following example:
```
pred:
x = ...
cond = x > 10
br cond, bb, other.succ
bb:
phi [nullptr, pred], ... // other possible preds
load(phi) // UB if we came from pred
other.succ:
// here we know that x <= 10, but this knowledge is lost
// after the branch is turned to unconditional unless we
// preserve it with assume.
```
If we remove the branch basing on knowledge about UB in a successor block,
then the fact that x <= 10 is other.succ might be lost if this condition is
not inferrable from any dominating condition. To preserve this knowledge, we
can add assume intrinsic with (possibly inverted) branch condition.
Patch by Dmitry Bakunevich!
Differential Revision: https://reviews.llvm.org/D109054
Reviewed By: lebedev.ri
The alignment of vector variable arguments in callee side is 4, which is
aligned with MSVC. But the caller aligns them to the size of vector
arguments. It results in run fails. This patch fixes this problem by
trimming it to 4 bytes for variable arguments on Win32.
Fixed vector arguments are passed by pointer on Win32. So they don't have
the problem.
I don't find a doc in MSDN for this calling conversion, so I did several
experiments here: https://godbolt.org/z/n1zn1Gx1z
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D108887
The basic problem being solved is that we largely give up when encountering a trip count involving an IV which is not an addrec. We will fall back to the brute force constant eval, but that doesn't have the information about the fact that we can't cycle back through the same set of values.
There's a high level design question of whether this is the right place to handle this, and if not, where that place is. The major alternative here would be to return a conservative upper bound, and then rely on two invocations of indvars to add the facts to the narrow IV, and then reconstruct SCEV. (I have not implemented the alternative and am not 100% sure this would work out.) That's arguably more in line with existing code, but I find this substantially easier to reason about. During review, no one expressed a strong opinion, so we went with this one.
Differential Revision: D108651
Both Wasm & Emscripten SjLj handling has a restriction that `setjmp`
cannot be called indirectly. I thought we have been erroring out on
indirect uses of `setjmp`, but some recent CL disrupted the logic and
we are not erroring out anymore.
We currently
1. Collect functions that contain `setjmp` calls in `SetjmpUsers`. This
only counts direct calls:
8f77dc459e/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (L869-L878)
2. Run `runSjLjOnFunction` only on those `SetjmpUsers`. Within
`runSjLjOnFunction`, if we see an indirect use of `setjmp`, we error
out:
8f77dc459e/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (L1218-L1221)
So if there are only indirect setjmp calls within the module,
`SetjmpUsers` will be empty, and `runSjLjOnFunction` is not even entered
once. And the indirect `setjmp` call will error out at link time. So in
this CL we check for the indirect uses of `setjmp` upfront before we
enter `runSjLjOnFunction`.
Also this currently errors out on `invoke @setjmp`, which can only occur
when using Wasm EH + Wasm SjLj within a function. We recently added Wasm
SjLj support but we don't support using Wasm EH + Wasm SjLj in the same
function yet. We plan to add this support very soon, so I don't think
it's worth creating another test file just for this. (This is an error
test so it needs its own file)
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D109375
Many `flang` tests currently `FAIL` on Solaris because the module files
aren't found. I could trace this to `sys::fs::getMainExecutable` not being
implemented.
This patch does this and fixes all affected `flang` tests.
Tested on `amd64-pc-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D109374
Follow on to D109029. I realized we had no mention of mustprogrress in the comment (as it prexisted mustprogress in the codebase). In the process of adding it, I tweaked the preconditions into something I think is more clear. Note that mustprogress is checked in the code.
Differential Revision: https://reviews.llvm.org/D109091
This could go either direction since the instruction
count is the same either way, but there are a few
reasons to prefer this:
1. We already do the related transform with 'and'
(see just above the new code).
2. We try (too hard) to compensate for not having this
and possibly other folds in transformZExtICmp(),
and that leads to bugs like https://llvm.org/PR51762 .
3. Codegen looks better across a variety of targets.
https://alive2.llvm.org/ce/z/uEgn4P
This patch adds improvements for sext/zext of a vector extract in Global
ISel.
For example, this piece of code:
define i64 @si64(<4 x i32> %0, i32 %1) {
%3 = extractelement <4 x i32> %0, i64 1
%s = sext i32 %3 to i64
ret i64 %s
}
Used to have this lowering:
si64:
mov s0, v0.s[1]
fmov w8, s0
sxtw x0, w8
ret
Whereas this patch makes it lower to this:
si64:
smov x0, v0.h[0]
ret
Differential Revision: https://reviews.llvm.org/D108137
Index is 0 when the return value has the returned attribute. But the
return value cannot have the returned attribute, so the check is
pointless.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D109334
On X86, the stackprobe emission code chooses the `R11D` register, which
is illegal on i686. This ends up wrapping around to `EBX`, which does
not get properly callee-saved within the stack probing prologue,
clobbering the register for the callers.
We fix this by explicitly using `EAX` as the stack probe register.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D109203
Functions can have a personality function, as well as prefix and
prologue data as additional operands. Unused operands are assigned
a dummy value of i1* null. This patch addresses multiple issues in
use-list order preservation for these:
* Fix verify-uselistorder to also enumerate the dummy values.
This means that now use-list order values of these values are
shuffled even if there is no other mention of i1* null in the
module. This results in failures of Assembler/call-arg-is-callee.ll,
Assembler/opaque-ptr.ll and Bitcode/use-list-order2.ll.
* The use-list order prediction in ValueEnumerator does not take
into account the fact that a global may use a value more than
once and leaves uses in the same global effectively unordered.
We should be comparing the operand number here, as we do for
the more general case.
* While we enumerate all operands of a function together (which
seems sensible to me), the bitcode reader would first resolve
prefix data for all function, then prologue data for all
functions, then personality functions for all functions. Change
this to resolve all operands for a given function together
instead.
Differential Revision: https://reviews.llvm.org/D109282
Support opaque pointers in SymbolicallyEvaluateGEP() by using the
value type of a GlobalValue base or falling back to i8 if there
isn't one. We don't unconditionally generate i8 GEPs here because
that would lose inrange attribues, and because some optimizations
on globals currently rely on GEP types (e.g. the globals SROA
mentioned in the comment).
Differential Revision: https://reviews.llvm.org/D109297
Copying IR during linking causes a type mismatch due to the field being missing in IRMover/Valuemapper. Adds the full range of typed attributes including elementtype attribute in the copy functions.
Patch by Chenyang Liu
Differential Revision: https://reviews.llvm.org/D108796
We're trying to get the parameter index of sret and see if it's part of
a function's varargs.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D109335
Similar to D108842, D108844, and D108926.
__has_builtin(builtin_mul_overflow) returns true for 32b x86 targets,
but Clang is deferring to compiler RT when encountering long long types.
This breaks ARCH=i386 + CONFIG_BLK_DEV_NBD=y builds of the Linux kernel
that are using builtin_mul_overflow with these types for these targets.
If the semantics of __has_builtin mean "the compiler resolves these,
always" then we shouldn't conditionally emit a libcall.
This will still need to be worked around in the Linux kernel in order to
continue to support these builds of the Linux kernel for this
target with older releases of clang.
Link: https://bugs.llvm.org/show_bug.cgi?id=28629
Link: https://bugs.llvm.org/show_bug.cgi?id=35922
Link: https://github.com/ClangBuiltLinux/linux/issues/1438
Reviewed By: lebedev.ri, RKSimon
Differential Revision: https://reviews.llvm.org/D108928
Using the similarity found from the IRSimilarity Identifier, we take regions with structural similarity, and deduplicate them into a separate function. The Code Extractor is able to provide most of this functionality.
For simplicity, we start by only outlining regions with a single entry and single exit branch, this reduces the complexity in handling phi nodes outside the region, and handling many sets of outputs for each of the different exit blocks.
Reviewer: paquette
Differential Revision: https://reviews.llvm.org/D106990
This patch adds a fix to do early if conversion to select when
conditional branch not using physical register to prevent the crash when
expanding ISEL instruction.
Reviewed By: lei, kamaub, PowerPC
Differential revision: https://reviews.llvm.org/D108302
It doesn't appear to be possible to generate this from tests atm, but it matches what we do in sse12_ord_cmp
Fixes unused template arg identified in D109359
This is exposed by enabling FastIsel on 64bit AIX.
We are generating XSRSP regardless of the arch,
which may be wrong when -mcpu=pwr7.
The fix is to guard the generation in P8 only.
Reviewed By: qiucf
Differential Revision: https://reviews.llvm.org/D109365
Using PUNPKLO/HI instead of ZIP1/ZIP2, because that avoids
having to generate a predicate with all lanes inactive (PFALSE).
Reviewed By: CarolineConcatto
Differential Revision: https://reviews.llvm.org/D109312
On some architectures such as Arm and X86 the encoding for a nop may
change depending on the subtarget in operation at the time of
encoding. This change replaces the per module MCSubtargetInfo retained
by the targets AsmBackend in favour of passing through the local
MCSubtargetInfo in operation at the time.
On Arm using the architectural NOP instruction can have a performance
benefit on some implementations.
For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to
limit the chances of this causing problems in the future. I've not
done this for other targets such as X86 as there is more frequent use
of the MCSubtargetInfo and it looks to be for stable properties that
we would not expect to vary per function.
This change required threading STI through MCNopsFragment and
MCBoundaryAlignFragment.
I've attempted to take into account the in tree experimental backends.
Differential Revision: https://reviews.llvm.org/D45962
In preparation for passing the MCSubtargetInfo (STI) through to writeNops
so that it can use the STI in operation at the time, we need to record the
STI in operation when a MCAlignFragment may write nops as padding. The
STI is currently unused, a further patch will pass it through to
writeNops.
There are many places that can create an MCAlignFragment, in most cases
we can find out the STI in operation at the time. In a few places this
isn't possible as we are in initialisation or finalisation, or are
emitting constant pools. When possible I've tried to find the most
appropriate existing fragment to obtain the STI from, when none is
available use the per module STI.
For constant pools we don't actually need to use EmitCodeAlign as the
constant pools are data anyway so falling through into it via an
executable NOP is no better than falling through into data padding.
This is a prerequisite for D45962 which uses the STI to emit the
appropriate NOP for the STI. Which can differ per fragment.
Note that involves an interface change to InitSections. It is now
called initSections and requires a SubtargetInfo as a parameter.
Differential Revision: https://reviews.llvm.org/D45961
Legalizing G_MUL for non-standard types (like i33) generated an error. Putting
minScalar and maxScalar instead of clampScalar. Also using new rule, instead
of widening to the next power of 2, widen to the next multiple of the passed
argument (32 in this case), so instead of widening i65 to i128, we widen it to
i96.
Patch by: Mateja Marjanovic
Differential Revision: https://reviews.llvm.org/D109228
Add implementation for the legalization of G_ROTL and G_ROTR machine
instructions. They are very similar to funnel shift instructions, the only
difference is funnel shifts have 3 operands, whereas rotate instructions have
two operands, the first being the register that is being rotated and the second
being the number of shifts. The legalization of G_ROTL/G_ROTR is just lowering
them into funnel shift instructions if they are legal.
Patch by: Mateja Marjanovic
Differential Revision: https://reviews.llvm.org/D105347
Add KnownBits handling and unit tests for X*X self-multiplication cases which guarantee that bit1 of their results will be zero - see PR48683.
https://alive2.llvm.org/ce/z/NN_eaR
The next step will be to add suitable test coverage so this can be enabled in ValueTracking/DAG/GlobalISel - currently only a single Analysis/ScalarEvolution test is affected.
Differential Revision: https://reviews.llvm.org/D108992
Legalize G_MEMCPY, G_MEMMOVE, G_MEMSET and G_MEMCPY_INLINE.
Corresponding intrinsics are replaced by a loop that uses loads/stores in
AMDGPULowerIntrinsics pass unless their length is a constant lower then
MemIntrinsicExpandSizeThresholdOpt (default 1024). Any G_MEM* instruction that
reaches legalizer should have a const length argument and should be expanded
into appropriate number of loads + stores.
Differential Revision: https://reviews.llvm.org/D108357
This patch adds support for the vector-predicated `VP_STORE` and
`VP_LOAD` nodes. We do this in the same way we lower `MSTORE` and
`MLOAD`: to regular load/store instructions via intrinsics.
One necessary change was made to `SelectionDAGLegalize` so that
`VP_STORE` nodes' operation actions are taken from the stored "value"
operands, in the same vein as `STORE` or `MSTORE`.
Reviewed By: craig.topper, rogfer01
Differential Revision: https://reviews.llvm.org/D108999
This patch adds support for the `VP_SCATTER` and `VP_GATHER` nodes by
lowering them to RVV's `vsox`/`vlux` instructions, respectively. This
process is almost identical to the existing `MSCATTER`/`MGATHER` support.
One extra change was made to `SelectionDAGLegalize` so that
`VP_SCATTER`'s operation action is derived from its stored "value"
operand rather than its return type (which is always the chain).
Reviewed By: craig.topper, rogfer01
Differential Revision: https://reviews.llvm.org/D108987
When expanding pseudo insts, in order to create a new machine instr, we use BuildMI,
which will add implicit operands by default. And transferImpOps will also copy implicit
operands from old ones. Finally, duplicate implicit operands are added to the same inst.
Sometimes this can cause correctness issues. Like below inst,
renamable $w18 = nsw SUBSWrr renamable $w30, renamable $w14, implicit-def dead $nzcv
After expanding, it will become
$w18 = SUBSWrs renamable $w13, renamable $w14, 0, implicit-def $nzcv, implicit-def dead $nzcv
A redundant implicit-def $nzcv is added, but the dead flag is missing.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D109069
This is a more general version of D109273. Though it doesn't
peek through bitcasts or rearange broadcasts.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D109295
Due to a typo, this replaced %x with umax(C1, umin(C2, %x + C3))
rather than umax(C1, umin(C2, %x)). This didn't make a difference
for the existing tests, because the result is only used for range
calculation, and %x will usually have an unknown starting range,
and the additional offset keeps it unknown. However, if %x already
has a known range, we may compute a result range that is too
small.
The current IRSimilarityIdentifier does not try to find similarity across blocks, this patch provides a mechanism to compare two branches against one another, to find similarity across basic blocks, rather than just within them.
This adds a step in the similarity identification process that labels all of the basic blocks so that we can identify the relative branching locations. Within an IRSimilarityCandidate we use these relative locations to determine whether if the branching to other relative locations in the same region is the same between branches. If they are, we consider them similar.
We do not consider the relative location of the branch if the target branch is outside of the region. In this case, both branches must exit to a location outside the region, but the exact relative location does not matter.
Reviewers: paquette, yroux
Differential Revision: https://reviews.llvm.org/D106989
In case of a virtual register tied to a phys-def, the register class needs to
be computed. Make sure that this works generally also with fast regalloc by
using TLI.getRegClassFor() whenever possible, and make only the case of
'Untyped' use getMinimalPhysRegClass().
Fixes https://bugs.llvm.org/show_bug.cgi?id=51699.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D109291
I'm not sure if there is a better way or another bug
still here, but this is enough to avoid the loop from:
https://llvm.org/PR51657
The test requires multiple blocks and datalayout to
trigger the problem path.
This transform should be updated to use better
variable names and code comments. It could
also create the shift-of-shift directly instead
of relying on another combine for that.
This transform is written in a confusing style,
and I suspect it is at fault for a more serious
bug noted in PR51567.
But it's been around forever, so I'm making the
minimal change to fix another bug - it could
increase instructions because it was not checking
uses.
FeaturePMU was created in AArch64 to accommodate one missing system
register, PMMIR_EL1, in commit ffcd7698ae.
However, the Performance Monitors extension already had a target
feature, which is called FeaturePerfMon. Therefore, FeaturePMU is
redundant.
This patch removes FeaturePMU and merges its contents into
FeaturePerfMon.
Reviewed By: dnsampaio
Differential Revision: https://reviews.llvm.org/D109246
The isEssentiallyExtractHighSubvector function currently calls
getVectorNumElements on a type that in specific cases might be scalable.
Since this function only has correct behaviour at the moment on scalable
types anyway, the function can just return false when given a fixed type.
Differential Revision: https://reviews.llvm.org/D109163
If the vector is a splat of some scalar value, findScalarElement()
can simply return the scalar value if it knows the requested lane
is in the vector.
This is only needed for scalable vectors, because the InsertElement/ShuffleVector
case is already handled explicitly for the fixed-width case.
This helps to recognize an InstCombine fold like:
extractelt(bitcast(splat(%v))) -> bitcast(%v)
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D107254
d8faf03807 implemented general-regs-only for X86 by disabling all features
with vector instructions. But the CRC32 instruction in SSE4.2 ISA, which uses
only GPRs, also becomes unavailable. This patch adds a CRC32 feature for this
instruction and allows it to be used with general-regs-only.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D105462
Currently, we use SExtValue to decide whether to invert tbz or tbnz.
However, for the case zext (xor x, c), we should use ZExt rather
than SExt otherwise we will generate totally opposite branches.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D108755
Given a select_cc producing a constant and a invertion of the constant
for a comparison more than zero, we can produce an xor with ashr
instead, which produces smaller code. The ashr either sets all bits or
clear all bits depending on if the value is negative. This is then xor'd
with the constant to optionally negate the value.
https://alive2.llvm.org/ce/z/DTFaBZ
This includes a OneUseCheck on the Cmp, which seems to make thinks a
little worse and will be removed in a followup.
Differential Revision: https://reviews.llvm.org/D109149
Pulled out of D109149, this folds set_cc seteq (ashr X, BW-1), -1 ->
set_cc setlt X, 0 to prevent some regressions later on when folding
select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C
Differential Revision: https://reviews.llvm.org/D109214
Recommit of 707ce34b06. Don't introduce a
dependency to the LLVMPasses component, instead register the required
passes individually.
Add methods for loop unrolling to the OpenMPIRBuilder class and use them in Clang if `-fopenmp-enable-irbuilder` is enabled. The unrolling methods are:
* `unrollLoopFull`
* `unrollLoopPartial`
* `unrollLoopHeuristic`
`unrollLoopPartial` and `unrollLoopHeuristic` can use compiler heuristics to automatically determine the unroll factor. If possible, that is if no CanonicalLoopInfo is required to pass to another method, metadata for LLVM's LoopUnrollPass is added. Otherwise the unroll factor is determined using the same heurstics as user by LoopUnrollPass. Not requiring a CanonicalLoopInfo, especially with `unrollLoopHeuristic` allows greater flexibility.
With full unrolling and partial unrolling with known unroll factor, instead of duplicating instructions by the OpenMPIRBuilder, the full unroll is still delegated to the LoopUnrollPass. In case of partial unrolling the loop is first tiled using the existing `tileLoops` methods, then the inner loop fully unrolled using the same mechanism.
Reviewed By: jdoerfert, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D107764
The temporary object was used as a workaround when the target parser may
change STI. D14346 made the MCSubtargetInfo argument to
createMCAsmParser const, so we no longer need the temporary object.
As part of the nontrivial unswitching we could end up removing child
loops. This patch add a notification to the pass manager when
that happens (using the markLoopAsDeleted callback).
Without this there could be stale LoopAccessAnalysis results cached
in the analysis manager. Those analysis results are cached based on
a Loop* as key. Since the BumpPtrAllocator used to allocate
Loop objects could be resetted between different runs of for
example the loop-distribute pass (running on different functions),
a new Loop object could be created using the same Loop pointer.
And then when requiring the LoopAccessAnalysis for the loop we
got the stale (corrupt) result from the destroyed loop.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D109257
The current inconsistency confuse contributors which coding guidlines to follow.
It would be better to have it consistent using clang-format tool.
Reviewed By: mhjacobson
Differential Revision: https://reviews.llvm.org/D109270
The xmm variant have half the throughput (and +1cy latency) of the mmx variants, but are still 1uop.
I still need to do more thorough testing of SLM on test-suite before fixing the obvious bad numbers for WritePMULLD.
But this helps the D103695 helper script get to more accurate numbers for vXi32 multiplies of extended operands (i.e. we can use PMADDWD, PMULLW/PMULHW etc). Matches what Intel AoM / Agner / llvm-exegesis reports.
The xmm variant have half the throughput (and +1cy latency) of the mmx variants, but are still 1uop.
I still need to do more thorough testing of SLM on test-suite before fixing the obvious bad numbers for WritePMULLD.
But this helps the D103695 helper script get to more accurate numbers for vXi32 multiplies of extended operands (i.e. we can use PMADDWD, PMULLW/PMULHW etc). Matches what Intel AoM / Agner / llvm-exegesis reports.
For RMW instructions, the load and store hold the MEC for an extra cycle, but within the same single uop. This is alluded to in the Intel AOM:
"The MEC also owns the MEC RSV, which is responsible for scheduling of all loads and stores. Load and
store instructions go through addresses generation phase in program order to avoid on-the-fly memory
ordering later in the pipeline. Therefore, an unknown address will stall younger memory instructions."
Noticed while trying to get a cheap SLM test box up and running with llvm-exegesis - RMW arithmetic is always 1uop - and matches what Agner / InstLatX64 report as well.
These were all set to the same best case mul i32 values (which seems to be the only version of MUL that SLM actually performs well with).
Noticed while trying to improve multiplication costs for vectorization via the D103695 helper script. Confirmed with Intel AoM / Agner / InstLatX64.
The change here is basically the same as in D108880: Rather than
looking at bitcasts, look at calls and their function type. We
still need to look through bitcasts to find those calls.
The change in llvm/test/CodeGen/WebAssembly/add-prototypes-conflict.ll
is due to different visitation order. add-prototypes-opaque-ptrs.ll
is a copy of add-prototypes.ll with -force-opaque-pointers.
Differential Revision: https://reviews.llvm.org/D109256
This does add some extra superfluous whitespace (eg: "int *") intended
to make the Simplified Template Names work easier - this makes the
DIE-based names match more exactly the clang-generated names, so it's
easier to identify cases that don't generate matching names.
(arguably we could change clang to skip that whitespace or add some
fuzzy matching to accommodate differences in certain whitespace - but
this seemed easier and fairly low-impact)
As an extension to D107866, this adds store(fptosisat(..)) patterns,
similar to the existing fptosi patterns, to prevent unnecessarily moving
into gpr regs where we can use fp stores directly.
Differential Revision: https://reviews.llvm.org/D108378
This extends D107865 to the VFP insructions, lowering llvm.fptosi.sat
and llvm.fptoui.sat to VCVT instructions that inherently perform the
saturate.
Differential Revision: https://reviews.llvm.org/D107866
This patch changes the register class to avoid accidentally setting
the AVL operand to X0 through MachineIR optimizations.
There are cases where we really want to use X0, but we can't get that
past the MachineVerifier with the register class as GPRNoX0. So I've
use a 64-bit -1 as a sentinel for X0. All other immediate values should
be uimm5. I convert it to X0 at the earliest possible point in the VSETVLI
insertion pass to avoid touching the rest of the algorithm. In
SelectionDAG lowering I'm using a -1 TargetConstant to hide it from
instruction selection and treat it differently than if the user
used -1. A user -1 should be selected to a register since it doesn't
fit in uimm5.
This is the rest of the changes started in D109110. As mentioned there,
I don't have a failing test from MachineIR optimizations anymore.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D109116
As noticed in https://reviews.llvm.org/D105688, it would be great to move
handling of ICmpInst which was in canProveExitOnFirstIteration() to
getValueOnFirstIteration().
Patch by Dmitry Makogon!
Differential Revision: https://reviews.llvm.org/D108978
Reviewed By: reames
This allows constructing a MemDesc from a MachineMemoryOperand, a pattern that starts to show up more frequently.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D109161
SLM PBLENDVB is just as bad as BLENDVPD/PS - so model it as such, fixing the rr vs rm uops diff as well. The Intel AoM appears to have a copy+paste typo with PBLENDW, it doesn't match Agner or InstLatX64.
Noticed while investigating some of the weird discrepancies reported by the D103695 helper script (SLM had much better vector shift throughputs than it should).
This reapplies 71d7fed3bc which was
reverted by 3e2bd82f02. This change
includes the fix for breaking the sanitizer bots.
As seen in https://bugs.llvm.org/show_bug.cgi?id=48880 the current
implementation for parsing grouped short options can return unclear
error messages. This change fixes the example given in the ticket in
which a flag is incorrectly given an argument. Also when parsing a
group we now keep reading past the first incorrect option and output
errors for all incorrect options in the group.
Differential Revision: https://reviews.llvm.org/D108770
This is important as with exceptions enabled, non-POD allocas often have
two lifetime ends: the exception handler, and the normal one.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108365
Set up basic infrastructure for 64-bit ARM architecture support in JITLink. It allows for loading a minimal object file and resolving a single relocation. Advanced features like GOT and PLT handling or relaxations were intentionally left out for the moment.
This patch follows the idea to keep implementations for ARM (32-bit) and Aaarch64 (64-bit) separate, because:
* it might be easier to share code with the MachO "arm64" JITLink backend
* LLVM has individual targets for ARM and Aaarch64 as well
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D108986
A small subset of the NEON instruction set is legal in streaming mode.
This patch adds support for the following vector to integer move
instructions:
0x00 1110 0000 0001 0010 11xx xxxx xxxx # SMOV W|Xd,Vn.B[0]
0x00 1110 0000 0010 0010 11xx xxxx xxxx # SMOV W|Xd,Vn.H[0]
0100 1110 0000 0100 0010 11xx xxxx xxxx # SMOV Xd,Vn.S[0]
0000 1110 0000 0001 0011 11xx xxxx xxxx # UMOV Wd,Vn.B[0]
0000 1110 0000 0010 0011 11xx xxxx xxxx # UMOV Wd,Vn.H[0]
0000 1110 0000 0100 0011 11xx xxxx xxxx # UMOV Wd,Vn.S[0]
0100 1110 0000 1000 0011 11xx xxxx xxxx # UMOV Xd,Vn.D[0]
Only the zero index variants are legal, all others indexes are illegal.
To support this, new instructions are defined specifically for zero
index which is hardcoded, along an implicit 'VectorIndex0' operand.
Since the index operand is implicit and takes no bits in the encoding,
custom decoding is required to add the operand.
I'm not sure if this is the best approach but the predicate constraint
on a subset of an operand is unusual. Would be interested to hear some
alternatives.
The instructions are predicated on 'HasNEONorStreamingSVE', i.e. they're
enabled by either +neon or +streaming-sve. This follows on from the work
in D106272 to support the subset of SVE(2) instructions that are legal
in streaming mode.
Depends on D107902.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D107903
This patch basically enables fast-isel for AIX 64-bit subtarget
(previously enabled only for ELF 64). The initial motivation is to
introduce branch folding to AIX generated code for correct debug
behavior. I also saw some compiling time improvement in a few LLVM
test-suite benchmarks. (toast, dbms, cjpeg, burg, etc.)
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D98844
Add support for ordered directive in the OpenMPIRBuilder.
This patch also modidies clang to use the ordered directive when the
option -fopenmp-enable-irbuilder is enabled.
Also fix one ICE when parsing one canonical for loop with the relational
operator LE or GE in openmp region by replacing unary increment
operation of the expression of the variable "Expr A" minus the variable
"Expr B" (++(Expr A - Expr B)) with binary addition operation of the
experssion of the variable "Expr A" minus the variable "Expr B" and the
expression with constant value "1" (Expr A - Expr B + "1").
Reviewed By: Meinersbur, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D107430
The attached testcase crashes without the patch (Not the same accesses
in the same order).
When we move instructions before another instruction, we also need to
update the memory accesses corresponding to it.
Reviewed-By: asbirlea
Differential Revision: https://reviews.llvm.org/D109197
verifyFunction can be really slow on large functions. This can significantly slow down compilation in production.
Given that coroutine passes are fairly stable now, we should only run it in debug mode.
Differential Revision: https://reviews.llvm.org/D109198
When pre-inliner decision is used for CSSPGO, we should take that into account for ThinLTO importing as well, so post-link sample loader inliner can favor that decision. This is handled by a small tweak in this patch. It also includes a change to transfer preinliner decision when merging context.
Differential Revision: https://reviews.llvm.org/D109088
This ISD node/wrapper represents am address which is relative to a base
address and therefore lowers to `i32.const` rather than `global.get`.
Use this wrapper type for TLS-relative addresses, paving the way for the
non-REL wrapper to be used to external TLS address once those are
supported.
Differential Revision: https://reviews.llvm.org/D109179
This patch adds support for unrolling inner loops using epilogue unrolling. The basic issue is that the original latch exit block of the inner loop could be outside the outer loop. When we clone the inner loop and split the latch exit, the cloned blocks need to be in the outer loop.
Differential Revision: https://reviews.llvm.org/D108476
All ExecutorProcessControl subclasses must provide a JITLinkMemoryManager object
that can be used to allocate memory in the executor process. The
EPCGenericJITLinkMemoryManager class provides an off-the-shelf
JITLinkMemoryManager implementation for JITs that do not need (or cannot
provide) a specialized JITLinkMemoryManager implementation. This simplifies the
process of creating new ExecutorProcessControl implementations.
This adds the following combines:
```
x = ... 0 or 1
c = icmp eq x, 1
->
c = x
```
and
```
x = ... 0 or 1
c = icmp ne x, 0
->
c = x
```
When the target's true value for the relevant types is 1.
This showed up in the following situation:
https://godbolt.org/z/M5jKexWTW
SDAG currently supports the `ne` case, but not the `eq` case. This can probably
be further generalized, but I don't feel like thinking that hard right now.
This gives some minor code size improvements across the board on CTMark at
-Os for AArch64. (0.1% for 7zip and pairlocalalign in particular.)
Differential Revision: https://reviews.llvm.org/D109130
Fixing this link error:
ld: error: relocation R_X86_64_PC32 cannot be used against symbol __asan_report_load...; recompile with -fPIC
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D109183
When preinliner is used for CSSPGO, we try to honor global preinliner decision as much as we can except for uninlinable callees. We rely on InlineCost::Never to prevent us from illegal inlining.
However, it turns out that we use InlineCost::Never for both illeagle inlining and some of the "not-so-beneficial" inlining.
The most common one is recursive inlining, while it can bloat size a lot during CGSCC bottom-up inlining, it's less of a problem when recursive inlining is guided by profile and done in top-down manner.
Ideally it'd be better to have a clear separation between inline legality check vs cost-benefit check, but that requires a bigger change.
This change enables InlineCost computation to allow inlining recursive calls, controlled by InlineParams. In SampleLoader, we now enable recursive inlining for CSSPGO when global preinliner decision is used.
With this change, we saw a few perf improvements on SPEC2017 with CSSPGO and preinliner on: 2% for povray_r, 6% for xalancbmk_s, 3% omnetpp_s, while size is about the same (no noticeable perf change for all other benchmarks)
Differential Revision: https://reviews.llvm.org/D109104
This is a followup to D104662 to generate slightly nicer code for
pointer overflow checks. Bypass expandAddToGEP and instead
explicitly generate i8 GEPs. This saves some bitcasts and negates
the value in a more obvious way. In particular, this prevents SCEV
from looking through the umul.with.overflow, same as in the integer
case.
The wrapping-pointer-ni.ll test deserves a comment: Previously,
this generated a typed GEP which used the umulo argument rather
than the multiplication result. This results in more compact IR in
that case, but effectively does the multiplication twice, the
second one is just hidden in the GEP. Reusing the umulo result
seems pretty reasonable to me.
Differential Revision: https://reviews.llvm.org/D109093
This add support for SjLj using Wasm exception handling instructions:
https://github.com/WebAssembly/exception-handling/blob/master/proposals/exception-handling/Exceptions.md
This does not yet support the mixed use of EH and SjLj within a
function. It will be added in a follow-up CL.
This currently passes all SjLj Emscripten tests for wasm0/1/2/3/s,
except for the below:
- `test_longjmp_standalone`: Uses Node
- `test_dlfcn_longjmp`: Uses NodeRAWFS
- `test_longjmp_throw`: Mixes EH and SjLj
- `test_exceptions_longjmp1`: Mixes EH and SjLj
- `test_exceptions_longjmp2`: Mixes EH and SjLj
- `test_exceptions_longjmp3`: Mixes EH and SjLj
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D108960
Similar to D108842 and D108844.
__has_builtin(builtin_mul_overflow) returns true for 32b MIPS targets,
but Clang is deferring to compiler RT when encountering long long types.
This breaks MIPS malta_defconfig builds of the Linux kernel that are
using __builtin_mul_overflow with these types for these targets.
If the semantics of __has_builtin mean "the compiler resolves these,
always" then we shouldn't conditionally emit a libcall.
This will still need to be worked around in the Linux kernel in order to
continue to support malta_defconfig builds of the Linux kernel for this
target with older releases of clang.
Link: https://bugs.llvm.org/show_bug.cgi?id=28629
Link: https://github.com/ClangBuiltLinux/linux/issues/1438
Reviewed By: rengolin
Differential Revision: https://reviews.llvm.org/D108926
This patch introduces four new string attributes: function-inline-cost,
function-inline-threshold, call-inline-cost and call-threshold-bonus.
These attributes allow you to selectively override some aspects of
InlineCost analysis. That would allow us to test inliner separately from
the InlineCost analysis.
That could be useful when you're trying to write tests for inliner and
you need to test some very specific situation, like "the inline cost has
to be this high", or "the threshold has to be this low". Right now every
time someone does that, they have get creative to come up with a way to
make the InlineCost give them the number they need (like adding ~30
load/add pairs for a trivial test). This process can be somewhat tedious
which can discourage some people from writing enough tests for their
changes. Also, that results in tests that are fragile and can be easily
broken without anyone noticing it because the test writer can't
explicitly control what input the inliner will get from the inline cost
analysis.
These new attributes will alleviate those problems to an extent.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D109033
https://reviews.llvm.org/D56686 was supposed to allow these to
work on Windows without needing to enable the xsave feature to
match MSVC. It seems this didn't work because the backend isel
patterns would still block it.
This patch removes the predicates from the isel patterns.
Fixes PR51706.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D109097
PMADDWD(v8i16 x, v8i16 y) == (v4i32) { (int)x[0]*y[0] + (int)x[1]*y[1], ..., (int)x[6]*y[6] + (int)x[7]*y[7] }
Currently combineMulToPMADDWD only folds cases where the upper 17 bits of both vXi32 inputs are known zero (i.e. the first half is positive and the second half of the pair is zero in each 2xi16 pair), this can be relaxed to only require one zero-extended input if the other input has at least 17 sign bits.
That way the sign of the result is still preserved, and the second half is still zero.
Noticed while investigating PR47437.
Differential Revision: https://reviews.llvm.org/D108522
When pre-inliner decision is used for CSSPGO, we should take that into account for ThinLTO importing as well, so post-link sample loader inliner can favor that decision. This is handled by a small tweak in this patch. It also includes a change to transfer preinliner decision when merging context.
Differential Revision: https://reviews.llvm.org/D109088
When lowering a fixed length gather/scatter the index type is assumed to
be the same as the memory type, this is incorrect in cases where the
extension of the index has been folded into the addressing mode.
For now add a temporary workaround to fix the codegen faults caused by
this by preventing the removal of this extension. At a later date the
lowering for SVE gather/scatters will be redesigned to improve the way
addressing modes are handled.
As a short term side effect of this change, the addressing modes
generated for fixed length gather/scatters will not be optimal.
Differential Revision: https://reviews.llvm.org/D109145
If a sext_inreg is up for isel, and all its users are W instructions,
we can skip emitting the sext_inreg. This helpful if the producing
instruction can't become a W instruction.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D108966
X0 has special meaning for vsetvli, we need to make sure we never
create it a vsetvli that uses it by accident. This could happen
if the register coalescer coalesces a copy from X0 into this
instruction.
This patch splits the instruction so that we can have GPRNoX0
register class to use for the cases where we don't want the source
to be X0. The verifier won't let us explicitly use X0 on a GPRNoX0
operand so we need a separate pseudo for those cases.
I don't currently have a failing example for this. There was a
failure in D107957, but the coalescable copy from that example
should have been optimized away much earlier so I've fixed that.
This is not a complete fix. We still need to prevent the same
possible issue on the AVL operand of all of the vector instruction
pseudos. I don't want to make two versions of all of those so we
need to find a different solution for those. I have an idea I'm
going to try.
Differential Revision: https://reviews.llvm.org/D109110
Extend SILoadStoreOptimizer to merge into DWORDX8 variant of S_BUFFER_LOAD.
Merging into DWORDX2 and DWORDX4 variants is handled already.
Differential Revision: https://reviews.llvm.org/D108909
The semantics of tail predication loops means that the value of LR as an
instruction is executed determines the predicate. In other words:
mov r3, #3
DLSTP lr, r3 // Start tail predication, lr==3
VADD.s32 q0, q1, q2 // Lanes 0,1 and 2 are updated in q0.
mov lr, #1
VADD.s32 q0, q1, q2 // Only first lane is updated.
This means that the value of lr cannot be spilled and re-used in tail
predication regions without potentially altering the behaviour of the
program. More lanes than required could be stored, for example, and in
the case of a gather those lanes might not have been setup, leading to
alignment exceptions.
This patch adds a new lr predicate operand to MVE instructions in order
to keep a reference to the lr that they use as a tail predicate. It will
usually hold the zeroreg meaning not predicated, being set to the LR phi
value in the MVETPAndVPTOptimisationsPass. This will prevent it from
being spilled anywhere that it needs to be used.
A lot of tests needed updating.
Differential Revision: https://reviews.llvm.org/D107638
Please refer to
https://lists.llvm.org/pipermail/llvm-dev/2021-September/152440.html
(and that whole thread.)
TLDR: the original patch had no prior RFC, yet it had some changes that
really need a proper RFC discussion. It won't be productive to discuss
such an RFC, once it's actually posted, while said patch is already
committed, because that introduces bias towards already-committed stuff,
and the tree is potentially in broken state meanwhile.
While the end result of discussion may lead back to the current design,
it may also not lead to the current design.
Therefore i take it upon myself
to revert the tree back to last known good state.
This reverts commit 4c4093e6e3.
This reverts commit 0a2b1ba33a.
This reverts commit d9873711cb.
This reverts commit 791006fb8c.
This reverts commit c22b64ef66.
This reverts commit 72ebcd3198.
This reverts commit 5fa6039a5f.
This reverts commit 9efda541bf.
This reverts commit 94d3ff09cf.
Breaks build with -DBUILD_SHARED_LIBS=ON
```
CMake Error: The inter-target dependency graph contains the following strongly connected component (cycle):
"LLVMFrontendOpenMP" of type SHARED_LIBRARY
depends on "LLVMPasses" (weak)
"LLVMipo" of type SHARED_LIBRARY
depends on "LLVMFrontendOpenMP" (weak)
"LLVMCoroutines" of type SHARED_LIBRARY
depends on "LLVMipo" (weak)
"LLVMPasses" of type SHARED_LIBRARY
depends on "LLVMCoroutines" (weak)
depends on "LLVMipo" (weak)
At least one of these targets is not a STATIC_LIBRARY. Cyclic dependencies are allowed only among static libraries.
CMake Generate step failed. Build files cannot be regenerated correctly.
```
This reverts commit 707ce34b06.
This patch extends D107904's introduction of vector-predicated (VP)
operation legalization to include vector splitting.
When the result of a binary VP operation needs splitting, all of its
operands are split in kind. The two operands and the mask are split as
usual, and the vector-length parameter EVL is "split" such that the low
and high halves each execute the correct number of elements.
Tests have been added to the RISC-V target to show splitting several
scenarios for fixed- and scalable-vector types. Without support for
`umax` (e.g. in the `B` extension) the generated code starts to branch.
Ideally a cost model would prevent their insertion in the first place.
Through these tests many opportunities for better codegen can be seen:
combining known-undef VP operations and for constant-folding operations
on `ISD::VSCALE`, to name but a few.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D107957
llvm.vp.select extends the regular select instruction with an explicit
vector length (%evl).
All lanes with indexes at and above %evl are
undefined. Lanes below %evl are taken from the first input where the
mask is true and from the second input otherwise.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D105351
Several FP instructions (fadd, fsub, etc.) were incorrectly assigned
a higher cost for SVE because they have custom lowering, however we
know they are legal. This patch explicitly assigns a cost of 2 to
these opcodes.
Tests added here:
Analysis/CostModel/AArch64/arith-fp-sve.ll
Differential Revision: https://reviews.llvm.org/D108993
sh_info links to a section, therefore SHF_INFO_LINK should be set as GNU as
does. The issue has been benign because linkers kindly combines relocation
sections w/ and w/o the flag.
Add methods for loop unrolling to the OpenMPIRBuilder class and use them in Clang if `-fopenmp-enable-irbuilder` is enabled. The unrolling methods are:
* `unrollLoopFull`
* `unrollLoopPartial`
* `unrollLoopHeuristic`
`unrollLoopPartial` and `unrollLoopHeuristic` can use compiler heuristics to automatically determine the unroll factor. If possible, that is if no CanonicalLoopInfo is required to pass to another method, metadata for LLVM's LoopUnrollPass is added. Otherwise the unroll factor is determined using the same heurstics as user by LoopUnrollPass. Not requiring a CanonicalLoopInfo, especially with `unrollLoopHeuristic` allows greater flexibility.
With full unrolling and partial unrolling with known unroll factor, instead of duplicating instructions by the OpenMPIRBuilder, the full unroll is still delegated to the LoopUnrollPass. In case of partial unrolling the loop is first tiled using the existing `tileLoops` methods, then the inner loop fully unrolled using the same mechanism.
Reviewed By: jdoerfert, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D107764
For CSSPGO, turn on `sample-profile-use-preinliner` by default. This simplifies the use of llvm-profgen preinliner as it's now simply driven by ContextShouldBeInlined flag for each context profile without needing extra compiler switch.
Note that llvm-profgen's preinliner is still off by default, under switch `csspgo-preinliner`.
Differential Revision: https://reviews.llvm.org/D109111
Added opt option -print-pipeline-passes to print a -passes compatible
string describing the built pass pipeline.
As an example:
$ opt -enable-new-pm=1 -adce -licm -simplifycfg -o /dev/null /dev/null -print-pipeline-passes
verify,function(adce),function(loop-mssa(licm)),function(simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts>),verify,BitcodeWriterPass
At the moment this is best-effort only and there are some known
limitations:
- Not all passes accepting parameters will print their parameters
(currently only implemented for simplifycfg).
- Some ClassName to pass-name mappings are not unique.
- Some ClassName to pass-name mappings are missing (e.g.
BitcodeWriterPass).
Differential Revision: https://reviews.llvm.org/D108298
Added opt option -print-pipeline-passes to print a -passes compatible
string describing the built pass pipeline.
As an example:
$ opt -enable-new-pm=1 -adce -licm -simplifycfg -o /dev/null /dev/null -print-pipeline-passes
verify,function(adce),function(loop-mssa(licm)),function(simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts>),verify,BitcodeWriterPass
At the moment this is best-effort only and there are some known
limitations:
- Not all passes accepting parameters will print their parameters
(currently only implemented for simplifycfg).
- Some ClassName to pass-name mappings are not unique.
- Some ClassName to pass-name mappings are missing (e.g.
BitcodeWriterPass).