D96109 added support for unique internal linkage names for both internal
linkage functions and global variables. There was a lot of discussion on how to
get the demangling right for functions but I completely missed the point that
demanglers do not support suffixes for global vars. For example:
$ c++filt _ZL3foo
foo
$ c++filt _ZL3foo.uniq.123
_ZL3foo.uniq.123
The demangling for functions works as expected.
I am not sure of the impact of this. I don't understand how debuggers and other
tools depend on the correctness of global variable demangling so I am
pre-emptively disabling it until we can get the demangling support added.
Importantly, uniquefying global variables is not needed right now as we do not
do profile attribution to global vars based on sampling. It was added for
completeness and so this feature is not exactly missed.
Differential Revision: https://reviews.llvm.org/D98392
The option -funique-internal-linkage-names was added in D73307 and D78243 as a
LLVM early pass to insert a unique suffix to internal linkage functions and
vars. The unique suffix was the hash of the module path. However, we found
that this can be done more cleanly in clang early and the fixes that need to
be done later can be completely avoided. The fixes in particular are trying
to modify the DW_AT_linkage_name and finding the right place to insert the
pass.
This patch ressurects the original implementation proposed in D73307 which
was reviewed and then ditched in favor of the pass based approach.
Differential Revision: https://reviews.llvm.org/D96109
Add the types for the RISC-V V extension builtins.
These types will be used by the RISC-V V intrinsics which require
types of the form <vscale x 1 x i64>(LMUL=1 element size=64) or
<vscale x 4 x i32>(LMUL=2 element size=32), etc. The vector_size
attribute does not work for us as it doesn't create a scalable
vector type. We want these types to be opaque and have no operators
defined for them. We want them to be sizeless. This makes them
similar to the ARM SVE builtin types. But we will have quite a bit
more types. This patch adds around 60. Later patches will add
another 230 or so types representing tuples of these types similar
to the x2/x3/x4 types in ARM SVE. But with extra complexity that
these types are combined with the LMUL concept that is unique to
RISCV.
For more background see this RFC
http://lists.llvm.org/pipermail/llvm-dev/2020-October/145850.html
Authored-by: Roger Ferrer Ibanez <roger.ferrer@bsc.es>
Co-Authored-by: Hsiangkai Wang <kai.wang@sifive.com>
Differential Revision: https://reviews.llvm.org/D92715
- The failures are all cc1-based tests due to the missing `-aux-triple` options,
which is always prepared by the driver in CUDA/HIP compilation.
- Add extra check on the missing aux-targetinfo to prevent crashing.
[hip][cuda] Enable extended lambda support on Windows.
- On Windows, extended lambda has extra issues due to the numbering
schemes are different between the host compilation (Microsoft C++ ABI)
and the device compilation (Itanium C++ ABI. Additional device side
lambda number is required per lambda for the host compilation to
correctly mangle the device-side lambda name.
- A hybrid numbering context `MSHIPNumberingContext` is introduced to
number a lambda for both host- and device-compilations.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D69322
This reverts commit 4874ff0241.
- On Windows, extended lambda has extra issues due to the numbering
schemes are different between the host compilation (Microsoft C++ ABI)
and the device compilation (Itanium C++ ABI. Additional device side
lambda number is required per lambda for the host compilation to
correctly mangle the device-side lambda name.
- A hybrid numbering context `MSHIPNumberingContext` is introduced to
number a lambda for both host- and device-compilations.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D69322
with fix to test case and stringrefs.
Currently (for codeview) lambdas have a string like `<lambda_0>` in
their mangled name, and don't have any display name. This change uses the
`<lambda_0>` as the display name, which helps distinguish between lambdas
in -gline-tables-only, since there are no linkage names there.
It also changes how we display lambda names; previously we used
`<unnamed-tag>`; now it will show `<lambda_0>`.
I added a function to the mangling context code to create this string;
for Itanium it just returns an empty string.
Bug: https://bugs.llvm.org/show_bug.cgi?id=48432
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D95187
This reverts 9b21d4b943
Currently (for codeview) lambdas have a string like `<lambda_0>` in
their mangled name, and don't have any display name. This change uses the
`<lambda_0>` as the display name, which helps distinguish between lambdas
in -gline-tables-only, since there are no linkage names there.
It also changes how we display lambda names; previously we used
`<unnamed-tag>`; now it will show `<lambda_0>`.
I added a function to the mangling context code to create this string;
for Itanium it just returns an empty string.
Bug: https://bugs.llvm.org/show_bug.cgi?id=48432
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D95187
The Clang enable_if extension is mangled as an <extended-qualifier>,
which is supposed to contain <template-args>. However, we were
unconditionally emitting X/E around its arguments, neglecting the fact
that <expr-primary> should be emitted directly without the surrounding
X/E.
Differential Revision: https://reviews.llvm.org/D95488
Previously, we were emitting an extraneous X .. E in <template-arg>
around an <expr-primary> if the template argument was constructed from
an expression (rather than an already-evaluated literal value). In
such a case, we would then e.g. emit 'XLi0EE' instead of 'Li0E'.
We had one special-case for DeclRefExpr expressions, in particular, to
omit them the mangled-name without the surrounding X/E. However,
unfortunately, that special case also triggered for ParmVarDecl (a
subtype of VarDecl), and _incorrectly_ emitted 'L_Z .. E' instead of
the proper 'Xfp_E'.
This change causes mangleExpression itself to be responsible for
emitting X/E around non-primary expressions, which removes the
special-case, and corrects both these problems.
Differential Revision: https://reviews.llvm.org/D95487
The two operations have acted differently since Clang 8, but were
unfortunately mangled the same. The new mangling uses new "vendor
extended expression" syntax proposed in
https://github.com/itanium-cxx-abi/cxx-abi/issues/112
GCC had the same mangling problem, https://gcc.gnu.org/PR88115, and
will hopefully be switching to the same mangling as implemented here.
Additionally, fix the mangling of `__uuidof` to use the new extension
syntax, instead of its previous nonstandard special-case.
Adjusts the demangler accordingly.
Differential Revision: https://reviews.llvm.org/D93922
Combined with 'da98651 - Revert "DR2064:
decltype(E) is only a dependent', this change (5a391d3) caused verifier
errors when building Chromium. See https://crbug.com/1168494#c1 for a
reproducer.
Additionally it reverts changes that were dependent on this one, see
below.
> Following up on PR48517, fix handling of template arguments that refer
> to dependent declarations.
>
> Treat an id-expression that names a local variable in a templated
> function as being instantiation-dependent.
>
> This addresses a language defect whereby a reference to a dependent
> declaration can be formed without any construct being value-dependent.
> Fixing that through value-dependence turns out to be problematic, so
> instead this patch takes the approach (proposed on the core reflector)
> of allowing the use of pointers or references to (but not values of)
> dependent declarations inside value-dependent expressions, and instead
> treating template arguments as dependent if they evaluate to a constant
> involving such dependent declarations.
>
> This ends up affecting a bunch of OpenMP tests, due to OpenMP
> imprecisely handling instantiation-dependent constructs, bailing out
> early instead of processing dependent constructs to the extent possible
> when handling the template.
>
> Previously committed as 8c1f2d15b8, and
> reverted because a dependency commit was reverted.
This reverts commit 5a391d38ac.
It also restores clang/test/SemaCXX/coroutines.cpp to its state before
da986511fb.
Revert "[c++20] P1907R1: Support for generalized non-type template arguments of scalar type."
> Previously committed as 9e08e51a20, and
> reverted because a dependency commit was reverted. This incorporates the
> following follow-on commits that were also reverted:
>
> 7e84aa1b81 by Simon Pilgrim
> ed13d8c667 by me
> 95c7b6cadb by Sam McCall
> 430d5d8429 by Dave Zarzycki
This reverts commit 4b574008ae.
Revert "[msabi] Mangle a template argument referring to array-to-pointer decay"
> [msabi] Mangle a template argument referring to array-to-pointer decay
> applied to an array the same as the array itself.
>
> This follows MS ABI, and corrects a regression from the implementation
> of generalized non-type template parameters, where we "forgot" how to
> mangle this case.
This reverts commit 18e093faf7.
if E is merely instantiation-dependent."
This change leaves us unable to distinguish between different function
templates that differ in only instantiation-dependent ways, for example
template<typename T> decltype(int(T())) f();
template<typename T> decltype(int(T(0))) f();
We'll need substantially better support for types that are
instantiation-dependent but not dependent before we can go ahead with
this change.
This reverts commit e3065ce238.
Previously committed as 9e08e51a20, and
reverted because a dependency commit was reverted. This incorporates the
following follow-on commits that were also reverted:
7e84aa1b81 by Simon Pilgrim
ed13d8c667 by me
95c7b6cadb by Sam McCall
430d5d8429 by Dave Zarzycki
the nested-name-specifier when determining whether a qualified type is
instantiation-dependent.
Previously reverted in 25a02c3d1a due to
causing us to reject some code. It turns out that the rejected code was
ill-formed (no diagnostic required).
if E is merely instantiation-dependent.
Previously reverted in 34e72a146111dd986889a0f0ec8767b2ca6b2913;
re-committed with a fix to an issue that caused name mangling to assert.
This patch enables the Clang type __vector_pair and its associated LLVM
intrinsics even when MMA is disabled. With this patch, the type is now controlled
by the PPC paired-vector-memops option. The builtins and intrinsics will be
renamed to drop the mma prefix in another patch.
Differential Revision: https://reviews.llvm.org/D91819
For the Itanium ABI, this implements the mangling rule suggested in
https://github.com/itanium-cxx-abi/cxx-abi/issues/47, namely mangling
such template arguments as being cast to the parameter type in the case
where the template name is overloadable. This can cause a mangling
change for rare cases, where
* the template argument declaration is converted from its declared type
to the type of the template parameter, and
* the template parameter either has a deduced type or is a parameter of
a function template.
However, such changes are necessary to avoid mangling collisions. The
ABI changes can be reversed with -fclang-abi-compat=11 or earlier.
Re-commit with a fix for a couple of regressions.
Differential Revision: https://reviews.llvm.org/D91488
For the Itanium ABI, this implements the mangling rule suggested in
https://github.com/itanium-cxx-abi/cxx-abi/issues/47, namely mangling
such template arguments as being cast to the parameter type in the case
where the template name is overloadable. This can cause a mangling
change for rare cases, where
* the template argument declaration is converted from its declared type
to the type of the template parameter, and
* the template parameter either has a deduced type or is a parameter of
a function template.
However, such changes are necessary to avoid mangling collisions. The
ABI changes can be reversed with -fclang-abi-compat=11 or earlier.
Re-commit with a fix for the regression introduced last time: don't
expect parameters and arguments to line up inside an <unresolved-name>
mangling.
Differential Revision: https://reviews.llvm.org/D91488
For the Itanium ABI, this implements the mangling rule suggested in
https://github.com/itanium-cxx-abi/cxx-abi/issues/47, namely mangling
such template arguments as being cast to the parameter type in the case
where the template name is overloadable. This can cause a mangling
change for rare cases, where
* the template argument declaration is converted from its declared type
to the type of the template parameter, and
* the template parameter either has a deduced type or is a parameter of
a function template.
However, such changes are necessary to avoid mangling collisions. The
ABI changes can be reversed with -fclang-abi-compat=11 or earlier.
Differential Revision: https://reviews.llvm.org/D91488
Previously we only considered using a substitution for a template-name
after already having mangled its prefix, so we'd produce nonsense
manglings like NS3_S4_IiEE where we should simply produce NS4_IiEE.
This is not ABI-compatible with previous Clang versions, and the old
behavior is restored by -fclang-abi-compat=11.0 or earlier.
The Itanium CXX ABI grammer has been extended to support parameterized
vendor extended types [1].
This patch updates Clang's mangling for matrix types to use the new
extension.
[1] b359d28971
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D91253
mangling support for non-type template parameters of class type and
template parameter objects.
The Itanium side of this follows the approach I proposed in
https://github.com/itanium-cxx-abi/cxx-abi/issues/47 on 2020-09-06.
The MSVC side of this was determined empirically by observing MSVC's
output.
Differential Revision: https://reviews.llvm.org/D89998
Define the __vector_pair and __vector_quad types that are used to manipulate
the new accumulator registers introduced by MMA on PowerPC. Because these two
types are specific to PowerPC, they are defined in a separate new file so it
will be easier to add other PowerPC specific types if we need to in the future.
Differential Revision: https://reviews.llvm.org/D81508
non-type template parameters.
Create a unique TemplateParamObjectDecl instance for each such value,
representing the globally unique template parameter object to which the
template parameter refers.
No IR generation support yet; that will follow in a separate patch.
This relands D85743 with a fix for test
CodeGen/attr-arm-sve-vector-bits-call.c that disables the new pass
manager with '-fno-experimental-new-pass-manager'. Test was failing due
to IR differences with the new pass manager which broke the Fuchsia
builder [1]. Reverted in 2e7041f.
[1] http://lab.llvm.org:8011/builders/fuchsia-x86_64-linux/builds/10375
Original summary:
This patch implements codegen for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
VLSTs are represented as VectorType in the AST and fixed-length vectors
in the IR everywhere except in function args/return. Implemented in this
patch is codegen support for the following:
* Implicit casting between VLA <-> VLS types.
* Coercion of VLS types in function args/return.
* Mangling of VLS types.
Casting is handled by the CK_BitCast operation, which has been extended
to support the two new vector kinds for fixed-length SVE predicate and
data vectors, where the cast is implemented through memory rather than a
bitcast which is unsupported. Implementing this as a normal bitcast
would require relaxing checks in LLVM to allow bitcasting between
scalable and fixed types. Another option was adding target-specific
intrinsics, although codegen support would need to be added for these
intrinsics. Given this, casting through memory seemed like the best
approach as it's supported today and existing optimisations may remove
unnecessary loads/stores, although there is room for improvement here.
Coercion of VLSTs in function args/return from fixed to scalable is
implemented through the AArch64 ABI in TargetInfo.
The VLA and VLS types are defined by the ACLE to map to the same
machine-level SVE vectors. VLS types are mangled in the same way as:
__SVE_VLS<typename, unsigned>
where the first argument is the underlying variable-length type and the
second argument is the SVE vector length in bits. For example:
#if __ARM_FEATURE_SVE_BITS==512
// Mangled as 9__SVE_VLSIu11__SVInt32_tLj512EE
typedef svint32_t vec __attribute__((arm_sve_vector_bits(512)));
// Mangled as 9__SVE_VLSIu10__SVBool_tLj512EE
typedef svbool_t pred __attribute__((arm_sve_vector_bits(512)));
#endif
The latest ACLE specification (00bet5) does not contain details of this
mangling scheme, it will be specified in the next revision. The
mangling scheme is otherwise defined in the appendices to the Procedure
Call Standard for the Arm Architecture, see [2] for more information.
[1] https://developer.arm.com/documentation/100987/latest
[2] https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85743
This patch implements codegen for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
VLSTs are represented as VectorType in the AST and fixed-length vectors
in the IR everywhere except in function args/return. Implemented in this
patch is codegen support for the following:
* Implicit casting between VLA <-> VLS types.
* Coercion of VLS types in function args/return.
* Mangling of VLS types.
Casting is handled by the CK_BitCast operation, which has been extended
to support the two new vector kinds for fixed-length SVE predicate and
data vectors, where the cast is implemented through memory rather than a
bitcast which is unsupported. Implementing this as a normal bitcast
would require relaxing checks in LLVM to allow bitcasting between
scalable and fixed types. Another option was adding target-specific
intrinsics, although codegen support would need to be added for these
intrinsics. Given this, casting through memory seemed like the best
approach as it's supported today and existing optimisations may remove
unnecessary loads/stores, although there is room for improvement here.
Coercion of VLSTs in function args/return from fixed to scalable is
implemented through the AArch64 ABI in TargetInfo.
The VLA and VLS types are defined by the ACLE to map to the same
machine-level SVE vectors. VLS types are mangled in the same way as:
__SVE_VLS<typename, unsigned>
where the first argument is the underlying variable-length type and the
second argument is the SVE vector length in bits. For example:
#if __ARM_FEATURE_SVE_BITS==512
// Mangled as 9__SVE_VLSIu11__SVInt32_tLj512EE
typedef svint32_t vec __attribute__((arm_sve_vector_bits(512)));
// Mangled as 9__SVE_VLSIu10__SVBool_tLj512EE
typedef svbool_t pred __attribute__((arm_sve_vector_bits(512)));
#endif
The latest ACLE specification (00bet5) does not contain details of this
mangling scheme, it will be specified in the next revision. The
mangling scheme is otherwise defined in the appendices to the Procedure
Call Standard for the Arm Architecture, see [2] for more information.
[1] https://developer.arm.com/documentation/100987/latest
[2] https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85743
This patch introduces 2 new address spaces in OpenCL: global_device and global_host
which are a subset of a global address space, so the address space scheme will be
looking like:
```
generic->global->host
->device
->private
->local
constant
```
Justification: USM allocations may be associated with both host and device memory. We
want to give users a way to tell the compiler the allocation type of a USM pointer for
optimization purposes. (Link to the Unified Shared Memory extension:
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/cl_intel_unified_shared_memory.asciidoc)
Before this patch USM pointer could be only in opencl_global
address space, hence a device backend can't tell if a particular pointer
points to host or device memory. On FPGAs at least we can generate more
efficient hardware code if the user tells us where the pointer can point -
being able to distinguish between these types of pointers at compile time
allows us to instantiate simpler load-store units to perform memory
transactions.
Patch by Dmitry Sidorov.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D82174
1. Provides no piroirity supoort && disables three priority related
attributes: init_priority, ctor attr, dtor attr;
2. '-qunique' in XL compiler equivalent behavior of emitting sinit
and sterm functions name using getUniqueModuleId() util function
in LLVM (currently no support for InternalLinkage and WeakODRLinkage
symbols);
3. Add testcases to emit IR sample with __sinit80000000, __dtor, and
__sterm80000000;
4. Temporarily side-steps the need to implement the functionality of
llvm.global_ctors and llvm.global_dtors arrays. The uses of that
functionality in this patch (with respect to the name of the functions
involved) are not representative of how the functionality will be used
once implemented.
Differential Revision: https://reviews.llvm.org/D74166
Summary:
The new SVE builtin type __SVBFloat16_t` is used to represent scalable
vectors of bfloat elements.
Reviewers: sdesmalen, efriedma, stuij, ctetreau, shafik, rengolin
Subscribers: tschuett, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81304