Currently for explicit template function instantiation in CUDA/HIP device
compilation clang emits instantiated kernel with external linkage
and instantiated device function with internal linkage.
This is fine for -fno-gpu-rdc since there is only one TU.
However this causes duplicate symbols for kernels for -fgpu-rdc if
the same instantiation happen in multiple TU. Or missing symbols
if a device function calls an explicitly instantiated template function
in a different TU.
To make explicit template function instantiation work for
-fgpu-rdc we need to follow the C++ linkage paradigm, i.e.
use weak_odr linkage.
Differential Revision: https://reviews.llvm.org/D90311
The __isPlatformVersionAtLeast routine is an implementation of `if (@available)` check
that uses the _availability_version_check API on Darwin that's supported on
macOS 10.15, iOS 13, tvOS 13 and watchOS 6.
Differential Revision: https://reviews.llvm.org/D90367
415f7ee883 had LIT test failures on any build where the clang executable
was not called "clang". I have adjusted the LIT CHECKs to remove the
binary name to fix this.
Original commit message:
For PlayStation we offer source code compatibility with
Microsoft's dllimport/export annotations; however, our file
format is based on ELF.
To support this we translate from DLL storage class to ELF
visibility at the end of codegen in Clang.
Other toolchains have used similar strategies (e.g. see the
documentation for this ARM toolchain:
https://developer.arm.com/documentation/dui0530/i/migrating-from-rvct-v3-1-to-rvct-v4-0/changes-to-symbol-visibility-between-rvct-v3-1-and-rvct-v4-0)
This patch adds the ability to perform this translation. Options
are provided to support customizing the mapping behaviour.
Differential Revision: https://reviews.llvm.org/D89970
Similar to -fprofile-generate=, add -fmemory-profile= which takes a
directory path. This is passed down to LLVM via a new module flag
metadata. LLVM in turn provides this name to the runtime via the new
__memprof_profile_filename variable.
Additionally, always pass a default filename (in $cwd if a directory
name is not specified vi the = form of the option). This is also
consistent with the behavior of the PGO instrumentation. Since the
memory profiles will generally be fairly large, it doesn't make sense to
dump them to stderr. Also, importantly, the memory profiles will
eventually be dumped in a compact binary format, which is another reason
why it does not make sense to send these to stderr by default.
Change the existing memprof tests to specify log_path=stderr when that
was being relied on.
Depends on D89086.
Differential Revision: https://reviews.llvm.org/D89087
The attribute has no effect on a do statement since the path of execution
will always include its substatement.
It adds a diagnostic when the attribute is used on an infinite while loop
since the codegen omits the branch here. Since the likelihood attributes
have no effect on a do statement no diagnostic will be issued for
do [[unlikely]] {...} while(0);
Differential Revision: https://reviews.llvm.org/D89899
Make DebugLogging a member variable so that users of PassBuilder don't
need to pass it around so much.
Move call to TargetMachine::registerPassBuilderCallbacks() within
PassBuilder so users don't need to remember to call it.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D90437
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
We don't currently support passing unnamed variadic SVE arguments
so I've added a fatal error if we hit such cases to prevent any
silent ABI issues in future.
Differential Revision: https://reviews.llvm.org/D90230
This patch is mainly doing two things:
1. Adding support for parentheses, making the combination of target features
more diverse;
2. Making the priority of ’,‘ is higher than that of '|' by default. So I need
to make some change with PTX Builtin function.
Differential Revision: https://reviews.llvm.org/D89184
[AMDGPU] Add __builtin_amdgcn_grid_size
Similar to D76772, loads the data from the dispatch pointer. Marked invariant.
Patch also updates the openmp devicertl to use this builtin.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D90251
We used to only emit static const data members in CodeView as
S_CONSTANTS when they were used; this patch makes it so they are always emitted.
This changes CodeViewDebug.cpp to find the static const members from the
class debug info instead of creating DIGlobalVariables in the IR
whenever a static const data member is used.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47580
Differential Revision: https://reviews.llvm.org/D89072
This reverts commit 504615353f.
Previously we added support for target nowait, but target data nowait
has not been supported yet. In this patch, target data nowait will also be
wrapped into a task.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90099
Define the __vector_pair and __vector_quad types that are used to manipulate
the new accumulator registers introduced by MMA on PowerPC. Because these two
types are specific to PowerPC, they are defined in a separate new file so it
will be easier to add other PowerPC specific types if we need to in the future.
Differential Revision: https://reviews.llvm.org/D81508
As proposed in https://github.com/WebAssembly/simd/pull/376. This commit
implements new builtin functions and intrinsics for these instructions, but does
not yet add them to wasm_simd128.h because they have not yet been merged to the
proposal. These are the first instructions with opcodes greater than 0xff, so
this commit updates the MC layer and disassembler to handle that correctly.
Differential Revision: https://reviews.llvm.org/D90253
[libomptarget][nvptx] Undef, weak shared variables
Shared variables on nvptx, and LDS on amdgcn, are uninitialized at
the start of kernel execution. Therefore create the variables with
undef instead of zeros, motivated in part by the amdgcn back end
rejecting LDS+initializer.
Common is zero initialized, which seems incompatible with shared. Thus
change them to weak, following the direction of
https://reviews.llvm.org/rG7b3eabdcd215
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90248
Summary:
This patch adds support for passing in the original delcaration name in the
source file to the libomptarget runtime. This will allow the runtime to provide
more intelligent debugging messages. This patch takes the original expression
parsed from the OpenMP map / update clause and provides a textual
representation if it was explicitly mapped, otherwise it takes the name of the
variable declaration as a fallback. The information in passed to the runtime in
a global array of strings that matches the existing ident_t source location
strings using ";name;filename;column;row;;". See
clang/test/OpenMP/target_map_names.cpp for an example of the generated output
for a given map clause.
Reviewers: jdoervert
Differential Revision: https://reviews.llvm.org/D89802
In current implementation, if it requires an outer task, the mapper array will be privatized no matter whether it has mapper. In fact, when there is no mapper, the mapper array only contains number of nullptr. In the libomptarget, the use of mapper array is `if (mappers_array && mappers_array[i])`, which means we can directly set mapper array to nullptr if there is no mapper. This can avoid unnecessary data copy.
In this patch, the data privatization will not be emitted if the mapper array is nullptr. When it comes to the emit of task body, the nullptr will be used directly.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90101
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
The implementation of target nowait just wraps the target region into a task. The essential four parameters (base ptr, ptr, size, mapper) are taken as firstprivate such that they will be copied to the private location. When there is no user-defined mapper, the mapper variable will be nullptr. However, it will be still copied to the corresponding place. Therefore, a memcpy will be generated and the source pointer will be nullptr, causing a segmentation fault. The root cause is when calling `emitOffloadingArraysArgument`, the last argument `Options` has a field about whether it requires a task. It only takes depend clause into account. In this patch, the nowait clause is also included.
There're two things that will be done in another patches:
1. target data nowait has not been supported yet. D90099 added the support.
2. When there is no mapper, the mapper array can be nullptr no matter whether it requires outer task or not. It can avoid an unnecessary data copy. This is an optimization that is covered in D90101.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89844
We used to only emit static const data members in CodeView as
S_CONSTANTS when they were used; this patch makes it so they are always emitted.
I changed CodeViewDebug.cpp to find the static const members from the
class debug info instead of creating DIGlobalVariables in the IR
whenever a static const data member is used.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47580
Differential Revision: https://reviews.llvm.org/D89072
This is a long-delayed follow-up to
5e5b85098d.
`TempMDNode` includes a bunch of machinery for RAUW, and should only be
used when necessary. RAUW wasn't being used in any of these cases... it
was just a placeholder for a self-reference.
Where the real node was using `MDNode::getDistinct`, just replace the
temporary argument with `nullptr`.
Where the real node was using `MDNode::get`, the `replaceOperandWith`
call was "promoting" the node to a distinct one implicitly due to
self-reference detection in `MDNode::handleChangedOperand`. The
`TempMDNode` was serving a purpose by delaying uniquing, but it's way
simpler to just call `MDNode::getDistinct` in the first place.
Note that using a self-reference at all in these places is a hold-over
from before `distinct` metadata existed. It was an old trick to create
distinct nodes. It would be intrusive to change, including bitcode
upgrades, etc., and it's harmless so I'm not sure there's much value in
removing it from existing schemas. After this commit it still has a tiny
memory cost (in the extra metadata operand) but no more overhead in
construction.
Differential Revision: https://reviews.llvm.org/D90079
This allows using annotation in a much more contexts than it currently has.
especially when annotation with template or constexpr.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D88645
It's currently ambiguous in IR whether the source language explicitly
did not want a stack a stack protector (in C, via function attribute
no_stack_protector) or doesn't care for any given function.
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an __attribute__((__no_stack_protector__)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
Typically, when inlining a callee into a caller, the caller will be
upgraded in its level of stack protection (see adjustCallerSSPLevel()).
By adding an explicit attribute in the IR when the function attribute is
used in the source language, we can now identify such cases and prevent
inlining. Block inlining when the callee and caller differ in the case that one
contains `nossp` when the other has `ssp`, `sspstrong`, or `sspreq`.
Fixes pr/47479.
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D87956
non-type template parameters.
Create a unique TemplateParamObjectDecl instance for each such value,
representing the globally unique template parameter object to which the
template parameter refers.
No IR generation support yet; that will follow in a separate patch.
assembly operands."
Earlyclobbers are now excepted from this change (original commit: c78da03).
Review: Ulrich Weigand, Nick Desaulniers
Differential Revision: https://reviews.llvm.org/D87279
The patch adjusts the existing `llvm::DenseMap<unsigned, T>` and
`llvm::DenseSet<unsigned>` objects that store source locations, so
that they use `SourceLocation` directly instead of `unsigned`.
This patch relies on the `DenseMapInfo` trait added in D89719.
It also replaces the construction of `SourceLocation` objects from
the constants -1 and -2 with calls to the trait's methods `getEmptyKey`
and `getTombstoneKey` where appropriate.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D69840
This fixes miscomputation of __builtin_constant_evaluated in the
initializer of a variable that's not usable in constant expressions, but
is readable when constant-folding.
If evaluation of a constant initializer fails, we throw away the
evaluated result instead of keeping it as a non-constant-initializer
value for the variable, because it might not be a correct value.
To avoid regressions for initializers that are foldable but not formally
constant initializers, we now try constant-evaluating some globals in
C++ twice: once to check for a constant initializer (in an mode where
is_constannt_evaluated returns true) and again to determine the runtime
value if the initializer is not a constant initializer.
The name is unfortunate because it is similar to the driver option -ftest-coverage.
It turns out aside from one occurrence in a test, this option is not used.
Instead of framing the interface around whether the variable is an ICE
(which is only interesting in C++98), primarily track whether the
initializer is a constant initializer (which is interesting in all C++
language modes).
No functionality change intended.
for which it matters.
This is a step towards separating checking for a constant initializer
(in which std::is_constant_evaluated returns true) and any other
evaluation of a variable initializer (in which it returns false).
Recently commit D78699 (commit 26cfb6e562), fixed clang's behavior with respect
to passing a union type through a register to correctly follow the ABI. However,
this is an ABI breaking change with earlier versions of the clang compiler, so we
should add an -fclang-abi-compat option to address this. Additionally, the PS4 ABI
requires the older behavior, so that is added as well.
This change adds a Ver11 value to the ClangABI enum that when it is set (or the
target is the PS4 triple), we skip the ABI fix introduced in D78699.
Differential Revision: https://reviews.llvm.org/D89747
This broke Chromium's PGO build, it seems because hot-cold-splitting got turned
on unintentionally. See comment on the code review for repro etc.
> This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
> the splitting pass to be toggled on/off. The current method of passing
> `-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
> correctly (say, with `-O0` or `-Oz`).
>
> To implement the -fsplit-cold-code option, an attribute is applied to
> functions to indicate that they may be considered for splitting. This
> removes some complexity from the old/new PM pipeline builders, and
> behaves as expected when LTO is enabled.
>
> Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
> Differential Revision: https://reviews.llvm.org/D57265
> Reviewed By: Aditya Kumar, Vedant Kumar
> Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
This reverts commit 273c299d5d.
Implementing the likelihood attributes for the iteration statements adds
a new helper function. This function can't be const qualified since
these non-modifying members aren't const qualified.
This implements the likelihood attribute for the switch statement. Based on the
discussion in D85091 and D86559 it only handles the attribute when placed on
the case labels or the default labels.
It also marks the likelihood attribute as feature complete. There are more QoI
patches in the pipeline.
Differential Revision: https://reviews.llvm.org/D89210
initialization a little smarter.
Look through casts that preserve zero-ness when determining if an
initializer is zero, so that we can handle cases like an {0} initializer
whose corresponding field is a type other than 'int'.
This patch makes sure that the instance of TypeSize comparison operator
is done with a fixed type size.
Differential Revision: https://reviews.llvm.org/D89312
This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
the splitting pass to be toggled on/off. The current method of passing
`-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
correctly (say, with `-O0` or `-Oz`).
To implement the -fsplit-cold-code option, an attribute is applied to
functions to indicate that they may be considered for splitting. This
removes some complexity from the old/new PM pipeline builders, and
behaves as expected when LTO is enabled.
Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
Differential Revision: https://reviews.llvm.org/D57265
Reviewed By: Aditya Kumar, Vedant Kumar
Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
rL131311 added `asm()` support for builtin functions, but `asm()` for builtins with
specialized emitting (e.g. memcpy, various math functions) still do not work.
This patch makes these functions work for `asm()` and `#pragma redefine_extname`.
glibc uses `asm()` to redirect internal libc function calls to hidden aliases.
Limitation: such a function is a builtin in clang, but will not be recognized as
a libcall in optimization passes because Clang does not annotate the renamed
function as a libcall. In GCC -O1 or above, `abs` can be optimized out but we can't.
Additionally, we cannot redirect `__builtin_sin` to `real_sin` in the following example:
double sin(double x) asm("real_sin");
double f(double d) { return __builtin_sin(d); }
---
According to @rsmith, the following three statements cannot be simultaneously true:
(1) The frontend function foo has known, builtin semantics X.
(2) The symbol foo has known, builtin semantics X.
(3) It's not correct to lower a call to the frontend function foo to the symbol foo.
People do want (1) (if it is profitable to expand a memcpy, do it).
This also means that people do not want to add -fno-builtin-memcpy.
People do want (3): that is why they use asm("__GI_memcpy") in the first place.
So unfortunately we make a compromise by not refuting (2) (see the limitation above).
For most libcalls, there is a small loss because compilers don't synthesize them.
For the few glibc cares about, it uses `asm("memcpy = __GI_memcpy");` to make
the assembly level redirection.
(Changing function names (e.g. `__memcpy`) is a hit to ergonomics which is not acceptable).
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D88712
This reverts commits 683b308c07 and
8487bfd4e9.
We will go for a more restricted approach that does not give freedom to
everyone to change ABIs on whichever platform.
See the discussion on https://reviews.llvm.org/D85802.
Prototype the newly proposed load_lane instructions, as specified in
https://github.com/WebAssembly/simd/pull/350. Since these instructions are not
available to origin trial users on Chrome stable, make them opt-in by only
selecting them from intrinsics rather than normal ISel patterns. Since we only
need rough prototypes to measure performance right now, this commit does not
implement all the load and store patterns that would be necessary to make full
use of the offset immediate. However, the full suite of offset tests is included
to make it easy to track improvements in the future.
Since these are the first instructions to have a memarg immediate as well as an
additional immediate, the disassembler needed some additional hacks to be able
to parse them correctly. Making that code more principled is left as future
work.
Differential Revision: https://reviews.llvm.org/D89366
Using TypeSize::getFixedSize() instead of relying upon the implicit
TypeSize->uint64_cast as the type is always fixed width.
Differential Revision: https://reviews.llvm.org/D89313
Update `clang/lib/CodeGen` to use a `MemoryBufferRef` from
`getBufferOrNone` instead of `MemoryBuffer*` from `getBuffer`. No
functionality change here.
Differential Revision: https://reviews.llvm.org/D89411
This implements the flag proposed in RFC http://lists.llvm.org/pipermail/cfe-dev/2020-August/066437.html.
The goal is to add a way to override the default target C++ ABI through
a compiler flag. This makes it easier to test and transition between different
C++ ABIs through compile flags rather than build flags.
In this patch:
- Store `-fc++-abi=` in a LangOpt. This isn't stored in a
CodeGenOpt because there are instances outside of codegen where Clang
needs to know what the ABI is (particularly through
ASTContext::createCXXABI), and we should be able to override the
target default if the flag is provided at that point.
- Expose the existing ABIs in TargetCXXABI as values that can be passed
through this flag.
- Create a .def file for these ABIs to make it easier to check flag
values.
- Add an error for diagnosing bad ABI flag values.
Differential Revision: https://reviews.llvm.org/D85802
Change EmitAsmStmt() to
- Not tie physregs with the "+r" constraint, but instead add the hard
register as an input constraint. This makes "+r" and "=r":"r" look the same
in the output.
Background: Macro intensive user code may contain inline assembly
statements with multiple operands constrained to the same physreg. Such a
case (with the operand constraints "+r" : "r") currently triggers the
TwoAddressInstructionPass assertion against any extra use of a tied
register. Furthermore, TwoAddress will insert a COPY to that physreg even
though isel has already done so (for the non-tied use), which may lead to a
second redundant instruction currently. A simple fix for this is to not
emit tied physreg uses in the first place for the "+r" constraint, which is
what this patch does.
- Give an error on multiple outputs to the same physical register.
This should be reported and this is also what GCC does.
Review: Ulrich Weigand, Aaron Ballman, Jennifer Yu, Craig Topper
Differential Revision: https://reviews.llvm.org/D87279
Followup to D85191.
This changes getTypeInfoInChars to return a TypeInfoChars
struct instead of a std::pair of CharUnits. This lets the
interface match getTypeInfo more closely.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86447
This patch resumes the work of D16586.
According to the AAPCS, volatile bit-fields should
be accessed using containers of the widht of their
declarative type. In such case:
```
struct S1 {
short a : 1;
}
```
should be accessed using load and stores of the width
(sizeof(short)), where now the compiler does only load
the minimum required width (char in this case).
However, as discussed in D16586,
that could overwrite non-volatile bit-fields, which
conflicted with C and C++ object models by creating
data race conditions that are not part of the bit-field,
e.g.
```
struct S2 {
short a;
int b : 16;
}
```
Accessing `S2.b` would also access `S2.a`.
The AAPCS Release 2020Q2
(https://documentation-service.arm.com/static/5efb7fbedbdee951c1ccf186?token=)
section 8.1 Data Types, page 36, "Volatile bit-fields -
preserving number and width of container accesses" has been
updated to avoid conflict with the C++ Memory Model.
Now it reads in the note:
```
This ABI does not place any restrictions on the access widths of bit-fields where the container
overlaps with a non-bit-field member or where the container overlaps with any zero length bit-field
placed between two other bit-fields. This is because the C/C++ memory model defines these as being
separate memory locations, which can be accessed by two threads simultaneously. For this reason,
compilers must be permitted to use a narrower memory access width (including splitting the access into
multiple instructions) to avoid writing to a different memory location. For example, in
struct S { int a:24; char b; }; a write to a must not also write to the location occupied by b, this requires at least two
memory accesses in all current Arm architectures. In the same way, in struct S { int a:24; int:0; int b:8; };,
writes to a or b must not overwrite each other.
```
I've updated the patch D16586 to follow such behavior by verifying that we
only change volatile bit-field access when:
- it won't overlap with any other non-bit-field member
- we only access memory inside the bounds of the record
- avoid overlapping zero-length bit-fields.
Regarding the number of memory accesses, that should be preserved, that will
be implemented by D67399.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D72932
Emit the equivalent integer reduction intrinsics in IR instead of expanding to shuffle+arithmetic sequences.
The fadd/fmul reductions might be trickier as they assume a similar bisection reduction while the generic intrinsics assume a sequential reduction (intel docs are ambiguous on the correct approach) - I'm not sure if we want to always tag them with reassoc? Anyway, that issue can wait until a separate fp patch along with the fmin/fmax reductions.
Differential Revision: https://reviews.llvm.org/D87604
References to different declarations of the same entity aren't different
values, so shouldn't have different representations.
Recommit of e6393ee813, most recently
reverted in 9a33f027ac due to a bug caused
by ObjCInterfaceDecls not propagating availability attributes along
their redeclaration chains; that bug was fixed in
e2d4174e9c.
At AMD, in an internal audit of our code, we found some corner cases
where we were not quite differentiating targets enough for some old
hardware. This commit is part of fixing that by adding three new
targets:
* The "Oland" and "Hainan" variants of gfx601 are now split out into
gfx602. LLPC (in the GPUOpen driver) and other front-ends could use
that to avoid using the shaderZExport workaround on gfx602.
* One variant of gfx703 is now split out into gfx705. LLPC and other
front-ends could use that to avoid using the
shaderSpiCsRegAllocFragmentation workaround on gfx705.
* The "TongaPro" variant of gfx802 is now split out into gfx805.
TongaPro has a faster 64-bit shift than its former friends in gfx802,
and a subtarget feature could be set up for that to take advantage of
it. This commit does not make that change; it just adds the target.
V2: Add clang changes. Put TargetParser list in order.
V3: AMDGCNGPUs table in TargetParser.cpp needs to be in GPUKind order,
so fix the GPUKind order.
Differential Revision: https://reviews.llvm.org/D88916
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
For example:
union M256 {
double d;
__m256 m;
};
extern void foo1(union M256 A);
union M256 m1;
void test() {
foo1(m1);
}
clang will pass m1 through stack which does not follow the ABI.
Differential Revision: https://reviews.llvm.org/D78699
Previously, when clang was compiled with -DLLVM_ENABLE_ASSERTIONS=ON, the added tests were displaying:
inlinable function call in a function with debug info must have a !dbg location
call void @"??1?$c@UB@@@@QEAA@XZ"(%struct.c* @"?f@?1??d@@YAPEAU?$c@UB@@@@XZ@4U2@A")
fatal error: error in backend: Broken module found, compilation aborted!
Stack dump:
0. Program arguments: <f:\svn\buildninja\bin\clang -cc1 -emit-llvm debug-info-no-location.cpp> -gcodeview -debug-info-kind=limited
1. <eof> parser at end of file
2. Per-function optimization
Fixes PR43012
Differential Revision: https://reviews.llvm.org/D66328
Move it as an EP callback (-O[123]) or in addSanitizersAtO0.
This makes it not run in ThinLTO pre-link (like the other sanitizers),
so don't check LTO runs in hwasan-new-pm.c. Changing its position also
seems to change the generated IR. I think we just need to make sure the
pass runs.
Reviewed By: leonardchan
Differential Revision: https://reviews.llvm.org/D88936
Summary:
Replace the OpenMP Runtime Library functions used in CGOpenMPRuntimeGPU
for OpenMP device code generation with ones in OMPKinds.def and use
OMPIRBuilder for generating runtime calls. This allows us to
consolidate more OpenMP code generation into the OMPIRBuilder. Future
additions to the GPU runtime functions should now go in OMPKinds.def
Reviewers: jdoerfert
Subscribers: aaron.ballman cfe-commits guansong llvm-commits sstefan1 yaxunl
Tags: #OpenMP #LLVM #clang
Differential Revision: https://reviews.llvm.org/D88430
SUMMARY:
In IBM compiler xlclang , there is an option -fnovisibility which suppresses visibility. For more details see: https://www.ibm.com/support/knowledgecenter/SSGH3R_16.1.0/com.ibm.xlcpp161.aix.doc/compiler_ref/opt_visibility.html.
We need to add the option -mignore-xcoff-visibility for compatibility with the IBM AIX OS (as the option is enabled by default in AIX). With this option llvm does not emit any visibility attribute to ASM or XCOFF object file.
The option only work on the AIX OS, for other non-AIX OS using the option will report an unsupported options error.
In AIX OS:
1.1 the option -mignore-xcoff-visibility is enabled by default , if there is not -fvisibility=* and -mignore-xcoff-visibility explicitly in the clang command .
1.2 if there is -fvisibility=* explicitly but not -mignore-xcoff-visibility explicitly in the clang command. it will generate visibility attributes.
1.3 if there are both -fvisibility=* and -mignore-xcoff-visibility explicitly in the clang command. The option "-mignore-xcoff-visibility" wins , it do not emit the visibility attribute.
The option -mignore-xcoff-visibility has no effect on visibility attribute when compile with -emit-llvm option to generated LLVM IR.
Reviewer: daltenty,Jason Liu
Differential Revision: https://reviews.llvm.org/D87451
D17779: host-side shadow variables of external declarations of device-side
global variables have internal linkage and are referenced by
`__cuda_register_globals`.
nvcc from CUDA 11 does not allow `__device__ inline` or `__device__ constexpr`
(C++17 inline variables) but clang has incorrectly supported them for a while:
```
error: A __device__ variable cannot be marked constexpr
error: An inline __device__/__constant__/__managed__ variable must have internal linkage when the program is compiled in whole program mode (-rdc=false)
```
If such a variable (which has a comdat group) is discarded (a copy from another
translation unit is prevailing and selected), accessing the variable from
outside the section group (`__cuda_register_globals`) is a violation of the ELF
specification and will be rejected by linkers:
> A symbol table entry with STB_LOCAL binding that is defined relative to one of a group's sections, and that is contained in a symbol table section that is not part of the group, must be discarded if the group members are discarded. References to this symbol table entry from outside the group are not allowed.
As a workaround, don't register such inline variables for now.
(If we register the variables in all TUs, we will keep multiple instances of the shadow and break the C++ semantics for inline variables).
We should reject such variables in Sema but our internal users need some time to migrate.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D88786
We were taking multiple pointer arguments in the builtin.
gcc accepts a single void*.
The cast from void* to _m128i* caused the IR generation to assume
the pointer was aligned.
Instead make the builtin take a single void*, emit i8* GEPs to
adjust then cast to <2 x i64>* and perform a store with align of 1.
Bruno De Fraine discovered some issues with D85091. The branch weights
generated for `logical not` and `ternary conditional` were wrong. The
`logical and` and `logical or` differed from the code generated of
`__builtin_predict`.
Adjusted the generated code for the likelihood to match
`__builtin_predict`. The patch is based on Bruno's suggestions.
Differential Revision: https://reviews.llvm.org/D88363
Currently CUDA/HIP toolchain uses "unknown" as bound arch
for offload action for fat binary. This causes -mcpu or -march
with "unknown" added in HIPToolChain::TranslateArgs or
CUDAToolChain::TranslateArgs.
This causes issue for https://reviews.llvm.org/D88377 since
HIP toolchain needs to check -mcpu in HIPToolChain::TranslateArgs.
The bound arch of offload action for fat binary is not really
used, therefore set it to CudaArch::UNUSED.
Differential Revision: https://reviews.llvm.org/D88524
We now recognize this function as a builtin despite it having an
unexpected number of parameters; make sure we don't enforce that it has
only 1 argument for its 2 parameters.
To facilitate faster loading of device binaries and share them among processes,
HIP runtime favors their alignment being 4096 bytes. HIP runtime can load
unaligned device binaries, however, aligning them at 4096 bytes results in
faster loading and less shared memory usage.
This patch adds an option -bundle-align to clang-offload-bundler which allows
bundles to be aligned at specified alignment. By default it is 1, which is NFC
compared to existing format.
This patch then aligns embedded fat binary and device binary inside fat binary
at 4096 bytes.
It has been verified this change does not cause significant overall file size increase
for typical HIP applications (less than 1%).
Differential Revision: https://reviews.llvm.org/D88734
Summary:
Motivated by the new objc_direct attribute, this change adds a new
attribute that remotes metadata from Protocols that the programmer knows
isn't going to be used at runtime. We simply have the frontend skip
generating any protocol metadata entries (e.g. OBJC_CLASS_NAME,
_OBJC_$_PROTOCOL_INSTANCE_METHDOS, _OBJC_PROTOCOL, etc) for a protocol
marked with `__attribute__((objc_non_runtime_protocol))`.
There are a few APIs used to retrieve a protocol at runtime.
`@protocol(SomeProtocol)` will now error out of the requested protocol
is marked with attribute. `objc_getProtocol` will return `NULL` which
is consistent with the behavior of a non-existing protocol.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75574
- `-cl-fp32-correctly-rounded-divide-sqrt` is already handled in a
per-instruction manner by annotating the accuracy required. There's no
need to add that fn-attr. So far, there's no in-tree backend handling
that attr and that OpenCL specific option.
- In case that out-of-tree backends are broken, this change could be
reverted if those backends could not be fixed.
Differential Revision: https://reviews.llvm.org/D88424
The patch adds a new TargetMachine member "registerPassBuilderCallbacks" for targets to add passes to the pass pipeline using the New Pass Manager (similar to adjustPassManager for the Legacy Pass Manager).
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D88138
Failing tests on Arm due to the tests automatically populating
incomatible pointer width architectures. Reverting until the tests are
updated. Failing tests:
OpenMP/distribute_parallel_for_num_threads_codegen.cpp
OpenMP/distribute_parallel_for_if_codegen.cpp
OpenMP/distribute_parallel_for_simd_if_codegen.cpp
OpenMP/distribute_parallel_for_simd_num_threads_codegen.cpp
OpenMP/target_teams_distribute_parallel_for_if_codegen.cpp
OpenMP/target_teams_distribute_parallel_for_simd_if_codegen.cpp
OpenMP/teams_distribute_parallel_for_if_codegen.cpp
OpenMP/teams_distribute_parallel_for_simd_if_codegen.cpp
This reverts commit 90eaedda9b.
Summary:
Replace the OpenMP Runtime Library functions used in CGOpenMPRuntimeGPU
for OpenMP device code generation with ones in OMPKinds.def and use
OMPIRBuilder for generating runtime calls. This allows us to consolidate
more OpenMP code generation into the OMPIRBuilder. This patch also
invalidates specifying target architectures with conflicting pointer
sizes.
Reviewers: jdoerfert
Subscribers: aaron.ballman cfe-commits guansong llvm-commits sstefan1 yaxunl
Tags: #OpenMP #Clang #LLVM
Differential Revision: https://reviews.llvm.org/D88430
On some targets, preferred alignment is larger than ABI alignment in some cases. For example,
on AIX we have special power alignment rules which would cause that. Previously, to support
those cases, we added a “PreferredAlignment” field in the `RecordLayout` to store the AIX
special alignment values in “PreferredAlignment” as the community suggested.
However, that patch alone is not enough. There are places in the Clang where `PreferredAlignment`
should have been used instead of ABI-specified alignment. This patch is aimed at fixing those
spots.
Differential Revision: https://reviews.llvm.org/D86790
Key Locker provides a mechanism to encrypt and decrypt data with an AES key without having access
to the raw key value by converting AES keys into “handles”. These handles can be used to perform the
same encryption and decryption operations as the original AES keys, but they only work on the current
system and only until they are revoked. If software revokes Key Locker handles (e.g., on a reboot),
then any previous handles can no longer be used.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D88398
Add class types to the retained types list to make sure they
don't get dropped if the constructor is optimized out later.
Differential Revision: https://reviews.llvm.org/D88522
- Fix a memory leak accidentally introduced yesterday by using CodeGen's
existing mangling context instead of creating a new context afresh.
- Move GNU-runtime ObjC method mangling into the AST mangler; this will
eventually be necessary to support direct methods there, but is also
just the right architecture.
- Make the Apple-runtime method mangling work properly when given an
interface declaration, fixing a bug (which had solidified into a test)
where mangling a category method from the interface could cause it to
be mangled as if the category name was a class name. (Category names
are namespaced within their class and have no global meaning.)
- Fix a code cross-reference in dsymutil.
Based on a patch by Ellis Hoag.
GCC 7 introduced -fprofile-update={atomic,prefer-atomic} (prefer-atomic is for
best efforts (some targets do not support atomics)) to increment counters
atomically, which is exactly what we have done with -fprofile-instr-generate
(D50867) and -fprofile-arcs (b5ef137c11).
This patch adds the option to clang to surface the internal options at driver level.
GCC 7 also turned on -fprofile-update=prefer-atomic when -pthread is specified,
but it has performance regression
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89307). So we don't follow suit.
Differential Revision: https://reviews.llvm.org/D87737
This reverts commit 55c4ff91bd.
Issues were introduced as discussed in https://reviews.llvm.org/D88241
where this change made previous bugs in the linker and BitCodeWriter
visible.
Instead of expliciting emitting a setc in the inline asm instructions,
we can use flag output. This allows the backend to use the flag
directly if it is needed by a branch. Previously we needed a test
instruction to convert the register back to a flag.
If the flag can't be used directly, the backend will emit a setcc.
Differential Revision: https://reviews.llvm.org/D87888
Extend -fsanitize=nullability-arg to handle call sites which accept C++
member pointers.
rdar://62476022
Differential Revision: https://reviews.llvm.org/D88336
- `-cl-fp32-correctly-rounded-divide-sqrt` is an OpenCL-specific option
and `correctly-rounded-divide-sqrt-fp-math` should be added for OpenCL
at most.
Differential revision: https://reviews.llvm.org/D88303
After some recent upstream discussion we decided that it was best
to avoid having the / operator for both ElementCount and TypeSize,
since this could give the impression that these classes can be used
in the same way as basic integer integer types. However, division
for scalable types is a bit odd because we are only dividing the
minimum quantity by a value, as opposed to something like:
(MinSize * Vscale) / SomeValue
This is why when performing division it's important the caller
first establishes whether the operation makes sense, perhaps by
calling isKnownMultipleOf() prior to division. The caller must now
explictly call divideCoefficientBy() on the class to perform the
operation.
Differential Revision: https://reviews.llvm.org/D87700
References to different declarations of the same entity aren't different
values, so shouldn't have different representations.
Recommit of e6393ee813 with fixed handling
for weak declarations. We now look for attributes on the most recent
declaration when determining whether a declaration is weak. (Second
recommit with further fixes for mishandling of weak declarations. Our
behavior here is fundamentally unsound -- see PR47663 -- but this
approach attempts to not make things worse.)
Previously for nowait target, CG emitted a function call to `__tgt_target_nowait`, etc. However, in OpenMP RTL, these functions just directly call the no-nowait version, which means nowait is not working as expected.
OpenMP specification says a target is acutally a target task, which is an untied and detachable task. It is natural to go to the direction that generates a task for a nowait target. However, OpenMP task has a problem that it must be within to a parallel region; otherwise the task will be executed immediately. As a result, if we directly wrap to a regular task, the `target nowait` outside of a parallel region is still a synchronous version.
In D77609, I added the support for unshackled task in OpenMP RTL. Basically, unshackled task is a task that is not bound to any parallel region. So all nowait target will be tranformed into an unshackled task. In order to distinguish from regular task, a new flag bit is set for unshackled task. This flag will be used by RTL for later process.
Since all target tasks are allocated via `__kmpc_omp_target_task_alloc`, and in current `libomptarget`, `__kmpc_omp_target_task_alloc` just calls `__kmpc_omp_task_alloc`. Therefore, we can modify the flag in `__kmpc_omp_target_task_alloc` so that we don't need to modify the FE too much. If users choose to opt out the feature, they just need to use a RTL w/o support of unshackled threads.
As a result, in this patch, the `target nowait` region is simply wrapped into a regular task. Later once we have RTL support for unshackled tasks, the wrapped tasks can be executed by unshackled threads w/o changes in the FE.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D78075
Make the corresponding change that was made for byval in
b7141207a4. Like byval, this requires a
bulk update of the test IR tests to include the type before this can
be mandatory.
PAC/BTI-related codegen in the AArch64 backend is controlled by a set
of LLVM IR function attributes, added to the function by Clang, based
on command-line options and GCC-style function attributes. However,
functions, generated in the LLVM middle end (for example,
asan.module.ctor or __llvm_gcov_write_out) do not get any attributes
and the backend incorrectly does not do any PAC/BTI code generation.
This patch record the default state of PAC/BTI codegen in a set of
LLVM IR module-level attributes, based on command-line options:
* "sign-return-address", with non-zero value means generate code to
sign return addresses (PAC-RET), zero value means disable PAC-RET.
* "sign-return-address-all", with non-zero value means enable PAC-RET
for all functions, zero value means enable PAC-RET only for
functions, which spill LR.
* "sign-return-address-with-bkey", with non-zero value means use B-key
for signing, zero value mean use A-key.
This set of attributes are always added for AArch64 targets (as
opposed, for example, to interpreting a missing attribute as having a
value 0) in order to be able to check for conflicts when combining
module attributed during LTO.
Module-level attributes are overridden by function level attributes.
All the decision making about whether to not to generate PAC and/or
BTI code is factored out into AArch64FunctionInfo, there shouldn't be
any places left, other than AArch64FunctionInfo, which directly
examine PAC/BTI attributes, except AArch64AsmPrinter.cpp, which
is/will-be handled by a separate patch.
Differential Revision: https://reviews.llvm.org/D85649
Add the ability to selectively instrument a subset of functions by dividing the functions into N logical groups and then selecting a group to cover. By selecting different groups over time you could cover the entire application incrementally with lower overhead than instrumenting the entire application at once.
Differential Revision: https://reviews.llvm.org/D87953
Passing them directly is likely to be non-conforming, since it usually
involves copying the bytes of the record. For unknown architectures, we
don't know what MSVC does or will do, but we should at least try to
conform as well as we can.
Regardless of the target architecture, we should always use the C rules
(RAA_Default) for records that "canBePassedInRegisters". Those are
trivially copyable things, and things marked with [[trivial_abi]].
This should be NFC, although it changes where the final decision about
x86_32 overaligned records is made. The current x86_32 C rules say that
overaligned things are passed indirectly, so there is no functional
difference.
constructors.
This changes the code to avoid using constructor homing for aggregate
classes and classes with trivial default constructors, instead of trying
to loop through the constructors.
Differential Revision: https://reviews.llvm.org/D87808
As mentioned in the bug report, tryEmitPrivate chokes on the
MaterializeTemporaryExpr in the reproducers, since it assumes that if
there are elements, than it must be a ConstantArrayType. However, the
MaterializeTemporaryExpr (which matches exactly the AST when it is NOT a
global/static) has an incomplete array type.
This changes the section where the number-of-elements is non-zero to
properly handle non-CAT types by just extracting it as an array type
(since all we needed was the element type out of it).
This patch implements custom codegen for the vec_replace_elt and
vec_replace_unaligned builtins.
These builtins map to the @llvm.ppc.altivec.vinsw and @llvm.ppc.altivec.vinsd
intrinsics depending on the arguments. The main motivation for doing custom
codegen for these intrinsics is because there are float and double versions of
the builtin. Normally, the converting the float to an integer would be done via
fptoui in the IR. This is incorrect as fptoui truncates the value and we must
ensure the value is not truncated. Therefore, we provide custom codegen to utilize
bitcast instead as bitcasts do not truncate.
Differential Revision: https://reviews.llvm.org/D83500
I believe the inline asm emitted here should have a memory clobber since it writes to memory.
It was also missing the dirflag clobber that we use by default along with flags and fpsr. To avoid missing defaults in the future, get the default list from the target
Differential Revision: https://reviews.llvm.org/D88121
This patch implements the vec_[all|any]_[eq | ne | lt | gt | le | ge] builtins for vector signed/unsigned __int128.
Differential Revision: https://reviews.llvm.org/D87910
D87921 was reverted in commit b89059a313
as it was causing an unknown llvm PPC bot failure. Reapplying the patch
after confirming that this is not responsible. Build bot failure:
https://reviews.llvm.org/D87921#2286644 which caused the revert.
The wrong placement of add pass with optimizations led to
-funique-internal-linkage-names being disabled.
Fixed the placement of the MPM.addpass for UniqueInternalLinkageNames to make it
work correctly with -O2 and new pass manager. Updated the tests to explicitly
check O0 and O1.
Differential Revision: https://reviews.llvm.org/D87921
A static device variable may be accessed in host code through
cudaMemCpyFromSymbol etc. Currently clang does not
emit the static device variable if it is only referenced by
host code, which causes host code to fail at run time.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D88115
This completes the circle, complementing -lto-embed-bitcode
(specifically, post-merge-pre-opt). Using -thinlto-assume-merged skips
function importing. The index file is still needed for the other data it
contains.
Differential Revision: https://reviews.llvm.org/D87949
This updates the C++ ABI argument classification code to use the logic
from D72114, fixing an ABI incompatibility with MSVC.
Part of PR44395.
Differential Revision: https://reviews.llvm.org/D87923
Fixed the placement of the MPM.addpass for UniqueInternalLinkageNames to make
it work correctly with -O2 and new pass manager. Updated the tests to
explicitly check O0 and O2.
Previously, the addPass was placed before BackendUtil.cpp#L1373 which is wrong
as MPM gets assigned at this point and any additions to the pass vector before
this is wrong. This change just moves it after MPM is assigned and places it at
a point where O0 and O0+ can share it.
Differential Revision: https://reviews.llvm.org/D87921
This patch fixes the problem that user-defined mapper array is not correctly privatized inside a task. This problem causes openmp/libomptarget/test/offloading/target_depend_nowait.cpp fails.
Differential Revision: https://reviews.llvm.org/D84470
- After loading builtin bitcode for linking, skip adding default
function attributes on LLVM intrinsics as their attributes are
well-defined and retrieved directly from internal definitions. Adding
extra attributes on intrinsics results in inconsistent result when
`-save-temps` is present. Also, that makes few optimizations
conservative.
Differential Revision: https://reviews.llvm.org/D87761
This will embed bitcode after (Thin)LTO merge, but before optimizations.
In the case the thinlto backend is called from clang, the .llvmcmd
section is also produced. Doing so in the case where the caller is the
linker doesn't yet have a motivation, and would require plumbing through
command line args.
Differential Revision: https://reviews.llvm.org/D87636
Need to map the component as TO instead of the literal, because need to
pass a reference to a component if the pointer is overaligned.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D84887
This patch adds a command line flag for the machine function splitter
(added in rG94faadaca4e1).
-fsplit-machine-functions
Split machine functions using profile information (x86 ELF). On
other targets an error is emitted. If profile information is not
provided a warning is emitted notifying the user that profile
information is required.
Differential Revision: https://reviews.llvm.org/D87047
Local vars, marked with pragma allocate, mustbe allocate by the call of
the runtime function and cannot be allocated as other local variables.
Instead, we allocate a space for the pointer in private record and store
the address, returned by kmpc_alloc call in this pointer.
So, for untied tasks
```
#pragma omp task untied
{
S s;
#pragma omp allocate(s) allocator(allocator)
s = x;
}
```
compiler generates something like this:
```
struct task_with_privates {
S *ptr;
};
void entry(task_with_privates *p) {
S *s = p->s;
switch(partid) {
case 1:
p->s = (S*)kmpc_alloc();
kmpc_omp_task();
br exit;
case 2:
*s = x;
kmpc_omp_task();
br exit;
case 2:
~S(s);
kmpc_free((void*)s);
br exit;
}
exit:
}
```
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86558
We're now getting close to having the necessary analysis/combines etc. for the new generic llvm smax/smin/umax/umin intrinsics.
This patch updates the SSE/AVX integer MINMAX intrinsics to emit the generic equivalents instead of the icmp+select code pattern.
Differential Revision: https://reviews.llvm.org/D87603
This is consistent with the clang option added in
7ed8124d46, and the comments on the
runtime patch in D87120.
Differential Revision: https://reviews.llvm.org/D87622
This is recommit of 6c8041aa0f, reverted in de044f7562 because of some
fails. Original commit message is below.
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
After the recent discussion on cfe-dev 'Can indirect class parameters be
noalias?' [1], it seems like using using noalias is problematic for
current C++, but should be allowed for C-only code.
This patch introduces a new option to let the user indicate that it is
safe to mark indirect class parameters as noalias. Note that this also
applies to external callers, e.g. it might not be safe to use this flag
for C functions that are called by C++ functions.
In targets that allocate indirect arguments in the called function, this
enables more agressive optimizations with respect to memory operations
and brings a ~1% - 2% codesize reduction for some programs.
[1] : http://lists.llvm.org/pipermail/cfe-dev/2020-July/066353.html
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D85473
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
This is the initial part of the implementation of the C++20 likelihood
attributes. It handles the attributes in an if statement.
Differential Revision: https://reviews.llvm.org/D85091
In standard C library, both rint and nearbyint returns rounding result
in current rounding mode. But nearbyint never raises inexact exception.
On PowerPC, x(v|s)r(d|s)pic may modify FPSCR XX, raising inexact
exception. So we can't select constrained fnearbyint into xvrdpic.
One exception here is xsrqpi, which will not raise inexact exception, so
fnearbyint f128 is okay here.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D87220
This patch resumes the work of D16586.
According to the AAPCS, volatile bit-fields should
be accessed using containers of the widht of their
declarative type. In such case:
```
struct S1 {
short a : 1;
}
```
should be accessed using load and stores of the width
(sizeof(short)), where now the compiler does only load
the minimum required width (char in this case).
However, as discussed in D16586,
that could overwrite non-volatile bit-fields, which
conflicted with C and C++ object models by creating
data race conditions that are not part of the bit-field,
e.g.
```
struct S2 {
short a;
int b : 16;
}
```
Accessing `S2.b` would also access `S2.a`.
The AAPCS Release 2020Q2
(https://documentation-service.arm.com/static/5efb7fbedbdee951c1ccf186?token=)
section 8.1 Data Types, page 36, "Volatile bit-fields -
preserving number and width of container accesses" has been
updated to avoid conflict with the C++ Memory Model.
Now it reads in the note:
```
This ABI does not place any restrictions on the access widths of bit-fields where the container
overlaps with a non-bit-field member or where the container overlaps with any zero length bit-field
placed between two other bit-fields. This is because the C/C++ memory model defines these as being
separate memory locations, which can be accessed by two threads simultaneously. For this reason,
compilers must be permitted to use a narrower memory access width (including splitting the access into
multiple instructions) to avoid writing to a different memory location. For example, in
struct S { int a:24; char b; }; a write to a must not also write to the location occupied by b, this requires at least two
memory accesses in all current Arm architectures. In the same way, in struct S { int a:24; int:0; int b:8; };,
writes to a or b must not overwrite each other.
```
Patch D16586 was updated to follow such behavior by verifying that we
only change volatile bit-field access when:
- it won't overlap with any other non-bit-field member
- we only access memory inside the bounds of the record
- avoid overlapping zero-length bit-fields.
Regarding the number of memory accesses, that should be preserved, that will
be implemented by D67399.
Differential Revision: https://reviews.llvm.org/D72932
The following people contributed to this patch:
- Diogo Sampaio
- Ties Stuij
Fixes issue noticed by static analysis where we have a copy+paste typo, testing ScheduleKind.M1 twice instead of ScheduleKind.M2.
Differential Revision: https://reviews.llvm.org/D87250
We're now getting close to having the necessary analysis/combines etc. for the new generic llvm.abs.* intrinsics.
This patch updates the SSE/AVX ABS vector intrinsics to emit the generic equivalents instead of the icmp+sub+select code pattern.
Differential Revision: https://reviews.llvm.org/D87101
This change groups
* Rename: `ignoreParenBaseCasts` -> `IgnoreParenBaseCasts` for uniformity
* Rename: `IgnoreConversionOperator` -> `IgnoreConversionOperatorSingleStep` for uniformity
* Inline `IgnoreNoopCastsSingleStep` into a lambda inside `IgnoreNoopCasts`
* Refactor `IgnoreUnlessSpelledInSource` to make adequate use of `IgnoreExprNodes`
Differential Revision: https://reviews.llvm.org/D86880
This adds the size to forward declared class DITypes, if the size is known.
Fixes an issue where we determine whether to emit fragments based on the
type size, so fragments would sometimes be incorrectly emitted if there
was no size.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47338
Differential Revision: https://reviews.llvm.org/D87062
Temporarily revert commit 04abbb3a78
due to regressions in some HIP apps due backend issues revealed by
this change.
Will re-commit it when backend issues are fixed.
This assert doesn't really make sense for functions in general, since they
start life as declarations, and there isn't really any reason to require them
to be defined before attributes are applied to them.
rdar://67895846
Previously, clang was crashing on the attached test because the EH cleanup for
the block capture was incorrectly emitted under the assumption that the
expression wasn't conditionally evaluated. This was because before 9a52de00260,
pushLifetimeExtendedDestroy was mainly used with C++ automatic lifetime
extension, where a conditionally evaluated expression wasn't possible. Now that
we're using this path for block captures, we need to handle this case.
rdar://66250047
Differential revision: https://reviews.llvm.org/D86854
This relands D85743 with a fix for test
CodeGen/attr-arm-sve-vector-bits-call.c that disables the new pass
manager with '-fno-experimental-new-pass-manager'. Test was failing due
to IR differences with the new pass manager which broke the Fuchsia
builder [1]. Reverted in 2e7041f.
[1] http://lab.llvm.org:8011/builders/fuchsia-x86_64-linux/builds/10375
Original summary:
This patch implements codegen for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
VLSTs are represented as VectorType in the AST and fixed-length vectors
in the IR everywhere except in function args/return. Implemented in this
patch is codegen support for the following:
* Implicit casting between VLA <-> VLS types.
* Coercion of VLS types in function args/return.
* Mangling of VLS types.
Casting is handled by the CK_BitCast operation, which has been extended
to support the two new vector kinds for fixed-length SVE predicate and
data vectors, where the cast is implemented through memory rather than a
bitcast which is unsupported. Implementing this as a normal bitcast
would require relaxing checks in LLVM to allow bitcasting between
scalable and fixed types. Another option was adding target-specific
intrinsics, although codegen support would need to be added for these
intrinsics. Given this, casting through memory seemed like the best
approach as it's supported today and existing optimisations may remove
unnecessary loads/stores, although there is room for improvement here.
Coercion of VLSTs in function args/return from fixed to scalable is
implemented through the AArch64 ABI in TargetInfo.
The VLA and VLS types are defined by the ACLE to map to the same
machine-level SVE vectors. VLS types are mangled in the same way as:
__SVE_VLS<typename, unsigned>
where the first argument is the underlying variable-length type and the
second argument is the SVE vector length in bits. For example:
#if __ARM_FEATURE_SVE_BITS==512
// Mangled as 9__SVE_VLSIu11__SVInt32_tLj512EE
typedef svint32_t vec __attribute__((arm_sve_vector_bits(512)));
// Mangled as 9__SVE_VLSIu10__SVBool_tLj512EE
typedef svbool_t pred __attribute__((arm_sve_vector_bits(512)));
#endif
The latest ACLE specification (00bet5) does not contain details of this
mangling scheme, it will be specified in the next revision. The
mangling scheme is otherwise defined in the appendices to the Procedure
Call Standard for the Arm Architecture, see [2] for more information.
[1] https://developer.arm.com/documentation/100987/latest
[2] https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85743
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
It's not undefined behavior for an unsigned left shift to overflow (i.e. to
shift bits out), but it has been the source of bugs and exploits in certain
codebases in the past. As we do in other parts of UBSan, this patch adds a
dynamic checker which acts beyond UBSan and checks other sources of errors. The
option is enabled as part of -fsanitize=integer.
The flag is named: -fsanitize=unsigned-shift-base
This matches shift-base and shift-exponent flags.
<rdar://problem/46129047>
Differential Revision: https://reviews.llvm.org/D86000
This patch adjusts the following ARM/AArch64 LLVM IR intrinsics:
- neon_bfmmla
- neon_bfmlalb
- neon_bfmlalt
so that they take and return bf16 and float types. Previously these
intrinsics used <8 x i8> and <4 x i8> vectors (a rudiment from
implementation lacking bf16 IR type).
The neon_vbfdot[q] intrinsics are adjusted similarly. This change
required some additional selection patterns for vbfdot itself and
also for vector shuffles (in a previous patch) because of SelectionDAG
transformations kicking in and mangling the original code.
This patch makes the generated IR cleaner (less useless bitcasts are
produced), but it does not affect the final assembly.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D86146
See RFC for background:
http://lists.llvm.org/pipermail/llvm-dev/2020-June/142744.html
Note that the runtime changes will be sent separately (hopefully this
week, need to add some tests).
This patch includes the LLVM pass to instrument memory accesses with
either inline sequences to increment the access count in the shadow
location, or alternatively to call into the runtime. It also changes
calls to memset/memcpy/memmove to the equivalent runtime version.
The pass is modeled on the address sanitizer pass.
The clang changes add the driver option to invoke the new pass, and to
link with the upcoming heap profiling runtime libraries.
Currently there is no attempt to optimize the instrumentation, e.g. to
aggregate updates to the same memory allocation. That will be
implemented as follow on work.
Differential Revision: https://reviews.llvm.org/D85948
This patch implements codegen for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
VLSTs are represented as VectorType in the AST and fixed-length vectors
in the IR everywhere except in function args/return. Implemented in this
patch is codegen support for the following:
* Implicit casting between VLA <-> VLS types.
* Coercion of VLS types in function args/return.
* Mangling of VLS types.
Casting is handled by the CK_BitCast operation, which has been extended
to support the two new vector kinds for fixed-length SVE predicate and
data vectors, where the cast is implemented through memory rather than a
bitcast which is unsupported. Implementing this as a normal bitcast
would require relaxing checks in LLVM to allow bitcasting between
scalable and fixed types. Another option was adding target-specific
intrinsics, although codegen support would need to be added for these
intrinsics. Given this, casting through memory seemed like the best
approach as it's supported today and existing optimisations may remove
unnecessary loads/stores, although there is room for improvement here.
Coercion of VLSTs in function args/return from fixed to scalable is
implemented through the AArch64 ABI in TargetInfo.
The VLA and VLS types are defined by the ACLE to map to the same
machine-level SVE vectors. VLS types are mangled in the same way as:
__SVE_VLS<typename, unsigned>
where the first argument is the underlying variable-length type and the
second argument is the SVE vector length in bits. For example:
#if __ARM_FEATURE_SVE_BITS==512
// Mangled as 9__SVE_VLSIu11__SVInt32_tLj512EE
typedef svint32_t vec __attribute__((arm_sve_vector_bits(512)));
// Mangled as 9__SVE_VLSIu10__SVBool_tLj512EE
typedef svbool_t pred __attribute__((arm_sve_vector_bits(512)));
#endif
The latest ACLE specification (00bet5) does not contain details of this
mangling scheme, it will be specified in the next revision. The
mangling scheme is otherwise defined in the appendices to the Procedure
Call Standard for the Arm Architecture, see [2] for more information.
[1] https://developer.arm.com/documentation/100987/latest
[2] https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85743
This patch adds type information for SVE ACLE vector types,
by describing them as vectors, with a lower bound of 0, and
an upper bound described by a DWARF expression using the
AArch64 Vector Granule register (VG), which contains the
runtime multiple of 64bit granules in an SVE vector.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86101
For some reason the ctor homing case was before the template
specialization case, and could have returned false too early.
I moved the code out into a separate function to avoid this.
This reverts commit 05777ab941.
This patch adds the -Xclang option
"-fexperimental-debug-variable-locations" and same LLVM CodeGen option,
to pick which variable location tracking solution to use.
Right now all the switch does is pick which LiveDebugValues
implementation to use, the normal VarLoc one or the instruction
referencing one in rGae6f78824031. Over time, the aim is to add fragments
of support in aid of the value-tracking RFC:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/139440.html
also controlled by this command line switch. That will slowly move
variable locations to be defined by an instruction calculating a value,
and a DBG_INSTR_REF instruction referring to that value. Thus, this is
going to grow into a "use the new kind of variable locations" switch,
rather than just "use the new LiveDebugValues implementation".
Differential Revision: https://reviews.llvm.org/D83048
For some reason the ctor homing case was before the template
specialization case, and could have returned false too early.
I moved the code out into a separate function to avoid this.
Also added a run line to the template specialization test. I guess
all the -debug-info-kind=limited tests should still pass with =constructor,
but it's probably unnecessary to test for all of those.
Differential Revision: https://reviews.llvm.org/D86491
The orignal patch with the missing 'REQUIRES: asserts' as there is a debug-only
flag used in the test.
Original summary:
D81347 changes the ASTFileSignature to be an array of 20 uint8_t instead of 5
uint32_t. However, it didn't update the code in ObjectFilePCHContainerOperations
that creates the dwoID in the module from the ASTFileSignature
(`Buffer->Signature` being the array subclass that is now `std::array<uint8_t,
20>` instead of `std::array<uint32_t, 5>`).
```
uint64_t Signature = [..] (uint64_t)Buffer->Signature[1] << 32 | Buffer->Signature[0]
```
This code works with the old ASTFileSignature (where two uint32_t are enough to
fill the uint64_t), but after the patch this only took two bytes from the
ASTFileSignature and only partly filled the Signature uint64_t.
This caused that the dwoID in the module ref and the dwoID in the actual module
no longer match (which in turns causes that LLDB keeps warning about the dwoID's
not matching when debugging -gmodules-compiled binaries).
This patch just unifies the logic for turning the ASTFileSignature into an
uint64_t which makes the dwoID match again (and should prevent issues like that
in the future).
Reviewed By: aprantl, dang
Differential Revision: https://reviews.llvm.org/D84013
This changes the methods in CGExprScalar to use
FixedPointBuilder to generate IR for fixed-point
conversions and operations.
Since FixedPointBuilder emits padded operations slightly
differently than the original code, some tests change.
Reviewed By: leonardchan
Differential Revision: https://reviews.llvm.org/D86282
This relands D84013 but with a test that relies on less shell features to
hopefully make the test pass on Fuchsia (where the test from the previous patch
version strangely failed with a plain "Exit code 1").
Original summary:
D81347 changes the ASTFileSignature to be an array of 20 uint8_t instead of 5 uint32_t.
However, it didn't update the code in ObjectFilePCHContainerOperations that creates
the dwoID in the module from the ASTFileSignature (`Buffer->Signature` being the
array subclass that is now `std::array<uint8_t, 20>` instead of `std::array<uint32_t, 5>`).
```
uint64_t Signature = [..] (uint64_t)Buffer->Signature[1] << 32 | Buffer->Signature[0]
```
This code works with the old ASTFileSignature (where two uint32_t are enough to
fill the uint64_t), but after the patch this only took two bytes from the ASTFileSignature
and only partly filled the Signature uint64_t.
This caused that the dwoID in the module ref and the dwoID in the actual module no
longer match (which in turns causes that LLDB keeps warning about the dwoID's not
matching when debugging -gmodules-compiled binaries).
This patch just unifies the logic for turning the ASTFileSignature into an uint64_t which
makes the dwoID match again (and should prevent issues like that in the future).
Reviewed By: aprantl, dang
Differential Revision: https://reviews.llvm.org/D84013
D81347 changes the ASTFileSignature to be an array of 20 uint8_t instead of 5
uint32_t. However, it didn't update the code in ObjectFilePCHContainerOperations
that creates the dwoID in the module from the ASTFileSignature
(`Buffer->Signature` being the array subclass that is now `std::array<uint8_t,
20>` instead of `std::array<uint32_t, 5>`).
```
uint64_t Signature = [..] (uint64_t)Buffer->Signature[1] << 32 | Buffer->Signature[0]
```
This code works with the old ASTFileSignature (where two uint32_t are enough to
fill the uint64_t), but after the patch this only took two bytes from the
ASTFileSignature and only partly filled the Signature uint64_t.
This caused that the dwoID in the module ref and the dwoID in the actual module
no longer match (which in turns causes that LLDB keeps warning about the dwoID's
not matching when debugging -gmodules-compiled binaries).
This patch just unifies the logic for turning the ASTFileSignature into an
uint64_t which makes the dwoID match again (and should prevent issues like that
in the future).
Reviewed By: aprantl, dang
Differential Revision: https://reviews.llvm.org/D84013
This patch moves FixedPointSemantics and APFixedPoint
from Clang to LLVM ADT.
This will make it easier to use the fixed-point
classes in LLVM for constructing an IR builder for
fixed-point and for reusing the APFixedPoint class
for constant evaluation purposes.
RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-August/144025.html
Reviewed By: leonardchan, rjmccall
Differential Revision: https://reviews.llvm.org/D85312
This adds parsing and codegen support for tune in target attribute.
I've implemented this so that arch in the target attribute implicitly disables tune from the command line. I'm not sure what gcc does here. But since -march implies -mtune. I assume 'arch' in the target attribute implies tune in the target attribute.
Differential Revision: https://reviews.llvm.org/D86187
This function returns a struct `BuiltinVectorTypeInfo` that contains
the builtin vector's element type, element count and number of vectors
(used for vector tuples).
Reviewed By: c-rhodes
Differential Revision: https://reviews.llvm.org/D86100
Building on the backend support from D85165. This parses the command line option in the driver, passes it on to CC1 and adds a function attribute.
-Still need to support tune on the target attribute.
-Need to use "generic" as the tuning by default. But need to change generic in the backend first.
-Need to set tune if march is specified and mtune isn't.
-May need to disable getHostCPUName's ability to guess CPU name from features when it doesn't have a family/model match for mtune=native. That's what gcc appears to do.
Differential Revision: https://reviews.llvm.org/D85384
When we implement OpenMP GPU reductions we use type punning a lot during
the shuffle and reduce operations. This is not always compatible with
language rules on aliasing. So far we generated TBAA which later allowed
to remove some of the reduce code as accesses and initialization were
"known to not alias". With this patch we avoid TBAA in this step,
hopefully for all accesses that we need to.
Verified on the reproducer of PR46156 and QMCPack.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D86037
These functions won't ever unwind. This is useful for MemorySanitizer
as it simplifies handling __atomic_load in particular.
Differential Revision: https://reviews.llvm.org/D85573
We can use this to remove some calls to initFeatureMap from Sema
and CodeGen when a function doesn't have a target attribute.
This reduces compile time of the linux kernel where this map
is needed to diagnose some inline assembly constraints based
on whether sse, avx, or avx512 is enabled.
Differential Revision: https://reviews.llvm.org/D85807
Need to call getRawStmt() function instead, when trying to get inner
associated statement for the executable directive. Not all directives
use captured statements.
In untied tasks, need to allocate the space for local variales, declared
in task region, when the memory for task data is allocated. THe function
can be interrupted and we can exit from the function in untied task
switch. Need to keep the state of the local variables in this case.
Also, the compiler should not call cleanup when exiting in untied task
switch until the real exit out of the declaration scope is met during
execution.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D84457
If the arguments are mapped, but are actually not used in the target
region, the compiler still adds attribute TGT_OMP_TARGET_PARAM for such
arguments. It makes the libomptarget to add such parameters to the list
of arguments, passed to the kernel at the runtime, and may lead to
incorrect results/crashes during execution.
Differential Revision: https://reviews.llvm.org/D85755
Summary:
In untied tasks, need to allocate the space for local variales, declared
in task region, when the memory for task data is allocated. THe function
can be interrupted and we can exit from the function in untied task
switch. Need to keep the state of the local variables in this case.
Also, the compiler should not call cleanup when exiting in untied task
switch until the real exit out of the declaration scope is met during
execution.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, cfe-commits, sstefan1, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D84457
Adds the binary format goff and the operating system zos to the triple
class. goff is selected as default binary format if zos is choosen as
operating system. No further functionality is added.
Reviewers: efriedma, tahonermann, hubert.reinterpertcast, MaskRay
Reviewed By: efriedma, tahonermann, hubert.reinterpertcast
Differential Revision: https://reviews.llvm.org/D82081
When we use mask compare intrinsics under strict FP option, the masked
elements shouldn't raise any exception. So, we cann't replace the
intrinsic with a full compare + "and" operation.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D85385
Replace the `ident_t` handling in Clang with the methods offered by the
OMPIRBuilder. This cuts down on the clang code as well as the
differences between the two, making further transitions easier. Tests
have changed but there should not be a real functional change. The most
interesting difference is probably that we stop generating local ident_t
allocations for now and just use globals. Given that this happens only
with debug info, the location part of the `ident_t` is probably bigger
than the test anyway. As the location part is already a global, we can
avoid the allocation, memcpy, and store in favor of a constant global
that is slightly bigger. This can be revisited if there are
complications.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D80735
Fixes pr/11710.
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Resubmit after breaking Windows and OSX builds.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D80242
- Skip generating profile data on `__global__` function in the host
compilation. It's a host-side stub function only and don't have
profile instrumentation generated on the real function body. The extra
profile data results in the malformed instrumentation profile data.
- Skip generating region mapping on functions in the wrong-side, i.e.,
+ For the device compilation, skip host-only functions; and,
+ For the host compilation, skip device-only functions (including
`__global__` functions.)
- As the device-side profiling is not ready yet, only host-side profile
code generation is checked.
Differential Revision: https://reviews.llvm.org/D85276
On the frontend side, this patch recovers AIX static init implementation to
use the linkage type and function names Clang chooses for sinit related function.
On the backend side, this patch sets correct linkage and function names on aliases
created for sinit/sterm functions.
Differential Revision: https://reviews.llvm.org/D84534
Add address space to indirect abi info and use it for kernels.
Previously, indirect arguments assumed assumed a stack passed object
in the alloca address space using byval. A stack pointer is unsuitable
for kernel arguments, which are passed in a separate, constant buffer
with a different address space.
Start using the new byref for aggregate kernel arguments. Previously
these were emitted as raw struct arguments, and turned into loads in
the backend. These will lower identically, although with byref you now
have the option of applying an explicit alignment. In the future, a
reasonable implementation would use byref for all kernel arguments
(this would be a practical problem at the moment due to losing things
like noalias on pointer arguments).
This is mostly to avoid fighting the optimizer's treatment of
aggregate load/store. SROA and instcombine both turn aggregate loads
and stores into a long sequence of element loads and stores, rather
than the optimizable memcpy I would expect in this situation. Now an
explicit memcpy will be introduced up-front which is better understood
and helps eliminate the alloca in more situations.
This skips using byref in the case where HIP kernel pointer arguments
in structs are promoted to global pointers. At minimum an additional
patch is needed to allow coercion with indirect arguments. This also
skips using it for OpenCL due to the current workaround used to
support kernels calling kernels. Distinct function bodies would need
to be generated up front instead of emitting an illegal call.
Summary:
Introduced OMPChildren class to handle all associated clauses, statement
and child expressions/statements. It allows to represent some directives
more correctly (like flush, depobj etc. with pseudo clauses, ordered
depend directives, which are standalone, and target data directives).
Also, it will make easier to avoid using of CapturedStmt in directives,
if required (atomic, tile etc. directives).
Also, it simplifies serialization/deserialization of the
executable/declarative directives.
Reduces number of allocation operations for mapper declarations.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, jfb, cfe-commits, sstefan1, aaron.ballman, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83261
The second argument of getNaturalAlignIndirect() was `bool ByRef`, but
the implementation was just delegating to getIndirect() with `ByRef`
passed unchanged to `bool ByVal` parameter of getIndirect().
Fix a couple of /*ByRef=*/ comments as well.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D85113
The _ExtInt(1) in getTypeForMem was hitting the bool logic for expanding
to an 8 bit value. The result was an assert, or store i1 %0, i8* %2, align 1
since the parameter IS an i1. This patch changes the 'forMem' test to
exclude ext-int from the bool test.
Without this patch, the following example fails but shouldn't
according to OpenMP TR8:
```
#pragma omp target enter data map(alloc:i)
#pragma omp target data map(present, alloc: i)
{
#pragma omp target exit data map(delete:i)
} // fails presence check here
```
OpenMP TR8 sec. 2.22.7.1 "map Clause", p. 321, L23-26 states:
> If the map clause appears on a target, target data, target enter
> data or target exit data construct with a present map-type-modifier
> then on entry to the region if the corresponding list item does not
> appear in the device data environment an error occurs and the
> program terminates.
There is no corresponding statement about the exit from a region.
Thus, the `present` modifier should:
1. Check for presence upon entry into any region, including a `target
exit data` region. This behavior is already implemented correctly.
2. Should not check for presence upon exit from any region, including
a `target` or `target data` region. Without this patch, this
behavior is not implemented correctly, breaking the above example.
In the case of `target data`, this patch fixes the latter behavior by
removing the `present` modifier from the map types Clang generates for
the runtime call at the end of the region.
In the case of `target`, we have not found a valid OpenMP program for
which such a fix would matter. It appears that, if a program can
guarantee that data is present at the beginning of a `target` region
so that there's no error there, that data is also guaranteed to be
present at the end. This patch adds a comment to the runtime to
document this case.
Reviewed By: grokos, RaviNarayanaswamy, ABataev
Differential Revision: https://reviews.llvm.org/D84422
This patch simplified IR generation for __builtin_btf_type_id().
For __builtin_btf_type_id(obj, flag), previously IR builtin
looks like
if (obj is a lvalue)
llvm.bpf.btf.type.id(obj.ptr, 1, flag) !type
else
llvm.bpf.btf.type.id(obj, 0, flag) !type
The purpose of the 2nd argument is to differentiate
__builtin_btf_type_id(obj, flag) where obj is a lvalue
vs.
__builtin_btf_type_id(obj.ptr, flag)
Note that obj or obj.ptr is never used by the backend
and the `obj` argument is only used to derive the type.
This code sequence is subject to potential llvm CSE when
- obj is the same .e.g., nullptr
- flag is the same
- metadata type is different, e.g., typedef of struct "s"
and strust "s".
In the above, we don't want CSE since their metadata is different.
This patch change IR builtin to
llvm.bpf.btf.type.id(seq_num, flag) !type
and seq_num is always increasing. This will prevent potential
llvm CSE.
Also report an error if the type name is empty for
remote relocation since remote relocation needs non-empty
type name to do relocation against vmlinux.
Differential Revision: https://reviews.llvm.org/D85174
This patch added the following additional compile-once
run-everywhere (CO-RE) relocations:
- existence/size of typedef, struct/union or enum type
- enum value and enum value existence
These additional relocations will make CO-RE bpf programs more
adaptive for potential kernel internal data structure changes.
For existence/size relocations, the following two code patterns
are supported:
1. uint32_t __builtin_preserve_type_info(*(<type> *)0, flag);
2. <type> var;
uint32_t __builtin_preserve_field_info(var, flag);
flag = 0 for existence relocation and flag = 1 for size relocation.
For enum value existence and enum value relocations, the following code
pattern is supported:
uint64_t __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
flag);
flag = 0 means existence relocation and flag = 1 for enum value.
relocation. In the above <enum_type> can be an enum type or
a typedef to enum type. The <enum_value> needs to be an enumerator
value from the same enum type. The return type is uint64_t to
permit potential 64bit enumerator values.
Differential Revision: https://reviews.llvm.org/D83242
In order to follow NEC Aurora SX VE ABI correctly, change to sign/zero
extend integer arguments and return values smaller than 64 bits in clang.
Also update regression test.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D85071
Specified in https://github.com/WebAssembly/simd/pull/237, these
instructions load the first vector lane from memory and zero the other
lanes. Since these instructions are not officially part of the SIMD
proposal, they are only available on an opt-in basis via LLVM
intrinsics and clang builtin functions. If these instructions are
merged to the proposal, this implementation will change so that the
instructions will be generated from normal IR. At that point the
intrinsics and builtin functions would be removed.
This PR also changes the opcodes for the experimental f32x4.qfm{a,s}
instructions because their opcodes conflicted with those of the
v128.load{32,64}_zero instructions. The new opcodes were chosen to
match those used in V8.
Differential Revision: https://reviews.llvm.org/D84820
notail on x86-64
This is needed because the epilogue code inserted before tail calls on
x86-64 breaks the handshake between the caller and callee.
Calls to objc_retainAutoreleasedReturnValue used to have the same
problem, which was fixed in https://reviews.llvm.org/D59656.
rdar://problem/66029552
Differential Revision: https://reviews.llvm.org/D84540
Provides AMDGCN and NVPTX specific specialization of getGPUWarpSize,
getGPUThreadID, and getGPUNumThreads methods. Adds tests for AMDGCN
codegen for these methods in generic and simd modes. Also changes the
precondition in InitTempAlloca to be slightly more permissive. Useful for
AMDGCN OpenMP codegen where allocas are created with a cast to an
address space.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D84260
fptosi/fptoui have similar, but not identical, semantics. In
particular, the behavior on overflow is different.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46844 for 64-bit. (The
corresponding patch for 32-bit is more involved because the equivalent
intrinsics don't exist, as far as I can tell.)
Differential Revision: https://reviews.llvm.org/D84703
We previously used a non-aggregate RValue to represent the passed value,
which violated the assumptions of call arg lowering in some cases, in
particular on 32-bit Windows, where we'd end up producing an FCA store
with TBAA metadata, that the IR verifier would reject.
When we use the OpenMPIRBuilder for the parallel region we need to also
use it to get the thread ID (among other things) in the body. This is
because CGOpenMPRuntime::getThreadID() and
CGOpenMPRuntime::emitUpdateLocation implicitly assumes that if they are
called from within a parallel region there is a certain structure to the
code and certain members of the OMPRegionInfo are initialized. It might
make sense to initialize them even if we use the OpenMPIRBuilder but we
would preferably get rid of such state instead.
Bug reported by Anchu Rajendran Sudhakumari.
Depends on D82470.
Reviewed By: anchu-rajendran
Differential Revision: https://reviews.llvm.org/D82822
We need to keep track of the alloca insertion point (which we already
communicate via the callback to the user) as we place allocas as well.
Reviewed By: fghanim, SouraVX
Differential Revision: https://reviews.llvm.org/D82470
Need to map the base pointer for all directives, not only target
data-based ones.
The base pointer is mapped for array sections, array subscript, array
shaping and other array-like constructs with the base pointer. Also,
codegen for use_device_ptr clause was modified to correctly handle
mapping combination of array like constructs + use_device_ptr clause.
The data for use_device_ptr clause is emitted as the last records in the
data mapping array.
Reviewed By: ye-luo
Differential Revision: https://reviews.llvm.org/D84767
Need to map the base pointer for all directives, not only target
data-based ones.
The base pointer is mapped for array sections, array subscript, array
shaping and other array-like constructs with the base pointer. Also,
codegen for use_device_ptr clause was modified to correctly handle
mapping combination of array like constructs + use_device_ptr clause.
The data for use_device_ptr clause is emitted as the last records in the
data mapping array.
It applies only for global pointers.
Differential Revision: https://reviews.llvm.org/D84767
Previously ctor homing was omitting debug info for classes if they
have both trival and nontrivial constructors, but we should only omit debug
info if the class doesn't have any trivial constructors.
retained types list.
bug: https://bugs.llvm.org/show_bug.cgi?id=46537
Differential Revision: https://reviews.llvm.org/D84870
This patch implements Clang front end support for the OpenMP TR8
`present` motion modifier for `omp target update` directives. The
next patch in this series implements OpenMP runtime support.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D84711
This patch introduces 2 new address spaces in OpenCL: global_device and global_host
which are a subset of a global address space, so the address space scheme will be
looking like:
```
generic->global->host
->device
->private
->local
constant
```
Justification: USM allocations may be associated with both host and device memory. We
want to give users a way to tell the compiler the allocation type of a USM pointer for
optimization purposes. (Link to the Unified Shared Memory extension:
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/cl_intel_unified_shared_memory.asciidoc)
Before this patch USM pointer could be only in opencl_global
address space, hence a device backend can't tell if a particular pointer
points to host or device memory. On FPGAs at least we can generate more
efficient hardware code if the user tells us where the pointer can point -
being able to distinguish between these types of pointers at compile time
allows us to instantiate simpler load-store units to perform memory
transactions.
Patch by Dmitry Sidorov.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D82174
Instead, pattern match extends of extract_subvectors to generate
widening operations. Since extract_subvector is not a legal node, this
is implemented via a custom combine that recognizes extract_subvector
nodes before they are legalized. The combine produces custom ISD nodes
that are later pattern matched directly, just like the intrinsic was.
Also removes the clang builtins for these operations since the
instructions can now be generated from portable code sequences.
Differential Revision: https://reviews.llvm.org/D84556
This patch implements Clang front end support for the OpenMP TR8
`present` motion modifier for `omp target update` directives. The
next patch in this series implements OpenMP runtime support.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D84711
types.
We previously did not treat a function type as dependent if it had a
parameter pack with a non-dependent type -- such a function type depends
on the arity of the pack so is dependent even though none of the
parameter types is dependent. In order to properly handle this, we now
treat pack expansion types as always being dependent types (depending on
at least the pack arity), and always canonically being pack expansion
types, even in the unusual case when the pattern is not a dependent
type. This does mean that we can have canonical types that are pack
expansions that contain no unexpanded packs, which is unfortunate but
not inaccurate.
We also previously did not treat a typedef type as
instantiation-dependent if its canonical type was not
instantiation-dependent. That's wrong because instantiation-dependence
is a property of the type sugar, not of the type; an
instantiation-dependent type can have a non-instantiation-dependent
canonical type.
This patch implements Clang front end support for the OpenMP TR8
`present` map type modifier. The next patch in this series implements
OpenMP runtime support.
This patch does not attempt to implement TR8 sec. 2.22.7.1 "map
Clause", p. 319, L14-16:
> If a map clause with a present map-type-modifier is present in a map
> clause, then the effect of the clause is ordered before all other
> map clauses that do not have the present modifier.
Compare to L10-11, which Clang does not appear to implement yet:
> For a given construct, the effect of a map clause with the to, from,
> or tofrom map-type is ordered before the effect of a map clause with
> the alloc, release, or delete map-type.
This patch also does not implement the `present` implicit-behavior for
`defaultmap` or the `present` motion-modifier for `target update`.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D83061
Pass LowerMatrixIntrinsics wasn't running yet running under the new pass
manager, and this adds LowerMatrixIntrinsics to the pipeline (to the
same place as where it is running in the old PM).
Differential Revision: https://reviews.llvm.org/D84180
Reapply 49e5f603d4
which had been reverted in c94332919b.
Originally reverted because I hadn't updated it in quite a while when I
got around to committing it, so there were a bunch of missing changes to
new code since I'd written the patch.
Reviewers: aaron.ballman
Differential Revision: https://reviews.llvm.org/D76646
Sometimes we also want to avoid merging inline assembly. This patch add
the nomerge function attribute to inline assembly.
Reviewed By: zequanwu
Differential Revision: https://reviews.llvm.org/D84225
Summary:
Need to avoid an optimization for base pointer mapping for target data
directives.
Reviewers: jdoerfert, ye-luo
Subscribers: yaxunl, guansong, cfe-commits, sstefan1, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D84182
OptNoneInstrumentation is part of StandardInstrumentations. It skips
functions (or loops) that are marked optnone.
The feature of skipping optional passes for optnone functions under NPM
is gated on a -enable-npm-optnone flag. Currently it is by default
false. That is because we still need to mark all required passes to be
required. Otherwise optnone functions will start having incorrect
semantics. After that is done in following changes, we can remove the
flag and always enable this.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D83519
Use common interface for accessing target specific GPU grid values in NVPTX
OpenMP codegen as proposed in https://reviews.llvm.org/D80917
Originally authored by Greg Rodgers (@gregrodgers).
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D83492
The `intrinsics_gen` target exists in the CMake exports since r309389
(see LLVMConfig.cmake.in), hence projects can depend on `intrinsics_gen`
even it they are built separately from LLVM.
Reviewed By: MaskRay, JDevlieghere
Differential Revision: https://reviews.llvm.org/D83454
On AIX, the semantic of global_dtors contains __sterm functions associated with C++
cleanup actions and user-declared __attribute__((destructor)) functions. We should
never merely register __sterm with atexit(), so currently
-fregister_global_dtors_with_atexit does not work well on AIX: It would cause
finalization actions to not occur when unloading shared libraries. We need to figure
out a way to handle that when we start supporting user-declared
__attribute__((destructor)) functions.
Currently we report_fatal_error on this option temporarily.
Differential Revision: https://reviews.llvm.org/D83974
Refactors CGOpenMPRuntimeNVPTX as CGOpenMPRuntimeGPU to make it a
generalization for OpenMP GPU Codegen. Target specific specialized
methods for NVPTX are defined in class CGOpenMPRuntimeNVPTX. This
paves the way for a clean and maintainable extension to more GPU
targets for OpenMP Codegen.
For original author (git blame) list of CGOpenMPRuntimeGPU code,
look in history of CGOpenMPRuntimeNVPTX.cpp and .h, after this commit.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D83723
This patch fixes the compilation warnings that L is not a reference.
Thanks to Lingda Li for providing the patch.
Differential Revision: https://reviews.llvm.org/D83959
Set the debug location for static init related functions(__dtor
and __finalize) so we can generate valid debug info on AIX by invoking
-g with clang or -debug-info-kind=limited with clang_cc1.
This also works for any other future targets who may use sinit and
sterm functions for static initialization, where a direct call to
dtor will be generated within finalize function body.
This patch also aims at validating that the debug info generated
is correct for AIX sinit related functions.
Differential Revision: https://reviews.llvm.org/D83702
This patch implements the code generation to use OpenMP 5.0 declare mapper (a.k.a. user-defined mapper) constructs.
Patch written by Lingda Li.
Differential Revision: https://reviews.llvm.org/D67833
llvm function is marked nounwind
This fixes cases where an invoke is emitted, despite the called llvm
function being marked nounwind, because ConstructAttributeList failed to
add the attribute to the attribute list. llvm optimization passes turn
invokes into calls and optimize away the exception handling code, but
it's better to avoid emitting the code in the front-end if the called
function is known not to raise an exception.
Differential Revision: https://reviews.llvm.org/D83906
Summary:
If user-defined reductions with the initializer are used with classes,
the compiler misses the constructor call when trying to create a private
copy of the reduction variable.
Reviewers: jdoerfert
Subscribers: cfe-commits, yaxunl, guansong, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83334
Summary:
If the original variable is marked for allocation in the different
address space using #pragma omp allocate, need to cast the allocated
variable to its original type with the original address space.
Otherwise, the compiler may crash trying to bitcast the type of the new
allocated variable to the original type in some cases, like passing this
variable as an argument in function calls.
Reviewers: jdoerfert
Subscribers: jholewinski, cfe-commits, yaxunl, guansong, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83696
Some of the system registers readable on AArch64 and ARM platforms
return different values with each read (for example a timer counter),
these shouldn't be hoisted outside loops or otherwise interfered with,
but the normal @llvm.read_register intrinsic is only considered to read
memory.
This introduces a separate @llvm.read_volatile_register intrinsic and
maps all system-registers on ARM platforms to use it for the
__builtin_arm_rsr calls. Registers declared with asm("r9") or similar
are unaffected.
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: thopre, yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
Check that the implicit cast from `id` used to construct the element
variable in an ObjC for-in statement is valid.
This check is included as part of a new `objc-cast` sanitizer, outside
of the main 'undefined' group, as (IIUC) the behavior it's checking for
is not technically UB.
The check can be extended to cover other kinds of invalid casts in ObjC.
Partially addresses: rdar://12903059, rdar://9542496
Differential Revision: https://reviews.llvm.org/D71491
Summary:
Need to privatize addresses of the captured variables when trying to
emit the body of the target data directive in no target codegen mode.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, cfe-commits, sstefan1, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83478
There is a version that just tests (also called
isIntegerConstantExpression) & whereas this version is specifically used
when the value is of interest (a few call sites were actually refactored
to calling the test-only version) so let's make the API look more like
it.
Reviewers: aaron.ballman
Differential Revision: https://reviews.llvm.org/D76646
Remove _COMPAT. Drop the ARCHNAME. Remove the non-COMPAT versions
that are no longer needed.
We now only use these macros in places where we need compatibility
with libgcc/compiler-rt. So we don't need to call out _COMPAT
specifically.
This change fixed a SEH bug (exposed by test58 & test61 in MSVC test xcpt4u.c);
when an Except-filter is located inside a finally, the frame-pointer generated today
via intrinsic @llvm.eh.recoverfp is the frame-pointer of the immediate
parent _finally, not the frame-ptr of outermost host function.
The fix is to retrieve the Establisher's frame-pointer that was previously saved in
parent's frame.
The prolog of a filter inside a _finally should be like code below:
%0 = call i8* @llvm.eh.recoverfp(i8* bitcast (@"?fin$0@0@main@@"), i8*%frame_pointer)
%1 = call i8* @llvm.localrecover(i8* bitcast (@"?fin$0@0@main@@"), i8*%0, i32 0)
%2 = bitcast i8* %1 to i8**
%3 = load i8*, i8** %2, align 8
Differential Revision: https://reviews.llvm.org/D77982
There are various runtime calls in the device runtime with unused, or
always fixed, arguments. This is bad for all sorts of reasons. Clean up
two before as we match them in OpenMPOpt now.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D83268
Do not detect device library by default in rocm detector.
Only detect device library in Rocm and HIP toolchain.
Separate detection of HIP runtime and Rocm device library.
Detect rocm path by version file in host toolchains.
Also added detecting rocm version and printing rocm
installation path and version with -v.
Fixed include path and device library detection for
ROCm 3.5.
Added --hip-version option. Renamed --hip-device-lib-path
to --rocm-device-lib-path.
Fixed default value for -fhip-new-launch-api.
Added default -std option for HIP.
Differential Revision: https://reviews.llvm.org/D82930
thunk's return value slot directly when the return type is an aggregate
instead of doing so via a temporary
This fixes PR45997 (https://bugs.llvm.org/show_bug.cgi?id=45997), which
is caused by a bug that has existed since we started passing and
returning C++ structs with ObjC strong pointer members (see
https://reviews.llvm.org/D44908) or structs annotated with trivial_abi
directly.
rdar://problem/63740936
Differential Revision: https://reviews.llvm.org/D82513
Currently, Clang previously diagnosed this code by default:
void f(int a[static 0]);
saying that "static has no effect on zero-length arrays", which was
accurate.
However, static array extents require that the caller of the function
pass a nonnull pointer to an array of *at least* that number of
elements, but it can pass more (see C17 6.7.6.3p6). Given that we allow
zero-sized arrays as a GNU extension and that it's valid to pass more
elements than specified by the static array extent, we now support
zero-sized static array extents with the usual semantics because it can
be useful in cases like:
void my_bzero(char p[static 0], int n);
my_bzero(&c+1, 0); //ok
my_bzero(t+k,n-k); //ok, pattern from actual code
Many platform ABIs have special support for passing aggregates that
either just contain a single member of floatint-point type, or else
a homogeneous set of members of the same floating-point type.
When making this determination, any extra "empty" members of the
aggregate type will typically be ignored. However, in C++ (at least
in all prior versions), no data member would actually count as empty,
even if it's type is an empty record -- it would still be considered
to take up at least one byte of space, and therefore make those ABI
special cases not apply.
This is now changing in C++20, which introduced the [[no_unique_address]]
attribute. Members of empty record type, if they also carry this
attribute, now do *not* take up any space in the type, and therefore
the ABI special cases for single-element or homogeneous aggregates
should apply.
The C++ Itanium ABI has been updated accordingly, and GCC 10 has
added support for this new case. This patch now adds support to
LLVM. This is cross-platform; it affects all platforms that use
the single-element or homogeneous aggregate ABI special case and
implement this using any of the following common subroutines
in lib/CodeGen/TargetInfo.cpp:
isEmptyField
isEmptyRecord
isSingleElementStruct
isHomogeneousAggregate
Summary:
D82193 exposed a problem with global type definitions in
`OMPConstants.h`. This causes a race when running in thinLTO mode.
Types now live inside of OpenMPIRBuilder to prevent this from happening.
Reviewers: jdoerfert
Subscribers: yaxunl, hiraditya, guansong, dexonsmith, aaron.ballman, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D83176
The SystemZ ABI specifies that aggregate types with just a single
member of floating-point type shall be passed as if they were just
a scalar of that type. This applies to both struct and class types
(but not unions).
However, the current ABI support code in clang only checks this
case for struct types, which means that for class types, generated
code does not adhere to the platform ABI.
Fixed by accepting both struct and class types in the
SystemZABIInfo::GetSingleElementType routine.
When using __sync_nand_and_fetch with __int128, a problem is found that
the wrong value for the 'invert' value gets emitted to the xor in case
where the int size is greater than 64 bits.
This is because uses of llvm::ConstantInt::get which zero extends the
greater than 64 bits, so instead -1 that we require, it end up
getting 18446744073709551615
This patch replaces the call to llvm::ConstantInt::get with the call
to llvm::Constant::getAllOnesValue which works for all integer types.
Reviewers: jfp, erichkeane, rjmccall, hfinkel
Differential Revision: https://reviews.llvm.org/D82832
This covers both the existing memory functions as well as the new bulk memory proposal.
Added new test files since changes where also required in the inputs.
Also removes unused init/drop intrinsics rather than trying to make them work for 64-bit.
Differential Revision: https://reviews.llvm.org/D82821
User can own a version of coroutine_handle::address() whose return type is not
void* by using template specialization for coroutine_handle<> for some
promise_type.
In this case, the codes may violate the capability with existing async C APIs
that accepted a void* data parameter which was then passed back to the
user-provided callback.
Patch by ChuanqiXu
Differential Revision: https://reviews.llvm.org/D82442
Assume bundle can have more than one entry with the same name,
but at least AlignmentFromAssumptionsPass::extractAlignmentInfo() uses
getOperandBundle("align"), which internally assumes that it isn't the
case, and happily crashes otherwise.
Minimal reduced reproducer: run `opt -alignment-from-assumptions` on
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
%0 = type { i64, %1*, i8*, i64, %2, i32, %3*, i8* }
%1 = type opaque
%2 = type { i8, i8, i16 }
%3 = type { i32, i32, i32, i32 }
; Function Attrs: nounwind
define i32 @f(%0* noalias nocapture readonly %arg, %0* noalias %arg1) local_unnamed_addr #0 {
bb:
call void @llvm.assume(i1 true) [ "align"(%0* %arg, i64 8), "align"(%0* %arg1, i64 8) ]
ret i32 0
}
; Function Attrs: nounwind willreturn
declare void @llvm.assume(i1) #1
attributes #0 = { nounwind "reciprocal-estimates"="none" }
attributes #1 = { nounwind willreturn }
This is what we'd have with -mllvm -enable-knowledge-retention
This reverts commit c95ffadb24.
In general there is no way to get to the ASTContext from most AST nodes
(Decls are one of the exception). This will be a problem when implementing
the rest of APValue::dump since we need the ASTContext to dump some kinds of
APValues.
The ASTContext* in ASTDumper and TextNodeDumper is not always non-null.
This is because we still want to be able to use the various dump() functions
in a debugger.
No functional changes intended.
Reverted in fcf4d5e449 since a few dump()
functions in lldb where missed.
In general there is no way to get to the ASTContext from most AST nodes
(Decls are one of the exception). This will be a problem when implementing
the rest of APValue::dump since we need the ASTContext to dump some kinds of
APValues.
The ASTContext* in ASTDumper and TextNodeDumper is not always
non-null. This is because we still want to be able to use the various
dump() functions in a debugger.
No functional changes intended.
Summary:
This patch is removing the custom enumeration for OpenMP Directives and Clauses and replace them
with the newly tablegen generated one from llvm/Frontend. This is a first patch and some will follow to share the same
infrastructure where possible. The next patch should use the clauses allowance defined in the tablegen file.
Reviewers: jdoerfert, DavidTruby, sscalpone, kiranchandramohan, ichoyjx
Reviewed By: DavidTruby, ichoyjx
Subscribers: jholewinski, cfe-commits, dblaikie, MaskRay, ymandel, ichoyjx, mgorny, yaxunl, guansong, jfb, sstefan1, aaron.ballman, llvm-commits
Tags: #llvm, #flang, #clang
Differential Revision: https://reviews.llvm.org/D82906
Adds `CodeGen::getCXXDestructorImplicitParam`, to retrieve a C++ destructor's implicit parameter (after the "this" pointer) based on the ABI in the given CodeGenModule.
This will allow other frontends (Swift, for example) to easily emit calls to object destructors with correct ABI semantics and calling convetions.
This is needed for Swift C++ interop. Here's the corresponding Swift change: https://github.com/apple/swift/pull/32291
Differential Revision: https://reviews.llvm.org/D82392
Summary:
Previously, source-based coverage analysis does not work properly for coroutine.
This patch adds processing of coroutine body and co_return in the coverage analysis, so that we can handle them properly.
For coroutine body, we should only look at the actual function body and ignore the compiler-generated things; for co_return, we need to terminate the region similar to return statement.
Added a test, and confirms that it now works properly. (without this patch, the statement after the if statement will be treated wrongly)
Reviewers: lewissbaker, modocache, junparser
Reviewed By: modocache
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82928
The x86-64 "avx" feature changes how >128 bit vector types are passed,
instead of being passed in separate 128 bit registers, they can be
passed in 256 bit registers.
"avx512f" does the same thing, except it switches from 256 bit registers
to 512 bit registers.
The result of both of these is an ABI incompatibility between functions
compiled with and without these features.
This patch implements a warning/error pair upon an attempt to call a
function that would run afoul of this. First, if a function is called
that would have its ABI changed, we issue a warning.
Second, if said call is made in a situation where the caller and callee
are known to have different calling conventions (such as the case of
'target'), we instead issue an error.
Differential Revision: https://reviews.llvm.org/D82562
For the Itanium C++ ABI, this implements the rule added in
https://github.com/itanium-cxx-abi/cxx-abi/pull/83
For the MS C++ ABI, this implements the direction that seemed most
plausible based on personal correspondence with MSVC developers, but is
subject to change as they decide their ABI rule.
This replaces the switch statement implementation in the clang's
X86.cpp with a lookup table in X86TargetParser.cpp.
I've used constexpr and copy of the FeatureBitset from
SubtargetFeature.h to store the features in a lookup table.
After the lookup the bitset is translated into strings for use
by the rest of the frontend code.
I had to modify the implementation of the FeatureBitset to avoid
bugs in gcc 5.5 constexpr handling. It seems to not like the
same array entry to be used on the left side and right hand side
of an assignment or &= or |=. I've also used uint32_t instead of
uint64_t and sized based on the X86::CPU_FEATURE_MAX.
I've initialized the features for different CPUs outside of the
table so that we can express inheritance in an adhoc way. This
was one of the big limitations of the switch and we had resorted
to labels and gotos.
Differential Revision: https://reviews.llvm.org/D82731
Summary:
Using the result semantic is wrong in some cases, such as
unsigned fixed-point + signed integer. In this case, the
result semantic is unsigned and the common semantic is
signed.
Reviewers: leonardchan
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82662
Summary:
Modified the OMPBuilderCBHelpers in the following ways:
- Moved location of class definition and deleted all constructors
- Moved OpenMP-specific address allocation of local variables
- Moved threadprivate variable creation for the current thread
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D79676
This reverts commit defd43a5b3.
with correction to solve msan report
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
This reverts commit b55d723ed6.
Reapply Modify FPFeatures to use delta not absolute settings
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
This change enables PowerPC compiler builtins to generate constrained
floating point operations when clang is indicated to do so.
A couple of possibly unexpected backend divergences between constrained
floating point and regular behavior are highlighted under the test tag
FIXME-CHECK. This may be something for those on the PPC backend to look
at.
Patch by: Drew Wock <drew.wock@sas.com>
Differential Revision: https://reviews.llvm.org/D82020
Summary:
Added support for dynamic memory allocation for globalized variables in
case if execution of target regions in parallel is required.
Reviewers: jdoerfert
Subscribers: jholewinski, yaxunl, guansong, sstefan1, cfe-commits, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82324
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
EmitTargetMetadata passed to emitTargetMD a null pointer as returned
from GetGlobalValue, for an unused inline function which has been
removed from the module at that point.
A FIXME in CodeGenModule.cpp commented that the calling code in
EmitTargetMetadata should be moved into the one target that needs it
(XCore). A review comment agreed. So the calling loop has been moved
into the XCore subclass. The check for null is done in that loop.
Differential Revision: https://reviews.llvm.org/D77068
Unused since r255423 / D15140 / 4e52d6f811
Found indirectly by assessing -debug-info-kind=constructors and
observing the EHPadEndScope type was never emitted because the
constructor is never called. (all credit to Amy Huang for identifying
this issue)
This patch contains:
- Support in LLVM CodeGen for bfloat16 types for ld2/3/4 and st2/3/4.
- New bfloat16 ACLE builtins for svld(2|3|4)[_vnum] and svst(2|3|4)[_vnum]
Reviewers: stuij, efriedma, c-rhodes, fpetrogalli
Reviewed By: fpetrogalli
Tags: #clang, #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D82187
This was orignally done so we could separate the compatibility
values and the llvm internal only features into a separate entries
in the feature array. This was needed when we explicitly had to
convert the feature into the proper 32-bit chunk at every reference
and we didn't want things moving around.
Now everything is in an array and we have helper funtions or macros
to convert encoding to index. So we renumbering is no longer an
issue.
Currently, in order to extract an element from a bf16 vector, we cast
the vector to an i16 vector, perform the extraction, and cast the result to
bfloat. This behavior was copied from the old fp16 implementation.
The goal of this patch is to achieve optimal code generation for lane
copying intrinsics in a subsequent patch (LLVM fails to fold certain
combinations of bitcast, insertelement, extractelement and
shufflevector instructions leading to the generation of suboptimal code).
Differential Revision: https://reviews.llvm.org/D82206
Add a new builtin-function __builtin_expect_with_probability and
intrinsic llvm.expect.with.probability.
The interface is __builtin_expect_with_probability(long expr, long
expected, double probability).
It is mainly the same as __builtin_expect besides one more argument
indicating the probability of expression equal to expected value. The
probability should be a constant floating-point expression and be in
range [0.0, 1.0] inclusive.
It is similar to builtin-expect-with-probability function in GCC
built-in functions.
Differential Revision: https://reviews.llvm.org/D79830
Keep deprecated -fsanitize-coverage-{white,black}list as aliases for compatibility for now.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D82244
On AIX, we use __atexit to register dtor functions rather than __cxa_atexit.
So a driver change is needed to default AIX to using -fno-use-cxa-atexit.
Windows platform does not uses __cxa_atexit either. Following its precedent,
we remove the assertion for when -fuse-cxa-atexit is specified by the user,
do not produce a message and silently default to -fno-use-cxa-atexit behavior.
Differential Revision: https://reviews.llvm.org/D82136
1. Provides no piroirity supoort && disables three priority related
attributes: init_priority, ctor attr, dtor attr;
2. '-qunique' in XL compiler equivalent behavior of emitting sinit
and sterm functions name using getUniqueModuleId() util function
in LLVM (currently no support for InternalLinkage and WeakODRLinkage
symbols);
3. Add testcases to emit IR sample with __sinit80000000, __dtor, and
__sterm80000000;
4. Temporarily side-steps the need to implement the functionality of
llvm.global_ctors and llvm.global_dtors arrays. The uses of that
functionality in this patch (with respect to the name of the functions
involved) are not representative of how the functionality will be used
once implemented.
Differential Revision: https://reviews.llvm.org/D74166
The struct store intrinsics in LLVM IR take the individual parts
as arguments, so this patch uses the intrinsics used for `svget`
to break the tuples into individual parts.
Reviewers: c-rhodes, efriedma, ctetreau, david-arm
Reviewed By: efriedma
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81466
Tidy up some code of EmitCXXGlobalInitFunc() and EmitCXXGlobalDtorFunc() as the
pre-work of D74166 patch.
Differential Revision: https://reviews.llvm.org/D81972
Summary:
As part of moving the argument lowering handling for bfloat arguments and
returns to the backend, this patch removes the code that was responsible for
handling the coercion of those arguments in Clang's Codegen.
Subscribers: kristof.beyls, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81837
Summary:
The new SVE builtin type __SVBFloat16_t` is used to represent scalable
vectors of bfloat elements.
Reviewers: sdesmalen, efriedma, stuij, ctetreau, shafik, rengolin
Subscribers: tschuett, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81304
Summary:
According to OpenMP 5.0, nonmonotonic modifier can be used with all
schedule kinds, not only dynamic and guided as in OpenMP 4.5.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, sstefan1, cfe-commits, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82026
When targetting CodeView, the goal is to store argv0 & cc1 cmd-line in the emitted .OBJ, in order to allow a reproducer from the .OBJ alone.
This patch is to simplify https://reviews.llvm.org/D80833
Summary:
On the process of moving the argument lowering handling for
half-precision floating point arguments and returns to the backend, this
patch removes the code that was responsible for handling the coercion of
those arguments in Clang's Codegen.
Reviewers: rjmccall, chill, ostannard, dnsampaio
Reviewed By: ostannard
Subscribers: stuij, kristof.beyls, dmgreen, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81451
This patch add __builtin_matrix_column_major_store to Clang,
as described in clang/docs/MatrixTypes.rst. In the initial version,
the stride is not optional yet.
Reviewers: rjmccall, jfb, rsmith, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72782
For example:
svint32_t svget4(svint32x4_t tuple, uint64_t imm_index)
returns the subvector at `index`, which must be in range `0..3`.
svint32x3_t svset3(svint32x3_t tuple, uint64_t index, svint32_t vec)
returns a tuple vector with `vec` inserted into `tuple` at `index`,
which must be in range `0..2`.
Reviewers: c-rhodes, efriedma
Reviewed By: c-rhodes
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81464
This patch add __builtin_matrix_column_major_load to Clang,
as described in clang/docs/MatrixTypes.rst. In the initial version,
the stride is not optional yet.
Reviewers: rjmccall, rsmith, jfb, Bigcheese
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D72781