Allow a `std::unique_ptr` to be moved into the an `IntrusiveRefCntPtr`,
and remove a couple of now-unnecessary `release()` calls.
Differential Revision: https://reviews.llvm.org/D92888
`SourceManager::getFileEntryRefForID`'s remaining callers just want the
filename component, which is coming from the `FileInfo`. Replace the API
with `getNonBuiltinFilenameForID`, which also removes another use of
`FileEntryRef::FileEntryRef` outside of `FileManager`.
Both callers are collecting file dependencies, and one of them relied on
this API to filter out built-ins (as exposed by
clang/test/ClangScanDeps/modules-full.cpp). It seems nice to continue
providing that service.
Differential Revision: https://reviews.llvm.org/D89508
This is a prep patch for changing SourceManager to return
`Optional<MemoryBufferRef>` instead of `MemoryBuffer`. With that change the
address of the MemoryBuffer will be gone, so instead use the start of the
buffer as the key for this map.
No functionality change intended, as it's expected that the pointer identity
matches between the buffers and the buffer data.
Radar-Id: rdar://70139990
Differential Revision: https://reviews.llvm.org/D89136
The goal of this patch is to maximize CPU utilization on multi-socket or high core count systems, so that parallel computations such as LLD/ThinLTO can use all hardware threads in the system. Before this patch, on Windows, a maximum of 64 hardware threads could be used at most, in some cases dispatched only on one CPU socket.
== Background ==
Windows doesn't have a flat cpu_set_t like Linux. Instead, it projects hardware CPUs (or NUMA nodes) to applications through a concept of "processor groups". A "processor" is the smallest unit of execution on a CPU, that is, an hyper-thread if SMT is active; a core otherwise. There's a limit of 32-bit processors on older 32-bit versions of Windows, which later was raised to 64-processors with 64-bit versions of Windows. This limit comes from the affinity mask, which historically is represented by the sizeof(void*). Consequently, the concept of "processor groups" was introduced for dealing with systems with more than 64 hyper-threads.
By default, the Windows OS assigns only one "processor group" to each starting application, in a round-robin manner. If the application wants to use more processors, it needs to programmatically enable it, by assigning threads to other "processor groups". This also means that affinity cannot cross "processor group" boundaries; one can only specify a "preferred" group on start-up, but the application is free to allocate more groups if it wants to.
This creates a peculiar situation, where newer CPUs like the AMD EPYC 7702P (64-cores, 128-hyperthreads) are projected by the OS as two (2) "processor groups". This means that by default, an application can only use half of the cores. This situation could only get worse in the years to come, as dies with more cores will appear on the market.
== The problem ==
The heavyweight_hardware_concurrency() API was introduced so that only *one hardware thread per core* was used. Once that API returns, that original intention is lost, only the number of threads is retained. Consider a situation, on Windows, where the system has 2 CPU sockets, 18 cores each, each core having 2 hyper-threads, for a total of 72 hyper-threads. Both heavyweight_hardware_concurrency() and hardware_concurrency() currently return 36, because on Windows they are simply wrappers over std:🧵:hardware_concurrency() -- which can only return processors from the current "processor group".
== The changes in this patch ==
To solve this situation, we capture (and retain) the initial intention until the point of usage, through a new ThreadPoolStrategy class. The number of threads to use is deferred as late as possible, until the moment where the std::threads are created (ThreadPool in the case of ThinLTO).
When using hardware_concurrency(), setting ThreadCount to 0 now means to use all the possible hardware CPU (SMT) threads. Providing a ThreadCount above to the maximum number of threads will have no effect, the maximum will be used instead.
The heavyweight_hardware_concurrency() is similar to hardware_concurrency(), except that only one thread per hardware *core* will be used.
When LLVM_ENABLE_THREADS is OFF, the threading APIs will always return 1, to ensure any caller loops will be exercised at least once.
Differential Revision: https://reviews.llvm.org/D71775
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Differential Revision: https://reviews.llvm.org/D70268
This is a recommit of f978ea4983 with a fix for the PowerPC failure.
The issue was that:
* `CompilerInstance::ExecuteAction` calls
`getTarget().adjust(getLangOpts());`.
* `PPCTargetInfo::adjust` changes `LangOptions::HasAltivec`.
* This happens after the first few calls to `getModuleHash`.
There’s even a FIXME saying:
```
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
```
This only showed up on PowerPC because it's one of the few targets that
almost always changes a hashed langopt.
I looked into addressing the fixme, but that would be a much larger
change, and it's not the only thing that happens in `ExecuteAction` that
can change the module context hash. Instead I changed the code to not
call `getModuleHash` until after it has been modified in `ExecuteAction`.
Fix the confusing naming of `CompilerInstance::ModuleManager`. This is
actually an instance of `ASTReader`, which contains an instance of
`ModuleManager`. I have to assume there was a point in the past where
they were just one class, but it's been pretty confusing for a while. I
think it's time to fix it.
The new name is `TheASTReader`; the annoying `The` prefix is so that we
don't shadow the `ASTReader` class. I tried out `ASTRdr` but that
seemed less clear, and this choice matches `ThePCHContainerOperations`
just a couple of declarations below.
Also rename `CompilerInstance::getModuleManager` and
`CompilerInstance::createModuleManager` to `*ASTReader`, making some
cases of `getModuleManager().getModuleManager()` a little more clear.
https://reviews.llvm.org/D70583
Previously, given a CompilationDatabase with two commands for the same
source file we would report that file twice with the union of the
dependencies for each command both times.
This was due to the way `ClangTool` runs actions given an input source
file (see the comment in `DependencyScanningTool.cpp`). This commit adds
a `SingleCommandCompilationDatabase` that is created with each
`CompileCommand` in the original CDB, which is then used for each
`ClangTool` invocation. This gives us a single run of
`DependencyScanningAction` per `CompileCommand`.
I looked at using `AllTUsToolExecutor` which is a parallel tool
executor, but I'm not sure it's suitable for `clang-scan-deps` as it
does a lot more sharing of state than `AllTUsToolExecutor` expects.
Differential Revision: https://reviews.llvm.org/D69643
This is a recommit of d8a4ef0e68 with the nondeterminism fixed.
This adds experimental support for extracting a Clang module dependency graph
from a compilation database. The output format is experimental and will change.
It is currently a concatenation of JSON outputs for each compilation. Future
patches will change this to deduplicate modules between compilations.
Differential Revision: https://reviews.llvm.org/D69420
This adds experimental support for extracting a Clang module dependency graph
from a compilation database. The output format is experimental and will change.
It is currently a concatenation of JSON outputs for each compilation. Future
patches will change this to deduplicate modules between compilations.
Differential Revision: https://reviews.llvm.org/D69420
This fixes two issues that prevent simple uses of modules from working.
* We would previously minimize _every_ file opened by clang, even module maps
and module pcm files. Now we only minimize files with known extensions. It
would be better if we knew which files clang intended to open as a source
file, but this works for now.
* We previously cached every lookup, even failed lookups. This is a problem
because clang stats the module cache directory before building a module and
creating that directory. If we cache that failure then the subsequent pcm
load doesn't see the module cache and fails.
Overall this still leaves us building minmized modules on disk during scanning.
This will need to be improved eventually for performance, but this is correct,
and works for now.
Differential Revision: https://reviews.llvm.org/D68835
Summary:
There's no behavior change - just moving DependencyScanningTool to its own file
since this tool can be reused across both clang-scan-deps binary and an interface
exposed as part of libClang APIs.
Reviewers: arphaman, jkorous, Bigcheese, dexonsmith
Subscribers: mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69186
llvm-svn: 375483
This test is failing on Windows bots, revert for now (will check the right fix and retry the patch).
Summary: This reverts commit 962ca076e5.
Reviewers: Bigcheese, jkorous, arphaman
Subscribers: dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69079
llvm-svn: 375079
Summary:
Clang's -M mode includes these extra dependencies in its output and clang-scan-deps
should have equivalent behavior, so adding these extradeps to output just like
how its being done for ".d" file generation mode.
Reviewers: arphaman, dexonsmith, Bigcheese, jkorous
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69017
llvm-svn: 375074
Summary:
It seems that when the CachingFileSystem is first given a file to open that is actually a directory, it incorrectly
caches that path to be errenous and throws an error when subsequently a directory open call is made for the same
path.
This change makes it so that we do NOT cache a path if it turns out we asked for a file when its a directory.
Reviewers: arphaman
Subscribers: dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68193
llvm-svn: 374366
Scan deps tool crashes when called on a C++ file, containing an include
that has the same name as a directory.
The tool crashes since it finds foo/dir and tries to read that as a file and fails.
Patch by: kousikk (Kousik Kumar)
Differential Revision: https://reviews.llvm.org/D67091
llvm-svn: 371903
This resolves differences observed on LLVM + Clang when running the comparison between canonical
dependencies (full preprocessing, no file manager reused), and dependencies obtained
when the file manager was reused between the full preprocessing invocations.
llvm-svn: 371751
This commit adds an optimization to clang-scan-deps and clang's preprocessor that skips excluded preprocessor
blocks by bumping the lexer pointer, and not lexing the tokens until reaching appropriate #else/#endif directive.
The skip positions and lexer offsets are computed when the file is minimized, directly from the minimized tokens.
On an 18-core iMacPro with macOS Catalina Beta I got 10-15% speed-up from this optimization when running clang-scan-deps on
the compilation database for a recent LLVM and Clang (3511 files).
Differential Revision: https://reviews.llvm.org/D67127
llvm-svn: 371656
There's no need to purge symlinked entries in the FileManager,
as the new FileEntryRef API allows us to compute dependencies more
accurately when the FileManager is reused.
llvm-svn: 370493
to report the dependencies to the client
This will allow the scanner to report modular dependencies to the consumer.
This will also allow the scanner to accept regular cc1 clang invocations, e.g.
in an implementation of a libclang C API for clang-scan-deps, that I will add
follow-up patches for in the future.
llvm-svn: 370425
the dependency scanner on a single worker thread
This behavior can be controlled using the new `-reuse-filemanager` clang-scan-deps
option. By default the file manager is reused.
The added test/ClangScanDeps/symlink.cpp is able to pass with
the reused filemanager after the related FileEntryRef changes
landed earlier. The test test/ClangScanDeps/subframework_header_dir_symlink.m
still fails when the file manager is reused (I run the FileCheck with not to
make it PASS). I will address this in a follow-up patch that improves
the DirectoryEntry name modelling in the FileManager.
llvm-svn: 370420
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368942
This commit implements the fast dependency scanning mode in clang-scan-deps: the
preprocessing is done on files that are minimized using the dependency directives source minimizer.
A shared file system cache is used to ensure that the file system requests and source minimization
is performed only once. The cache assumes that the underlying filesystem won't change during the course
of the scan (or if it will, it will not affect the output), and it can't be evicted. This means that the
service and workers can be used for a single run of a dependency scanner, and can't be reused across multiple,
incremental runs. This is something that we'll most likely support in the future though.
Note that the driver still utilizes the underlying real filesystem.
This commit is also still missing the fast skipped PP block skipping optimization that I mentioned at EuroLLVM talk.
Additionally, the file manager is still not reused by the threads as well.
Differential Revision: https://reviews.llvm.org/D63907
llvm-svn: 368086
thread worker code and better error handling
This commit extracts out the code that will powers the fast scanning
worker into a new file in a new DependencyScanning library. The error
and output handling is improved so that the clients can gather
errors/results from the worker directly.
Differential Revision: https://reviews.llvm.org/D63681
llvm-svn: 364474