When computing a range for a SCEVUnknown, today we use computeKnownBits for unsigned ranges, and computeNumSignBots for signed ranges. This means we miss opportunities to improve range results.
One common missed pattern is that we have a signed range of a value which CKB can determine is positive, but CNSB doesn't convey that information. The current range includes the negative part, and is thus double the size.
Per the removed comment, the original concern which delayed using both (after some code merging years back) was a compile time concern. CTMark results (provided by Nikita, thanks!) showed a geomean impact of about 0.1%. This doesn't seem large enough to avoid higher quality results.
Differential Revision: https://reviews.llvm.org/D96534
Summary:
IPA is implemented as module pass which produce map from Function or Alias to
StackSafetyInfo for a single function.
From prototype by Evgenii Stepanov and Vlad Tsyrklevich.
Reviewers: eugenis, vlad.tsyrklevich, pcc, glider
Subscribers: hiraditya, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D54543
llvm-svn: 347611
Summary:
Analysis produces StackSafetyInfo which contains information with how allocas
and parameters were used in functions.
From prototype by Evgenii Stepanov and Vlad Tsyrklevich.
Reviewers: eugenis, vlad.tsyrklevich, pcc, glider
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D54504
llvm-svn: 347603